2001 Vol. 35 No. 4 pp. 491-496 DOI:

Energy Spectra, g Factors and Their Pressure-Induced and/or Thermal Shifts of $SrTiO_3$: Cr^{3+} and $SrTiO_3$: Mn^{4+} I: Energy Spectra and g Factors at Normal Pressure

ZHANG Ji-Ping¹ and MA Dong-Ping^{1,2}

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China
² International Centre for Materials Physics, The Chinese Academy of Sciences, Shenyang 110015, China (Received: 2000-10-9; Revised:)

Abstract: With the strong-field scheme and cubic bases, the complete d³ energy matrix in a tetragonally distorted cubic-field has been constructed. By diagonalizing this matrix, the energy spectra of $SrTiO_3$: Cr^{3+} and $SrTiO_3$: Mn^{4+} at normal pressure and various temperatures have been calculated. Correspondingly, the FORTRAN program calculating the g factor of the ground state has been worked out. By using the program and the wavefunction obtained from diagonalizing the complete energy matrix, the g factors of the ground state of $SrTiO_3$: Cr^{3+} and $SrTiO_3$: Mn^{4+} at normal pressure and room temperature have been evaluated. The calculated results are in good agreement with the optical-spectral and EPR experimental data. The comparison and analysis of the results of two crystals have been made. It is demonstrated that the covalency of the bonding between Mn^{4+} and ligands (O^{2-}) in $SrTiO_3$: Cr^{3+} . It is shown that the obtained wavefunctions and values of parameters are reasonable.

PACS: 71.70.Ch, 71.70.Ej, 76.30.Fc Key words: crystal fields, energy spectrum, optical properties, g factors, covalency

[Full text: PDF]

Close