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The phenomenon of charged-particle oscillation in DC \g#taiased plane-parallel conductors is discussed.
Traditionally accepted mechanism for explaining the desity behavior of charged particles in such system
attributes the phenomenon to a process of charge exchahgsh takes place when charged-particle is in close
proximity to one of the electrodes. A novel finding here rés¢laat for microscopic or smaller particles under
special circumstances, charged-particle oscillatiors chae involve charge exchanges. Such system radiates and
the frequency of emitted radiation is controlled by a DC ag# biased across the two plane-parallel electrodes.

This work has been published in Physics of Plasmas cumstances, core-shell structured charged-particlédlatssi

with open access (author select) option. The refer- under constant electric field. Such oscillatory behavior-ca
ence to the article is Phys. Plasmas 19, 033506 (2012); not be explained by the aforementioned traditional pichae
http://dx.doi.org/10.1063/1.3690104. cause it does not involve any charge exchanges. The criterio

for such oscillatory modes is given by

I. INTRODUCTION

Qr > 2 yigy+ yrEg+ o | )
The phenomenon of charged-particle oscillation in DC volt- 073
age biased plane-parallel conductors (or electrodes) is we
known= Such phenomenon has been extensively studiednere
over years, both theoretically and experimentally, due to 1 1
its usefulness in variety of applications such as eledtimst &= ? -— >0,
thruster and nanoprinting, for instance, which requirehhjig ;m (h_zd-,m)

energetic charged-nanoparticles with very high sgegd.
Traditionally, the phenomenon of charged-particle oscil-

lation subjected to a constant electric field has been at- - y(b° &) b + y(b° &) —b -8<0,

tributed to a process of charge exchange, which takes place Zg,m (h— zd,m)s

when charged-patrticle is in close proximity to one of the

electrode$. When charged-particle is placed between a Dcand

voltage biased plane-parallel electrodes, it migrateshi t 3

electrode of opposite polarity. For electrically condngtpar- y= 3Kksb <1

ticles, charge exchange takes place near the point of dontac (K2 +2K3) b3+ 2 (k2 — K3) @3

with the electrode. This reverses the polarity of the chawge

particle and the particle gets repulsed towards the orfposiIH

electrode. There, again, the charge exchange occurs and tfii€ gravitational constartt,is the gap between the two plane-

process gets repeated, resulting in charged-particléatim parallel electrode®Qr is the positive effective charge carried

between the electrodes. Such process is schematicatly illuPY the core-shell structured partictajs the mass of the parti-
trated in Fig[l. cle, andks is the dielectric constant for the space between the

two electrodes. The core-shell structured particle, wkidh
lustrated in FiglR2, has a outer radiugpthe inner conductor
Oscillation due to repeated charge exchange core radius of, and the insulator shell layer has a dielectric
constant ok,. The termzy ,, is the maximum value assumed
by the parametez, in Fig.[d as the particle executes an oscil-
latory motion. The particle oscillates back and forth betwe
— Zy = 0 andzy = zym; hence, physicallyzg m represents the
DC voltage source=— _ turning point where the core-ghgll struil:ztcljjred cl?hargediqjar
begins to move back towards the conductor plate located at
Zzg=0.
For a negatively charged core-shell structured partitle, t
Figure 1: (Color online) Schematic of charged-particleilation ~ oscillatory criterion is given by
due to repeated charge exchange.
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where (a) Particle between parallel conducting plat

1 v,

r777—i >0
(h—2d7m)2 ztzi,m '

The two criteria, Eqgs.[{1) andl(2), are not form wise identi-
cal due to the fact that negatively charged particle ogesla
near the lower conductor plate whereas the positively athrg
particle oscillates near the upper conductor plate. Héee, t
upper conductor plate, which is locatedzgat= 0, is assumed h -4-z=0---
to be held at a higher voltage than the lower conductor plate,
which is located azy = h. The finding in this work reveals
that for the configuration illustrated in Fig] 2, the postiv z=s-h
charged core-shell structured particle only oscillateb@re-
gion where 0< z4 < h/2; and, the negatively charged core-
shell structured particle oscillates only in the region vehe
h/2 <z <h.

This remarkable result, which | find it quite obvious but not
trivial, is a direct consequence of solving electrostatiard-
ary value problem involving core-shell structured charged
particle subjected to DC voltage biased plane-parallet-ele
trodes depicted in Figl]2. The problem is analyzed by first
solving the electric potential; in the regionM3. The solu-
tion toV3 is obtained by solving Laplace equation with appro-
priate electrostatic boundary conditions. Thereaftetuaed
charges on the surface of each plane-parallel electrodes ar
computed. Similarly, the effective charge carried by theeeo
shell structured particle is also computed. The dynamics of
the charged-particle is formulated by considering Coulomb
forces between the charged-particle and the induced charge
on the surface of each plane-parallel electrodes. To gkreera
the problem to include all particle speed ranges, the dycami

IS for_mula_ted |_n relatlv_lstlc formalism. . . Figure 2: (Color online) (a) Cross-sectional view of an & core-
This article is organized as follow: (I) introduction, (Blt-  ghe|l structured particle confined by the DC voltage biasedep
line of results, (IIl) theory, (IV) concluding remarks, a(d)  parallel conductors. (b) Spherical polar coordinate systeowing
acknowledgments. Normally, the section of theory immedi-spherical polar tripletr, 6, @) of a vectorR in Euclidean three di-
ately follows the introduction. However, as this work irve$  mensional spac&s.
lengthy derivations, albeit straightforward, the readearione
to lose the essence of what this paper tries to portray. For th
reason, the section titled “outline of results” is placedietdi-  sphere andy is the free charge density on the outermost sur-
ately after the introduction. In the outline of results, mdadls ~ face of the dielectric shell. The free charge on the surfdice o
of derivations are provided. Instead, the essence of ttidear ~ dielectric shell has been introduced purely for genertina
is briefly summarized there using only the results, which aref the problem. Without loss of generality, can be set to
rigorously derived in the theory section. zero in the final form of solution.
That said, adopting the particle coordinate system illus-
trated in Fig.L2(b), the electric potential in regibhy of Fig.

Il. OUTLINE OF RESULTS 2(a) is given by
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The essence of this article is to investigate the dynamics of Va(r,8) =ViL+Ep(h—s+rcosd) + T

charged-particle .|IIustrated in EI@ 2({:1),. where a_con:mgct [y(b3—a3) _ b3] Ep oSO

sphere coated with a shell of dielectric is placed in an ether +

wise constant electric field. The upper conductor plate-elec

trode is held at a DC voltage & and the lower conductor whereC is a constantz, is the magnitude of DC electric field

plate electrode is held at DC voltage \df, whereV. <Vr.  in the gap between two parallel plates in the absence of core-

The two plane-parallel conductor plate electrodes are-sepahell structured charged-particle,

rated by a gap df. The conducting sphere coated with a shell

of dielectric has a free charge densitiesoafand o, where E. — }(|VT “W);

0, is the free charge density on the surface of the conducting P~ h '

+C

2 , r>b,



and,y andv are defined as and
B 3k , Fzzezg{ y(bB*—a) —bJE, v _Ep}
Y= (K2+2k3) b3+ 2 (ko — k3) @3’ ®) 4 4(h—s)® 4(h—9)?
(7)
- 2a(b—a)o; a0+ b0, @ where p
T ks &Kz Qr =8ma(b—a) 01K—3 +4n(a’oy +b%0y) .
2

Here, & is the electric permittivity of free space ard and  \when the gravitational effect is included, the force experi
k3 are dielectric constants respectively for regibhisandMs  enced by the core-shell structured charged-particle is
illustrated in Fig.[2. Withvs(r,8) and application of appro-

priate electric boundary conditions to each conductoreglat Fr=F1+F,—emg

yields or
3[y(b® —a3) — b3| Ep? v v y(b®—a3) — b E
SN 117 ol L o[y v )
(P2 +) 16 (h—9)
vs— [y(b®—a%) —b%|E b3 —ad) —b%|E
e .y ey L V&) g )
(p2+2)% (h—s)
and wheremis the mass of the particlg,= 9.8m-s 2 is the grav-
ity constant, and the gravitational force has been assumed t
3 [y(b3— a3) B b3] Ey(h— 5)2 Bebin the—e, direction. It can be shown th&}y is related to
Oilp = &0K3 ;1572 y
[p2+ (h—s) } Qr = 47gK3V;
v(h—9)+ [y(b3 _ ag) _ bg} Ep . and the forcd-r may be re-expressed, for convenience, as
3/2 P TiEgkav | v v ly(b®—a%) —b’|E
[ (h=s) } T=8% £ (h-s? * s
wherediyp = Giup (P, ) is the induced surface charge density [y(b3 _ a3) _ b3] Ep
on the surface of upper conductor platg, = gjip (0, 9) is the + 3 —8Ep p — emg. )
induced surface charge density on the surface of lower con- (h—s)
ductor plate, angh = /x2 +y2. It is noticed thatFt, which is the net force exerted on the

