2001 Vol. 35 No. 5 pp. 627-634 DOI :

Energy Spectra, g Factors and Their Pressure-Induced and/or Thermal Shifts of SrTiO_3:Cr^{3+} and SrTiO_3:Mn^{4+} II: Pressure Effects on Ground-State q Factorand Splittings of t^3_2{}^2E and t^3_2{}^4A_2 of SrTi0_3:Cr^{3+}

MA Dong-Ping^{1,2} and ZHANG Ji-Ping¹

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China ² International Centre for Materials Physics, The Chinese Academy of Sciences, Shenyang 110015, China

(Received: 2000-10-24; Revised:)

Abstract: By using the wavefunctions obtained from diagonalizing the complete d^3 energy matrix at normal and various pressures, the q factor of the ground state of $SrTiO_2$: Cr^{3+} and its pressure-induced shift have been microscopically calculated. Only by taking the local strains around Cr^{3+} in SrTiO₂: Cr^{3+} (which are about twice the bulk ones) and corresponding P- χ dependence, can we obtain a good agreement between the calculated result of pressure-induced shift of ground-state g factor and the experimental one. The physical origins of this pressureinduced shift have been explained. It is found that the change of Dq⁻¹ with pressure makes main contribution to the pressure-induced shift of ground-state g factor of SrTiO₃: Cr³⁺. By using the wavefunctions obtained from diagonalizing the complete d^3 energy matrix at normal pressure, the relevant matrix elements and accordingly strain-induced splittings of $t_2^{32}E$ and $t_2^{34}A_2$ of SrTiO₃: Cr³⁺ have been calculated. The important results of Y_c , Z_c , P_c and Q_c have also been evaluated. It is the admixtures of basic wavefunctions resulted from the spin-orbit interaction and/or Coulomb interaction and/or Kramers degeneracy that make the strain-induced splittings of the levels nonzero. It is found that there are nonvanishing matrix elements of operators $T_2\xi$, T_2 η and T₂ ζ between wavefunctions with positive M_s and those with negative M_s', which have important effects on the strain-induced splittings of the levels.

PACS: 71.70.Ch, 71.70.Fk, 76.30.Fc, 78.20.Hp Key words: crystal fields, energy spectrum, g factors, high-pressure effect, strain-induced splitting

[Full text: PDF]

Close