2001 Vol. 36 No. 4 pp. 463-468 DOI:

Energy Spectra, g Factors and Their Pressure-Induced and/or Thermal Shifts of $SrTiO_3$: Cr^{3+} and $SrTiO_3$: Mn^{4+} III: R-Line Thermal Shifts of $SrTiO_3$: Mn^{4+}

MA Dong-Ping^{1,2} and ZHANG Ji-Ping¹

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China ² International Centre for Materials Physics, The Chinese Academy of Sciences, Shenyang 110015, China (Received: 2001-4-12; Revised:)

Abstract: By taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of basic wavefunctions within d³ electronic configuration, the values of the parameters in the expressions of thermal shift (TS) from EPI for the ground level, R level and R line of SrTiO₃:Mn⁴⁺ have been evaluated; the R-line TS and various contributions to it have been calculated in the low-temperature region. It is found that all the three terms of R-line TS from EPI relevant to the lattice vibration are red shifts. The Raman term is the largest, the neighbor-level term is the second, and the optical-branch term is very small over the range of T ≤ 80 K. The contribution to R-line TS from thermal expansion has been approximately neglected in this work. The very strong EPI relevant to its lattice vibration for SrTiO₃:Mn⁴⁺ causes its R-line TS to be an unusually large red-shift. Only by taking into account the strong softening of the low-frequency acoustic modes of the lattice vibration at low temperatures, can we successfully explain the variation of R-line TS of SrTiO₃:Mn⁴⁺ with temperature.

PACS: 63.20.Mt, 71.70.Ch, 63.20.Kr, 78.20.Nv Key words: crystal fields, optical properties, electron-phonon interaction, thermal shift, softening of acoustic modes

[Full text: PDF]

Close