The net force exerted on the core-shell structured chargedore-shell structured charged-particle illustrated ig. E(a),
particle by induced charges on each surfaces of the conduct a one dimensional force that only depends on the relative

plates is given by = F1 + F», length, s, measured between the particle and the surface of
) the upper parallel plate electrode.
- Qr [T /p GRipidpidg (5) The dynamics of oscillating charged-particle is given by
I — T a0 a5
813 Jg-0/p-0 (Ri-Ri)¥?
wherei = (1,2), G = Oiup, & = Gilp, &3 IS the electric permit- ezﬂ mv —Fr
tivity of the regionM3, andR; is given by dt 1_ V—i ’
C
Ry =8&prcosp + eyplsin(pl &5, wherec = 3x 108m-s 1 is the speed of light in vacuum. Us-
R2 = &xp2COS@, + 6yP2Sing; + €, (s—h). ing the explicit expression fdfr, Eq. (9), it can be shown
that
In the limit the charged-particle becomes very small com- 3
X ; 2 21 3/2
pared to the dimensions of parallel plates, which is the case o & TTEgK3V | V v
. ; : X ; . §=(1-= — —
for micro- or nano-sized charged-particle confined in a aricr c? am £ (h- 3)2
scopically large, but macroscopically small parallel pgathe 3 .3 3
Fi of Eq. (B) fori = (1,2) can be shown to become n [y (b°—2°) —b’] Ep

3 .3\ p3 3 .3\ 3
Flzez%{éJr[y(b 33)3 IO“Ep—lzp} (6) () IO“Ep—falzp}—g>,



wheree; has been dropped for convenience and the notasions " " : ;
andsrespectively denote the first and second time derivatives, Initial condition configuration

i.e.,s= ds/dt ands= d?s/dt?. V;
In terms of thezg parameter illustrated in Figl 2(a), upper conductor plate

s=z+bh, S=2, $=1Xx,

which is the separation length between the upper electrode
plate and the uppermost surface of the core-shell strutture
charged-particle, the previous nonlinear ordinary défeial
equation becomes

o\ 3/2
5 1_§ TTEHK3V v
4= < cz) < 4m { (zg+b)? 0.5h ~ - h

v n ly(b*—a°) —b%| Ep
(h—2z4—b) (z4+Db)°
3_ 23) _ 3
+ [V('?h _2)_ bt))3] Ep _ 8Ep} _ g) . (10) €, — axis is out of page

To solve and plot Eq[{10), the core-shell structured plartic
in Fig. [2 has been chosen to be the aluminum nanoparticle,

lower conductor plate

where the core is aluminum and the shell is aluminum oxide. (
The following parameter values have been assigned: e AV
Ko =6, K3z=1,
a=15um, h=1mm Figure 3: (Color online) Initial position of the particle. h&re are
b—a=4nm no free surface charges on the insulating shell; and, hemce;
Vr =8KkV, VW =0V, 0C-m2
01, =0014C m2, (1)
0, =0C-m 2,
Pm1=2700kg m~3, work is this; what happens to the dynamics of this charged
Pm2 = 3800kg m~3, particle afterwards? Before | present the result of dynamic

I shall discuss how such particle might be ionized experimen
wherepm 1 andpm 2 are mass densities of the aluminum coretally.
and the aluminum oxide, respectively. The thickness of alu- Szirmai demonstrated that a core-shell structured peyticl
minum oxide layer has been set at 4nwhich is typical j.e., an aluminum core surrounded by a thin layer of aluminum
of aluminum nanoparticle¥. Because aluminum oxide is an oxide, can be charged by exposing it to a static electric éiéld
high-k dielectric material, i.ek; ~ 6, the 0, has been set to  sufficiently large strength. At the onset of the field emissio
zerot! For an insulator, the value ok is negligible compared  electrons are stripped from the particle’s conductive core
to 01 The mass of the core-shell structured particle has beefunnel through a thin dielectric layer, leaving the paetinet

computed as positively charged as a wheolé.Because electrons are more
4 4 strongly bonded in a dielectric, it takes significantly karg
M= ~ma’pm1+ 5 11(0° — &%) pm2, (12) electricfield to ionize insulators. Therefore, it is reasble to
3 3 , assume no free surface charges on the insulating shell in Fig
me ms [3, implying o, = 0C-m~2 there.

wherem; and ms represent the masses of the core and the The field emission process strongly depends on the geom-

. . . ientati 17
shell, respectively. With these values assigned for eatheof Y @s well as on the orientation of host mateHal! For

parameters, EqL(10) is solved via Runge-Kutta method syghstance, a spherical surface has a lower field emissioslithre
jected to thé following initial conditions old point than a flat surface; which is also the reason why a

conductive needle emits electron better than a thick rod con

z4(0)=0.25h and Z;(0)=0, (13)  ductor. Physically, a sharp tip can be described by a surface
with large curvature whereas the dull one is described by a
which conditions are schematically illustrated in Fig. 3. surface with smaller curvature. By definition, the curvatof

In this work, it is assumed that core-shell structureda circle of radiug is large for smalk and is small for large
charged-particle is already ionized. And, for the initiahe  r. Accordingly, spherical nanoparticles have very large aurv
ditions, this ionized particle just happens to begat 0.25h  ture whereas macroscopic spherical particles have veril sma
with no initial speed. Then, the question to be asked in thicurvature. What is referred to as a flat surface is just a spe-



cial case in which the radiusof a sphere becomes infinite Field emission threshold

in extent. Since the conductive needle emits electrongbett

than a thick rod conductor, a needle has a lower field emis- below threshold state . above threshold state

sion threshold than a rod. This implies that smaller spheri- ! o

cal conductors, such as nanoparticles, have lower field-emis e e

sion threshold than larger spherical conductors or flabsed. !

That explained, the field emission thresholds are schemati- l
p

cally summarized in Fid.14 for a spherical conductor, sptzeri
dielectric, and a conductor plate, wherein the followindgdfie
emission thresholds are assumed: Ea)for the conducting
sphere, (b)Egs for the dielectric sphere, and (&, for the
conductor plate in vacuum. Since the geometry of conducto |
plates is just an extension of infinitely large sphere, thiéefin - - : !

sized conducting spheres have lower field emission thrdshol (b) dietectric sphere:E, < Eqs Ep>Eas. Eos>Fos

than large conductor plates; and, thigp > Ecs. Because  (c) conductor platesE, < Egp Eo>Eep . Egs >Eqp >Ecs
electrons are very strongly bonded in a dielectric, exospti |

I(a) conductor spheréEp <Ecs | Ep > Ecs

ally large electric field must be applied to strip an electron m m

from a dielectric material. In general, it is much easier to 3

strip an electron from a conductor plate than from a dieilectr !

Hence, it is reasonable to assufg > Ecp. In summary, the + Ep l Ep Ly

three field emission thresholds satisfy the inequality give i - - T -
s Fp 2 B D == =

whereEgys, Ecp, andEcs are field emission thresholds for di-
electric sphere, conductor plate, and conductor sphesgece  Figure 4: (Color online) Schematic of electron field emisgioresh-
tively. old. When the magnitudg, = ||Ep|| of applied electric field is less
What if the conducting spherical particle is coated with athan the field emission threshold, spherical particle isupéd in-
thin layer of a dielectric shell, just like the one illustdtin ~ Side, but no electrons are field emitted and the particle abalew
Fig. [3; would it be still possible to ionize such particle by a reémains neutral, i.eQ = 0. WhenE,, exceeds the field emission
process of field emission? The answer to this is yes, of cours&reshold, electrons are stripped (or field emitted) from parti-
For instance, Konopsky et al. have experimentally measurege’ leaving the particle net positively charged, i@ 0. Similarly,

. L - . : .~ . WhenE, is below the field emission threshold, no electrons are emit-
field emissions from sharp silicon tips covered with thin di- P

X X . 18 . . . ted from the lower potential plate. However, whEp exceeds the
electric calcium fluoride layers: lwasaki and Sudoh investi-  fie|q emission threshold, electrons from lower potentiatglbegin

gated electron tunneling through an aluminum oxide thin filmt tunnel across the vacuum gap and electric dischargensétsthe
on a nickel-aluminum metal compos#2And, Kurnosikov et figure, field emission electrons are indicatedeby

al. have also investigated electron transport through ialam
oxide tunnel junctiong® Nevertheless, the insulating dielec-
tric shell on the surface of spherical conductor increalses t
minimum electric field required to ionize a particle. Them, t
ionize a core-shell structured particle, it is crucial thao
plane-parallel conductor plates are able to produce @ectr position. Conductor plates with such material composition
field large enough to ionize a particle without electric dis-generated electric discharge at applied electric fielchgtre
charge setting in. When there is a field emission originatingf Ep ~ 3850MV-m~1. In a vacuum gap separated plane-
from one of the conductor plates, i.e., the lower conductoparallel conductor plates, electric discharge is attatuto
plate in Fig. [3, the positively ionized core-shell struenir electrons from lower potential plate tunneling throughdag
particle quickly neutralizes. To prevent this, the two glan towards the plate with higher potential, thereby shortimg t
parallel conductor plates must be able to produce suffigient two plates and causing an electric discharge. In this regzed
large electric field to ionize the particle, but at the sameeti  phenomenon of electric discharge is intrinsically conee¢b
this electric field must not be large enough to initiate fieldthe field emission threshold illustrated in Figl 4(c). Hence
emission from conductor plates themselves. in the aforementioned Zouache and Lefort's configuration,
Zouache and Lefort investigated the phenomenon of eleghe field emission threshold &, < 3850MV-m~! can be
tric discharge in plane-parallel conductor plates, sucthas roughly approximated. This field emission threshold value
one illustrated in Fig.[J3, but without particle insideln ~ may be compared with the electric field used by Szirmai to
their configuration, two plates are separated by an emptipnize his particle. In Szirmai's experiment, an electréddiof
space gap of one micron in length. They have tested variEp ~ 4.67 MV -m~! was sufficient to produce a net charge of
ous materials for the conductor plates. Among various ma~ 4 x 10~°C on a core-shell structured spherical aluminum
terials tried for conductor plates, one was prepared from garticle of 3um in diameter. For the particle in Szirmai’'s ex-
mixture of 60% silver and 40% nickel in its material com- periment, the field emission threshold&g < 4.67MV-m~1



can be assumed. Comparing the two values, one finds Charging of core—shell structured nanopari
Ep  3850MV-m! by a process of field emission

Ees 467MV-m1 ~ 824

upper conductor plate

which result suggests that for the configuration illustlate Vi
Fig. [3, the particle can be sufficiently ionized when Zouache:
and Lefort's conductor plates are used. Further, by lirgitin
applied electric field to a value much smaller thiagy and, N _ .
yet, much larger thai, the particle can be ionized in the /d'e'ec”'c shell
absence of field emission electrons originating from théepla conductor core
held at lower potential. This prevents the ionized parficien *
neutralizing. For instance, the electric field valueEf ~ -
0.5Ep or Ep ~ 412E.s is much smaller thakep, but it is still
much larger thakcs.

Aforementioned process of charging by field emission is
schematically summarized in Fifg] 5. To illustrate the mech-
anism, particular electrons in the particle’s shell anddbes
regions are labeleg; ande, , respectively. Similarly, partic-
ular electrons in the lower conductor plate are labelgand
g, . Itis under;tood_ that particle as a whole is initia]ly eléct_r Egs > Ecp >> Ep >> Eg
cally neutral, implyingQ = 0. That cleared, an applied static
electric field of magnitud&, = ||Ep||, where

Vi lower conductor plate

Figure 5: (Color online) Schematic illustration of ionizat process
Ep > Ees, but Ep < Egp < Egs, (14) of core-shell structured nanoparticle. For the illustiatpurpose,
particular electrons in the particle’s shell and the cogiams are
is produced by connecting two plane-parallel conductdegla labelede; ande, , respectively. Similarly, particular electrons in the
to a battery. Sinc&, > Ecs, whereEg is the field emission  lower conductor plate are labeleg ande; . Initially, the particle as
threshold for the particle’s conductor core (see Hig. ), a whole is neutral anQ:O_._After the field emission, the particle as
tunnels through the dielectric shell and the particle asalevh @ Whole becomes net positively charg&t> 0.
becomes net positively charged. Becafge< Eys, where
Egs is the field emission threshold for the particle’s dielextri
shell, no electrons are physically stripped from the shadl a
€, remains confined to the shell, leaving the shell electgcall z4(0)=0 and Z(0)=0.
neutral. Similarly, becausg, < Ecp, whereE, is the field
emission threshold for the lower conductor plate, no eterstr  In the flipped over configuration, the applied electric fiElg
can escape the surface of the lower conductor plate. The elets in the e; direction. Now, to make this configuration suit-
trons, i.e.,e; ande, , may redistribute themselves, but can- able for the differential equation of Ed._{10), the direntiuf
not physically escape the conductor plate’s surface; wisich applied electric field must be reversed. Thus, reversing the
the reason whg, cannot tunnel through the particle’s dielec- direction of E, to —e; direction, this configuration becomes
tric shell to neutralize the positively charged core. To dp s identical to the initial configuration illustrated in Figl 8x-
€, must first escape the plate’s surface, which is not possibleept nowzy (0) = 0 instead ot (0) = 0.25h. Either choice is
sinceEp < Ecp. In conclusion, once the particle is charged good for the initial condition ofg (t) . That said, | shall keep
and the electric field satisfies the condition defined in E4),(1 using the initial conditions specified in Ef._{13) and théiahi
the core-shell structured particle remains positivelyrgad. configuration illustrated in Fid.l 3 for the rest of this work.
Figure[® presents a way to prepare yet another initial con- Returning to the plotting ofy from Eq. [I0) with initial
figuration, which is different from the one illustrated igHB,  conditions specified in EqC{1L3), the particle position ascfu
for the differential equation of EqL_(1L0). | shall briefly ine  tion of time has been plotted in Fid.] 6 using the parameter
how such initial configuration might be prepared from Eiy. 5.values defined in Eq.[11). The upper electrode is located
Starting with initially uncharged core-shell structurexdticle, atzy = Om in the plot. As it can be observed from the plot,
the particle is ionized following the scheme illustratedrig.  the core-shell structured charged-particle executes atiass
[B. Once the core-shell structured particle has been suffigie tory motion between the two plane-parallel electrodes;, and
ionized, the entire system is physically flipped over. Don’tsuch motion does not involve charge exchanges. One knows
worry about the particle falling down because it won't. In this because the governing equation of motion, i.e., Eg), (10
fact, the positively charged particle sticks to the surfaicthe  has been derived without any assumption of charge exchange.
conductor plate held at lower of the two potentials. The reaSuch oscillatory behavior is fundamentally different fréme
son for this is explained later in this section when the tygfes traditional picture, which process assumes charge exehang
forces involved in the system are discussed. With the configmechanisms. The core-shell structured charged-pargele r
uration illustrated in Figl]5 flipped over, the initial cotidhs  bounds atg ~ 2.5 x 10-*m from the upper conductor plate.

are now specified by



This rebounding position is too far from the lower conductor

7

The mass dependence in Edsl (1) ddd (2) reveals that par-

plate to account for any charge exchange processes even in tticle with larger mass requires significantly larger effest

physical situations. In the plot of Fi§] 6, the lower conduct
plate is located aty =~ h=0.001m

Particle position vs. time/(= 1 mm, g, = 0.014 C/rﬁ)
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Figure 6: Particle distance from the surface of upper comysate
as function of time. For the plot, the values defined in Eq) (e
been used with initial conditions specified in EQ_J(1% -V, =
8KV implies an applied electric field &p = 8MV - m~L. The upper
electrode is located & = 0m.

Hereatfter, it is understood that charged-particle ogwmita

does not involve any charge exchanges for the rest of this p
per. That said, what's the criterion for charged-particte o

cillation? Oscillatory modes occur when the effective gear

carried by the positively charged particle satisfies thedcon

tion given by
2TTEQK3 opp , 16mgé
Qr > =5 | IWIEp+ [WPBR+ - = |
where
1 1
E=—5—— >0,
thi,m (h_zdm)z
b3_ 3 _b3 b3_ 3 _b3
w:v( a’) y(0°—a’) > 5.0
Zg,m (h_zd,m)

and

3K3b3 <1
K2+ 2K3)b3+2(ky —Kk3z)ad® ~

=1

Similarly, for a negatively charged core-shell structupedti-
cle, the oscillatory criterion is given by

27T£OK3 22 16mg’7
Qrl> (|w|Ep VB e |
where
1 1

(h - Zd,m)2 thi,m

charge compared to the particle with smaller mass to imitiat
oscillatory motion. Initially neutral particle can be ched or
ionized by exposing it to a strong static electric field. For a
nanoparticle, large portion of atoms composing it partitgp

in the ionization, yielding in relatively large charge diyns
per mass. However, for a macroscopic particle or an object, a
great portion of atoms composing it does not participataén t
ionization process and only those near the surface paatieip

in the ionization due to electric field shielding effects. @&s
result, macroscopic particles have relatively small caagn-

sity per mass. One may argue that the strength of electrit fiel
can always be increased to completely ionize the macroscopi
particle. That, however, is not possible because, evendn va
uum, electric breakdown sets in at some point and everything
neutralizeg!

Based on this argument, the oscillation criterion specified
in Eq. (@) is more likely to be satisfied by microscopic or
smaller particles than by macroscopic counterparts. This i
plies the charged-particle oscillation presented in tlapgy
is more likely to be observed from nanoparticle systems than
from systems involving macroscopic particles. | shall now
discuss why microscopic particles are more likely to satisf
the criterion of Egs.[{1) of{2) than the macroscopic counter
parts. To demonstrate this, | shall consider an aluminurn bal
of radiusb = 1.5um representing the smaller particle and an-
other one with radiub = 3mm representing the larger coun-

Eférpart. To keep matters simple, | shall assume that theespac

between electrodes is a vacuum.

In vacuumgs = 1 andregks = 2.78x 10 1N-1.m=2.C?,
and the gravity constant = 9.8 m-s 2. The mass densities
of aluminum and aluminum oxide agg,; = 2700kg m—3
andpm2 = 3800kg m~3, respectively. Thus, for a core radius
of a= 1.5um and shell thickness df — a = 4nm the total
mass of the particle is obtained using EQ.](12) to yiele:
3.86xx 10 1*kg. The dielectric constant for the particle’s shell
is Ko = 6. For the value ofzy m, | shall choosezy m = 0.25h,
whereh = 1mm For the applied electric field, | shall choose
Ep = 8kV-m~L. Insertion of these values into E@ (1) yields

Qrmic = Qr >5x 10 13C, (15)
where the notatio@r rmic denotes the microscopic particle.

Now, | shall compute the same for the macroscopic coun-
terpart. An aluminum ball of core radiegs= 3mm and shell
thickness ob— a=4nm has a mass ofi~ 3.05x 10 *kg,
where Eq.[[IR) has been used to compute the mass. To make
sure this aluminum ball has sufficient room between the elec-
trodes for oscillation, the gap between the two electrodes i
increased to a value of= 1 m. Keeping all other values same
as previous, Eq[{1) gives

Qrmac=Qr >9x10'C,

where the notatiolQr mac denotes the macroscopic particle.
Is this an experimentally obtainable value? The answeriso th
is maybe. It depends on what kind of electrodes are being
used. Even in vacuum, one cannot increase the strength of

(16)



electric field indefinitely without electrical breakdowrttasg

in, beyond which point everything neutraliz€sComparing
the two results, Egs.[(15) and {18Qr mac is greater than
Qr.mic by factor of a million. This result alone shows that
the kind of charged-particle oscillation mechanism presgn
here, i.e., one that does not involve charge transfer pseses
is most likely to be observed from microscopic or smaller par
ticles than from macroscopic counterparts.

Because the system illustrated in Fig[] 2(a) involves

charged-particle executing an oscillatory motion, it sdels
electromagnetic energy; and, the power of radiated enengy ¢
be obtained from Liénard radiation formula,

8ok V2

2\,
3c3 (1_ c %
With the explicit expression fagy inserted from Eq.[(10), this
becomes

F)rad =

b 8regk2v? [ TEgK3V v
rad = 733 4am | (zg+b)>
v ) -pE
(h—2z4—b)? (z+b)°
2
b%—a®) — b?| E
=) =8 el o). an
(h—2zy—b)

8

respectively, for the discussion here. The foFgeis com-
posed of the following three force contributions,

Fi=fi1+f12+f13,

where
1 Qv
fi1= 911—6?7
_lQr[y(b®-2a%) b’
f1,2 - ell_6 Sg Epa
f1,3 = —eZTEp.

From Egs.[(B) and{4), it can be seen that
v>0 and 1> y>0.

This implies,y (b® — a®) — b3 < 0 and the previous forces can
be expressed as

1
f11~ &g
E
fro~ —ezgp,
f1’3 ~ —eZEp.

Physically,f; 1 represents the force between the charged par-
ticle and the image charge formed on the surface of conduc-

The profile of Liénard radiation power corresponding to thetor plate. Since the image (or induced) charge has opposite

oscillating core-shell structured charged-particlesilfated in

polarity, this force attracts the charged particle towatds

Fig. [@ has been computed using EQ.1(17). The result showsiate. And, sincd ; is in the direction ofe,, this confirms

train of emitted radiation power as the particle oscillates
illustrated in Fig[Y.

Radiation power (= 1 mm, o, = 0.014 C/rﬁ)
5.875e-26,

T

T T

5.87e-26

5.865e-26

5.86e-26

5.855e-26

Radiated powerp, ; [W]

5.85e-26

.
le-05
Time, ¢ [s]

!

1.5e-05

5.845e-26
0

5e-06 2e-05

Figure 7: The profile of Liénard radiation power correspogdio
the oscillating charged-particle illustrated in Hig. 6.

It is worthwhile to discuss the types of forces involved in

the plot of Fig.[6. The force responsible for generating such

particle motion is Eq.[{8) (or Eq[X9)), of course. Since the
force contribution from gravity is negligible in the osaifion
regime, | shall only work with=; andF, of Eqgs. [6) and[{[7),

such action. Thél,g physically represents the force by elec-
tric field on the charged particle. Such force always pushes
a positively charged patrticle in the direction of electridi
And, sincefy 3 is in the direction of—e,, which is the direc-
tion of electric field, this also confirms such property. The
remaining force ternt, », is a direct consequence of having
a core-shell structured charged-particle. To be more adeur
f12 is a consequence of having particle with structure, which
is not a “point” particle. Particles with structure can be po
larized by applied electric field and such property gives ris
to f1 ». Consequently, this force vanishes in the absence of ap-
plied electric field. For a positively charged particlestfarce
is induced in the same direction as the applied electric.field
Similarly, the forceF, of Eq. (@) can be decomposed into
the following three force contributions:

Fo=fo1+f0+123,

where
1 Qrv
fo1=—6——7-——
21 6216(h—s)2’
1 Qr [y (b*—a%) —b?]
f2,2:el 3 P
16 (h—s)
Qr
fo3= —ezTEp-



Sincey (b® - a®) —b® < 0, these can be expressed as Mechanism for charged—particle oscillation
1 upper conductor plate
fo1~ g - .
E, |, region A ‘ Fr="fi,
fopm—e® | AN
2,2 eZ Sg 9 T

foz ~ —&Ep. I region B
Physically,f, 1 is the force between the image charge and the
charged particle. Sinde ; is the force arising when charged oo
particle is close to the lower conductor plate, this forcestnu
be directed towards the lower conductor plate. Stages di-
rected in—e,, this confirms such requirement. Thg; is the
force on the positively charged particle due to the presehce
electric field. Since electric field is in thee, direction, so
is fo 3, as it must. Lastlyf,, is a consequence of having a
charged-particle with structure and not a point particlar- P
ticles with structure can be polarized by applied electefi
and such property gives rise fg,. Again, this force is al-
ways in the direction of applied electric field for a positive lower conductor plate
charged patrticle.

So, what is responsible for charged-particle oscillation%igyre 8: (Color online) Different forces dominate in eaelgions.
The second force, i.ef; of Eq. (4), cannot be responsible for | region A, the dominant force i ». In region B, the dominant
charged-particle oscillation becausg, 22, andf,z are all  force isfy ;. In regionC, the dominant force i§,. The path 1 and
directed in the-e, direction. However, the first force, i.é5; path 2 represent the plots gf (t) versus time graph, where the time
of Eq. (8), can give rise to charged-particle oscillatoryd®e®.  parameter is the horizontal axis. Heve,> V.

This is because forcE; containsfy 1, which force points in

the opposite direction off; » andfy 3. It is this competition

betweerf, ; and the other forces, i.6f1» andfy 3, that puts  this force decays extremely rapidly ahd ~ (1/s%) e, domi-
core-shell structured charged-particle in an oscillatogion.  nates there. The direction bf; is in e; hence, the particle is
Such mechanism is schematically illustrated in [Fig. 8. i re pulled back to the upper conductor plate. This process tepea
gion A, the dominant force i$; » and the magnitude of this itself, resulting in an oscillatory motion. _ o
force falls off like~ 1/s3 with distances. However, in region What happens when the magnitude of applied electric field,
B, contributions fronfy » weakens rapidly with distance and Ep, iS increased? The fordg; ~ (_1/52.) €, is independent of
the force is dominated b 1, which force’s magnitude falls ~ Ep; thereforels does not change in Fig] 8. On the other hand,
off like ~ 1/ with distance. Then, assuming the positively the forcef12 ~ — (1/s%) e; has an explicit dependence on the
charged core-shell structured particle satisfies thelatoih  applied electric field, i.e.,

criterion specified in Eq.[{1), the particle cannot escape re E

gion B and enter regio, which region contains no oscilla- f10~ —ezgp;

tion modes and any patrticles initially in such region ends up

sticking to the lower conductor plate, as schematicallysil  therefore, thda in Fig. gets increased thp + Al with
trated in Fig[8. increasedEp. Here,l5 andlg represent the locations of bor-

That said, a positively charged core-shell structuredipart derlines for region# andB, respectively. The result is that
cle initially in regionB (or regionA) would oscillate; and, charged-particle trapped inside the reg®ris now forced
the trace of such oscillatory motion over time would be rep-to rebound more frequently due to the fact that the width
resented by the path 1 illustrated in FI[g. 8. Here, the path bf region B has been decreased . Consequently, the
represents the plot @f (t) versus time graph, where the time frequency of charged-particle oscillation increases virith
parameter is the horizontal axis. On the other hand, the sanmeased applied electric field; and, this is schematichilg-i
particle initially in regionC would not have any oscillations, trated in Fig[®, where it shows that new path 1 has higher fre-
but it would follow the trace of the path @vhere the path2 quency than the old path To validate this, Eq[{10) has been
represents the plot @ (t) versus time graph with horizontal plotted using the identical settings used to obtain theltr@su
axis being the time axis. Fig. [8. This time, however, the strength of applied electric

The sharp cusp in regioh can be explained from the fact field has been increased from 8MM 1 to 12MV-m~1. The
thatf; » ~ — (1/s%) e, is an extremely short range force. Since result is shown in Figi_10. This result can be compared with
the magnitude of such force goes likel/s’, it can generate the one in Fig[ B, which was obtained fap = 8MV - m-L.
very large impulse over short time. Sinfge is in —e, direc-  For the case oEp = 12MV-m~1, the frequency of charged-
tion, the particle is repulsed from the surface with vergiéar particle oscillation has been approximately doubled caengba
force occurring over very short period. However, in regiyn  to that of the case dEp, = 8MV - m~L. Notice that although
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the oscillation frequency has been approximately douliled, Particle position vs. timeh(= 1 mm, o, = 0.014 C/rf)
amplitude has been nearly halved. This must be so because 0.0002s5 : , ,

the particle’s oscillation frequency had been increasedras 0.00025

sult of reduced width of regioB (or increased width of region 0000245 1
A). 0.00024} 1

Now, one cannot increads, indefinitely to obtain higher
oscillation frequencies because, eventually, the widtheef
gion B would become zero. And, beyond that point, the
charged-particle enters the regiGnand ends up sticking to
the surface of the lower conductor plate. In reg@rnthere
are no oscillatory modes so any charged particle in thabregi
gets attracted to the surface of lower conductor plate ayd st
there indefinitely.

0.000235F 1

/1) [m]

0.00023 - 1

.

0.000225- 1

Position

0.00022 1
0.000215F 1
0.00021 - 1
0.000205F 1

0.0002 L L .
0 5e-06 le-05 1.5e-05 2e-05

Mechanism for charged—particle oscillation Time, 1 [s]

(with increased applied electric field) ) ) ]
Figure 10: Particle distance from the surface of upper cotuyplate

upper conductor plate as function of time. For the plot, the values defined in Eq) five

Vi been used. Here, however, the value/pf— V| has been increased
to V1 — VL = 12kV, implying an applied electric field strength of
Ep=12MV. m~L. The upper electrode is locatedzgt= Om.

old path 1
\)' Particle position vs. timei(= 1 mm, o, = 0.014 C/rf?l)

0.0002044, T T T T T T

0.0002042
€, 0.000204
0.0002038

path 0.0002036

Position, z,(t) [m]

0.0002034

0.0002032

lower conductor plate

0.000203 L . L . L .
1.225e-061.23e-061.235e-061.24e-061.245e-061.25e-061.255e-061.26e-06

Figure 9: (Color online) The width of regiof has been increased Time, ¢ [s]
to Ia+Ala as a result of increased strength of applied electric field,
Ep = —eEp. The new path 1, old path 1, and path 2 represent therigure 11: Particle distance from the surface of upper condu
plots of zy (t) versus time graph, where the time parameter is theyor plate as function of time. The first sharp turning poiname
horizontal axis. Hereyt > V.. z4 ~ 0.000205m in Fig.[I0 has been enlarged for a view, which
shows a smoothly varying curve.

Having explained the kind of forces involved in the
charged-particle oscillation, i.e., plots generated igsFi[6)
and [10), it is now clear why there are cusps in the plot. The What happens when the core-shell structured particle is
shape of these sharp turning points can be deceiving becaugegatively charged? In that case, fheandF» of Egs. [6)
these points are not really what they appear to be. In factand [7) get modified as
these turning points are smoothly varying points and this is

illustrated in Fig[1lL, where one of such sharp points haa bee Qrl [Iv] |y (b®—a%) —b3|Ep

enlarged for a view. At these points, the magnitude of force Fi1= ezT yr + 23 +Ep
experienced by the particle falls off with distance likel/s?,

wheres is the distance between the particle’s center of mass

and the rebounding plate’s surface. At very short separatioand

distances, this repulsion force becomes extremely imyrilsi

over very short period. But, nevertheless]/s? is still a well F,— e Q1] y(0P—a) -y || LE |
behaved function becausecannot become zero, as the par- 4 4(h— 5)3 4(h— 5)2 P

ticle cannot touch the surface of rebounding conductoeplat
Doing so would require an infinite energy, which is not possi-To distinguish the analysis here from the previous casdwavo
ble. ing a positively charged core-shell structured particlghaill



rewrite F; andF; as

|Qr] M+ |y (b®— %) —b3| Ep

Ni=€—7" | 22 453 +Ep
and
No=np1+n22+N23,
where
1Qr| v 1
N1 =—€ ~ -,
2t 16 (h—s? (h—s)?
Qr| |y (b®—ad) —b¥| Ep
= E ~
n2,2 (>4 16 (h—S)S P el(h_s)37

Ny 3= eZ@ Ep ~ &Ep.

Since all of the terms are positive in forlsk, it cannot gener-
ate any oscillations. On the other hand, the fddgecontains
both positive and negative terms; and, therefore, it caigen
ate oscillatory modes. Such is schematically illustraneiéligy.

2.

Mechanism for charged—particle oscillation
(negatively charged—particle)

upper conductor plate

€
path 2
region C f
Fr=N
T 1 ey
[0 B e h

| region B

|, region A

t

Fr=n,,

lower conductor plate

Figure 12: (Color online) For the case of negatively chaigedicle,
the oscillation modes exist near the lower conductor platech is
exactly opposite of the positively charged-particle case (Fig[B).
InregionA, the dominant force is »; and, in regiorB, the dominant
force isny 1. The path 1 and path 2 represent the plotg;¢f) versus
time graph, where the time parameter is the horizontal axisre,
V>V
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except nowo, = —0.014C m~2. Also, to account for the os-
cillatory motion, the initial conditions have been specifés

24(0) =0.75n and Zy(0)=0.

Such initial conditions have been chosen because oscillato
modes only exist foeg > 0.5h for negatively charged parti-
cles. The result is plotted in Fid._113, where it shows neg-
atively charged core-shell structured particle osciligthear

the lower conductor plate. In the plot, the lower conductor
plate is located aty = 0.001 m and the upper conductor plate
is located aty = 0m. To show that charged-particle trajectory
is represented by a well behaved function, one of the sharp
turning points in Fig[_II3 has been enlarged for inspectian. A
it can be seen in Fig._14, the cusp looking points are deceiv-
ing because these are smoothly varying points. The magni-
tude of force acting on the particle near these points fdfls o
with distance like~ 1/ (h—s)*. When the negatively charged
core-shell structured particle is very close to the lower-co
ductor plate,h — s becomes very small and this results in a
very large force that acts to repulse the particle from thre su
face of the lower conductor plate. Nonetheless, this is & wel
defined force becaude— s cannot become zero. Doing so
would require an infinite energy, which is not possible.

Particle position vs. time/(= 1 mm, g, = -0.014 C/rﬁ)
0.00088 T T T

0.00086

0.00084

0.00082

0.0008

Position, z,(t) [m]

0.00078

0.00076

0.00074 L L .
0 5e-06 1le-05 1.5e-05 2e-05

Time, 1 [s]

Figure 13: Particle distance from the surface of upper cotuyplate
as function of time. The lower electrode is locatedpat 0.001m
and the upper electrode is locatedzat= 0m. The charged particle
is negatively charged and it is oscillating near the lowecebde.

This briefly summarizes the essence of this investigation.
To complete the task, | shall now work out the detailed deriva
tions of key solutions used in this article. | shall begin bivs
ing the boundary value problem for the electrostatic paamt
in regionsM1, M, andMs of Fig.[2.

I11. THEORY

A. Freechargedistribution

To validate the argument illustrated in Fif.]112, EQ.1(10) The correct specification of electric charge distributieofi
has been plotted using the same values specified in([Ef. (119rucial importance in any electrostatic boundary valuebpro
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Particle position vs. timeh(= 1 mm, o, = -0.014 C/rf) (a) Neutral spherical conductor in an otherwi
0.00086325 T T T T . . .
uniform DC electric fieldE

0.0008632

0.00086315]

g 0.0008631
: 0.00086305 E
S
2 0.000863
o v
0.00086295|
0.0008629
0.00086285 ‘ : : : (b) Charged spherical conductor in an otherw
2.35e-06 2.352e-06 2.354e-06 2.356e-06 2.358e-06 2.36e-06 . . .
Time, ¢ [s] uniform DC electric fielde
Figure 14: Particle distance from the surface of upper cotuyplate
as function of time. The first sharp turning point negarz 0.00086 m
in Fig. [13 has been enlarged for a view, which shows a smoothly
varying curve. E

lem. When an uncharged, electrically neutral, sphericat co

ductor is placed in an otherwise uniform electric field, the
charges inside the conductor redistribute such that thenpot Figure 15: (Color online) Charge distributions of (a) efeetly neu-

tial V1 is a constant there, as illustrated in Hig] 15(a). By def-ral spherical conductor and (b) a positively charged spakcon-

inition, in an electrically neutral conductor, every chesgre ductor W.ith surface free charge density, in an otherwise uniform
paired with one with opposite polarity. Therefore, the sphe electric field Ep.

ical conductor illustrated in Fig._15(a), as a whole, is &lec

cally neutral.

Now, how do charges get distributed when you place a posthroughout this work. To generalize the problem, the dielec
itively charged spherical conductor in an otherwise umifor  tric shell surrounding the spherical core in Fig. 2 is alldwe
constant, electric field? By definition, an electrically dhed  for a surface “free charge” density atr = b. Introduction
conductor has excess number of charges of one polarity thaf free charge on the surface of dielectric shell is purely-ac
cannot be paired with one with opposite polarity. The pairecdemic. For realistic dielectricsg, is negligibly small, if not
ones do whatever they can to make net electric field zero inzero. Hence, it can always be set to zero in the final solution.
side the conductor. The result is that the paired ones redisrherefore, | shall keep the problem simple by assuming that
tribute as illustrated in Fidg. 15(a). What about the excess, g, is a constant which is also uniformly distributed over the
paired, charges of same polarity? These must be redistdbut surfacer = b of the dielectric shell throughout this work.

such that th_e p_ote_ntiall is a constant inside the _condqctor. Lastly, although the illustration in Fig. L5 consideredyonl
One such d|str|but|o_n, perhaps the only one, 15 ilustrated an excess positive charge case in whigh> 0, the treatment
Fig. [13(b). Assuming the charged spherical conductor haﬁwoughout this work is not limited to such case only. The

only the surface “free charges” and no volume “free chafges : : L :
) . ‘effective charg€r can have either positive or negative polar-
i.e., no excess charges embedded inside the volume, the fr g P g P

charges on the surface of spherical conductor must be uni-

formly distributed over the entire spherical surface else t

net electric field inside the spherical conductor would ret b

a zero. As an alternate explanation, the spherical condircto

Fig. [I8(a), including its surface, represents an equigiaen B. Derivation of electrostatic potentials
surface. When an excess of free charges of same polarity, say
positive charges, is placed on such an equipotential sirfac o )
the charges get instantaneously redistributed over tfagr 1€ apparatus for the problem is illustrated in Fig. 2(a),
due to Coulomb repulsion between the charges. The result here a core-shell structured charged-particle is placed b
that these charges are uniformly distributed over the eguip tWeen two DC voltage biased plane-parallel conductors-Ele
tential surface, as illustrated in FIg]15(b). trostatic potentials in regiord; , M», andMj3 are described by

That explained, | shall assume that surface “free chargel’alplace equation,

density oz in Fig. [2 is a constant which is uniformly dis-
tributed over the surfaace= a of the spherical conductor core 0%V = 0.
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In spherical polar coordinate system, Hi§j. 2(b), Laplaaeseq be zero independently else this algebraic equation careot b

tion reads satisfied. Thus,
ii rzd_V —1 i sinea—v Bo+Coa " =\b,
r2 or or r2sinf 06 06 Bal+Ca " 1=0.
+#ﬂ =0 Solving forCqy andC; yields
r2sif@ d@? g 24
=a\Ww—B
For the system with azimuth symmetry, Co=aVo 2/+f)
C, = —Bya (> 1.
ov
0 =0, From these results, Eq._(20) becomes
a E\Y/
the Laplace equation reduces to V2(r,8) =By (1— —) + TO
d [ 0V 1 0 v < 2”1)
O (e0V )\, 9 , + 5 B (rf— P, 23
ar (r ar ) tSin6 a6 (S'”eae) 0. (18 ,z ‘ EEAL 3)
Equation[[IB) has the general solution given by Equations[(21) and(23) must be continuous &b,
© V2 (bv 6) =V3 (bae)
V(r,0) :; (Agru%) P, _ _
~o ret With Egs. [21) and(23), it can be shown that
where coefficientsy andB, are constants, arfél = P, (cos9) B (1_ _) aVo o - a2+t P
is the Legendre polynomial of ordér For regionsMy, Mo, 0 ,Z - pitl
andMs in Fig.[2(a), the electrostatic potentials are given by w
— / )
- Do+——|—/z (D/b b£+1)P
Vi(r,0) = ; Ar'P, (19) or
=)
hd C
Va(r,0) —;)<Bzr‘g M) P (20) 0= [Bo (1—%) +aTV°—D Eb"] P
00 E a2€+ E
_ ¢ ¢ ¢ ¢ ¢
V0= 3 (Dr' )R @ + 3|8 (b~ G ) D — e

where coefficientsy, By, C;, D;, andE, are to be joined to- WhereR, = 1. Again, Legendre polynomial&§, Py, P>, and so
gether by appropriate boundary conditions at the intesfaceon) are linearly independent functions; and, therefore cti
between regions. Equation {19) does not contain terms likéfficient of each Legendre polynomials must vanish indepen-

~ r~‘~1 pecause these terms blow up at the origin. dently else this algebraic equation cannot be satisfiedcélen
Electrostatic potential inside of a conductor is constant; Eo ay  avp
and, therefore, Eq[(19) becomes Do+ F =Bo (1 - t_)) + 5
20+1
Vi(r,0) = Ag =V, 22 ¢ ;&
1( ) 0 (22) D/b" + b/+1 =By (b o1 )

where\j is a constant. Potential is continuous at a, ] o ]
and the following coefficients are obtained:

V2 (aae) :Vl (a’e)' Eoz BO (b—a)+aVO_D0b,

From Egs.[(2D) and (22), it can be shown that E, =B, (b2£+1 _ a2€+l) DL >
Bo+ Co +; (Bfa[ + %) P =V Using these results, Eq._(21) becomes
a A\ a ]
b Bo(b—a)+av
or vg(r,e)zDo(l—F)er
o C p2(+1
(BO—VO‘FE) Po-l-/z (Bpa+ £+1> P, =0, +/z DE( _ F+l)
whereR, = 1. It follows that each Legendre polynomiaRy( B/ (b2f+1 _ a2€+l)
P1, P>, and so on) are linearly independent functions; and, +— s P (24)
therefore, the coefficient of each Legendre polynomialstmus
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Equation [[2#) must simultaneously satisfy the boundary conconstant and uniform electric field and the student is asked t
ditions at the surfaces of the upper and the lower conductasolve for the potential around the sphere.

plates illustrated in Fid.12(a). That said, Eqs[(28) and (29) are equated to yield

In Cartesian coordinates, the surface of the upper conducto -
plate is described by the= s plane and the surface of the Do Dircos8 + S Dr'P,
lower conductor plate is described by the: s— h plane. At -
distances sufficiently far from the partic!e (or very closétte ~ Epr cosf + Ep(h—5) + .
surface of conductor plates), the potential inside of thralpe
plates can be approximated as Matching the coefficients of the like Legendre polynomials

, yield
Vp:—/57hEp-ezdz’+V|_, Do~ Ep(h—s)+ W,
Dl ~ Ep7

whereV, is the voltage applied to the lower conductor plage, D, ~0 (>2
is the versor along the Cartesiaaxis, andg, is the electric =S tes
field inside of the parallel plates in the absence of the &g  sing these results, Eq_{24) becomes
particle. The expression f&p, is given by

V3(r,8) ~ Ep(h—s)+VL+ Eprcos

1
Bp=—&p (Vr—W), (25) +[Bo(b—a)+aVo—bEp(h—5) —bvi] -
[ ined: cosf
from which theV, can be obtained: +[By (b3 _ ag) . ngp} g
Vp(z) =Ep(z—s+h)+\W, (26) © B, (p2+1_ g2+l
+; dl - ) P, (30)
r,
where (=2

1 where it is understood théit< r < . The electrostatic po-
Ep= HEPH ~h (IVr =M)). (27) tential, which satisfies the Laplace equation, is a secoderor
differential equation. Therefore, its derivatives musshés-
In spherical polar coordinate system, the Cartesian coateli  fied at the boundaries. The remaining unknovs,Bs, B,
zis represented by for ¢ > 2, andV; are evaluated from the statement about the
discontinuity of electric displacementiat b and atr = a.
At r = b, the normal component of the electric displacement
suffers a discontinuity given by

[er D3 (rv 9) —&-D2 (ra 9)] |r:b = 02, (31)

o ~ whereo is the surface free-charge density at b, thee; is
Forr very large, bult not lnflnlztelm extent, the contributions a unit vector pointing in the radially outward direction,dan
from terms like~ r~* and~ r~"~* become negligible in Eq. D, andDs represent electric displacements in regidhsand

Z=rcosf
and Eq.[(Zb) becomes

Vp(r,0) = Ep(rcosd —s+h)+V. (28)

(24) and thé/; takes the form given by Mz, respectively. In the linear dielectric approximation, the
- electric displacement can be expressed as
~ ¢

Va(r,8) ~ Do+ 3 Der' R, (29) D (.8) = —&okiV; (1, 6). (32)
whereb < r < . At distances sufficiently far from the parti- Wherei is the dielectric constant in regidvli and& is the
cle, Vs (r,8) ~ Vp (1, 0). electric permittivity of the free space. Hence, Hq.](31) ban

One may recall a typical problem in electrodynamics,e*Pressed as

wherein a charged sphere is immersed in an otherwise con- o
stant and uniform electric field. For instance, assuming uni [k2€ - DV2(r, 0) — Ka&r - V3 (1, 0)]lrp = (33)
form electric field is along the; axis, a useful boundary con-
dition is that at infinity, electric field is jusf = e, ||[E[ rcosf.  Inspherical polar coordinate system, theperator is defined
Now, at distances which are infinitesimally close to the conby
ductor plate’s surface, electric field must be perpendidala 9 19 1 9
the plate’s surface. This is because the surface of conducto O=€—--+€->5+€p—7F—>—
plate is an equipotential surface and electric fields arpeper or roe rsind d¢
dicular to the equipotential surface by definition, of ceut®  and Eq. [3B) becomes
this regard, Eq.[{28) mimics the electric field boundary con-
dition at infinity for the textbook problem in electrodynam- K oV, (r,0) Py Vs (r,0) o 34
ics, wherein a charged sphere is immersed in an otherwise 2or T or b &’ (34)




which constitutes the Neumann boundary condition-atb.
In explicit forms, the derivatives in Ed3B4) are evaluatsd

6)

d( = (Bo— Vo)
® (0+ 1) a2+l
-1y
/Z [ ri+2 P (35)
and
0V3 (ra 6)
—r = Epcosf
1

—[Bo(b—a)+avp— bEp(h—S) —bvi] 2

2[By (b o) - )

IZ €_|_1 BF (b2f+l a2f+1)

r£+2
where Egs. [[23) and (B0) have been used.
(38) and[(3b) into EqL(34) yields

P, (36)

0; 1
g—s = 5 {Bo[a(ko — Ka) +bka]
—a(K2 — K3)V0 — bK3Ep (h — S) — bK3VL}
23 3
+ K2 (1+ 03 ) B1cosO

+Ks3 { 3 [B1 (b®—a%) —b’Ep] - Ep} cosd
Kzf

+ ;ZBM{m

/41
i bztz [a2€+l(K2 —Ka)+ b2£+1K3} }

or

1
0= (@ {Bo[a(k2 — K3) + bks] — bkaVL

—9) _@) Py

—a(K2 — K3)V0 — ngEp (h
&

3
+ K2 (1+ ) B.:P

+ K3 { b23 By (b°—a%) — b’Ep) — Ep} P

Kzé

L 0]
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and
41
B, { — [a2£+1( Ko —

One reads off inmediately that

Kol
) + B 4 52} 0

bks [Ep (h—9) + VL] + by ton

Insertion of Egs.

B =
0 a(ks— K3)+bK3
a(Kz — K3)Vo
—_— = — 37
a(Kz — K3) + bks (37)
1= (K2 + 2K3) b3+ 2 (k2 — K3) @3’
and
B, =0 for £>2. (39)

With coefficientsBg, B1, andBy>» defined, Eqs[{23) anf (B0)
become

Vo (1, 6) ~ (1—9)+a—vo

a3
+B (1— r_3) rcosf (40)

and

V3(r,0) ~ Ep(h—s)+VL+Eprcost

1
+[Bo(b—a)+aVo—bEp(h—s) — bvi] -

3 3 1 COSO
+ (B (B2 &%) - b°Ey) O (41)
where\y is the only unknown.

TheV, is evaluated from the statement about the disconti-
nuity of electric displacement at=a. At r = a, the normal
component of the electric displacement suffers a discaityin

given by
[er ' D2 (rv 6) -

whereo; is the surface free-charge densityrat a andDq
is the electric displacement in regidfy. Repeating the same
procedure outlined from Eq[_(B1) through EQ.1(34), it can be

& -D1(r,0)]|—a = 01, (42)

wherePy = 1 andP; = cosf. Because each Legendre polyno- shown that

mials of order? are linearly independent functions, this alge-
braic relation can be satisfied if and only if the coefficienfts
each Legendre polynomials vanish independently. Hence,

Bo [a(Kz —K3)+ bK3] —a(ky— K3)V0
2
S) +V|_] - m = 07

bk [Ep(h— o

=

Vi (1,0) AV, e)]

) R

r=a
Since regiorM; is a conductor,

0V1 (ra 6)

=0
oar
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and Neumann boundary conditionrat a becomes and
oV (r,0) _ _i' (43) V3(r,0) :VL+Ep(h—s+rc036)+¥
o e EM [y (b3 —a®) — b*| Epcosh
Using the results in Eq9_(B7).(38), andl(39), the derigsitiv + 2 +C, r>b, (50)
Eq. (43) is readily computed from Ed.{35),

wherea, B, y, A, andv are defined as

Ny (r,0) a 2a’
“or ~ (Bom V) By 14T Jcosh. ,_ab-2o 0+
With this result, Eq.[(43) becomes beok? beoKs
B v B o a(2b — a) oz} a201 + b202
0~ Y0 | 3B, cosg = — 2L (44) T beka beoks
a EoK2 3K3b3
The cod in Eq. (44) can be eliminated by integrating both V= (Ka+ 2K3) D3+ 2 (Ko — K3) @3’ (51)
sides over the spherical surface at a, 20
1
T 2n _ = .
/ / (BO Vo +3B; c036> a?sinfdede Eokz
0=0Jp=0 a - 2a(b—a)o; a’oy+b%0;
mo 2 &K gKz
- —/ / 1L 225in6d6do, 0 o3
6=0. p—0 €0K2 For all of the treatment hereafter, only the derivative¥/gf
yielding in particular, the normal derivatives associated with tame-
parallel plate electrodes, are of importance. Therefdre, t
By— Vo= — ao (45) explicit expression for the consta@tin Eq. (50) is not of
E0K2 much concern here.

What | have just done here only surmounts to the computing
of total free charge on the sphere of radiusa. For instance,

in Eqg. (44), one can integrate both sides over the surface

of a sphere. The right hand side yields total free charge®n th _ ) ) ]
surfacer = a, ignoring the extra constant factor. The lefthand N spherical polar coordinate systemoperator is defined
side yields terms with ca® eliminated, as this term has been by

C. Induced surface charges on conductor plates

integrated over. Canceling out the common terms yields Eq. 9 19 1 9
@) D:a0_+ee_a_6+e¢-—60_7
That explainedBy is inserted from Eq.[(37) into Eq_(¥5) r r rsintog
to solve forVp; and, this yields where
Vo=V + a(b—a)o1 &0 +bo; & = ecsinf cosp+ e,sinf sing+ e,cosh,
beokz beoks €9 = 6,C0SH cosP -+ 6,cosAsing — €,Sind,
+Ep(h—s). (46)

€p = —&SiNQ -+ &,Cosp.

With Eq. (46), the coefficierB of Eq. (37) becomes Hence, thes, component of] operator is given by

a(2b—a)oy a’cy+b?o: d sin@ 9
Bo=W_+ ( onKz) 1y l;(:@ 2 e (e-0) :ezcoseﬁ—ezTﬁ,
+Ep(h—s). (47)  Using the form defined in EqL_(B2), the electric displacement

in regionMs is given b
With coefficientsB,, Vp, andBg defined respectively in Egs. g 3159 y

(38), (46), and(4l7), the electrostatic potentials foroegMs, D3(r,0) = —&k3V3(r,0).
Mz, andMj3 are obtained from Eqd._(R2), (40), abdl(41). They
are The e, component oD3(r, 6) is obtained by replacing thg
with thee, (e,- ) operator and this gives
Vi=VL+a+Ep(h—s), r<a, (48) .
D3 (r,0) = €Kz, ﬂ%{;@) - cosew ,

V2(1,6) =W+ B+ Ep(h—s+yrcosd) where the notatiorDs (r,8) denotes thes, component of
A adyEpcosh

A _a<r<b, (49) D3 (r, ). With V3 (r, 8) of Eq. (50) thes, component of elec-
r r2 tric displacement in regiols is given by
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At the surface of the lower conductor plate, the electrie dis
placement suffers a discontinuity given by

D3 (r,0) = gk Y cosh
3215 = Eoks; r2 eZ'D3;Z(X7yaS_ h)_ez'DIcp;z(vavs_ h) = O-i|p7 (57)
[y(b3 _ a3) _ b3] E whereg; , is the induced surface charge density on the surface
+ 3 P (3 cog6— 1) —Epp.  (52)  of the lower conductor plate aridlp,; is thee, component of
r the electric displacement inside of the lower conductotepla
The surface of the upper conductor p|ate is described b§ince. the electric diSplacement inside of the lower commtuct
the Cartesiarz = s plane. In the spherical polar coordinate Plate is zero, EqL(87) reduces to
system, the surface of the upper conductor plate is destribe & Daz (XY, s—h) = gy

by
s and, with Eq. [(5B) inserted fdP3., (x,y,s—h), the induced
cosf = \/ﬁ surface charge density is given by
Insertion of the expression for c8snto Eq. [52) yields 3[y(b®—a®) — b3 Ep(h— s)?
Gilp = €0K3
3[y(0® - a%) - b%] Eps? 52
Do (y,5) = esgog | V2 —8) 0| Ep ey (h-7]
’ (2 +y2 +2)%/?
vs— [y (b%— %) — b%] £, ~v(h—9+ [y (b3—a3) — b Ep e (58)
+ > .37 — Ep (53) . 5132 Pl
(C+y>+) [x +y +(h—s)}

At the surface of the upper conductor plate, the electrie dis

placement suffers a discontinuity given by where (s—h) has been re-expressed -agh—s) purely for

convenience.

€,-Ducpz(X,Y,S) — €+ D32 (X,Y,S) = Giup, (54) In the limit the parallel plates become infinite in exteng th
gotal of induced charges on the surfaces of each conductor
plates must add up to the total charge carried by the particle
To check on this, Eqs[(55) and {58) are integrated over the
surfaces of infinite parallel conductor plates with dag-or
convenience, | shall perform the integral in the polar céord
nate system. In terms of the polar coordinates, Hqs. (55) and
€:-D3z(X,Y,S) = —Oiup (E8) become

and the surface charge density is given by

wheredip is the induced surface charge density on the surfac
of the upper conductor plate alcp;; is thee, component of
the electric displacement inside of the upper conductdepla
Since the electric displacement inside of the upper comauct
plate is zero, Eq[(84) reduces to

3[y (b* - a%) — b E,&

Oiup (P,S) = —€oK3{

o —€oK3{3[y(b3_a3) B EpS? (021 27
iup (R +y2+2)%? vs— [y(b3—ad) — b3 E,
vs—[y(b®-a’) —b’E * (p?2+9)°2 -Ep (59)
* T Ep} . (55) p

(X +y?>+¢?)

where Eq.[(BB) has been inserted By, (x,V,s) .
The surface of the lower conductor plate is described by the

and

3[y(b®—a%) — %] Ep(h—9)°

Tilp (P,S) = €K3

Cartesiarz = s— h plane. In the spherical polar coordinate [ 2 (h—s)z} 5/2
system, the surface of the lower conductor plate is given by P
cosh = s—h _v(h—s)+[y(b3—a3)—b3]E

p_
X2 +y2 4 (s—h)? Ep ¢, (60)

and Eq.[(BR) becomes
D3;Z (X7 Y, S— h)

{p2+ - s)z} 32

wherep = \/x2+y2. Since the surface in polar coordinate
system is symmetric about its axis, the total induced clwarge

3[y (0%~ ) — b% Ep(s— h)? on both conductors can be performed as follow:

(
[X2+y2+(8—h)2} o2 Qit = Qiup+Qilp
2 0
_/_O/p_o [GiUp(P,S)—i-G”p(pvs)} pdpde

= €;80K3

v(s—h)—[y(b®—a®) — b’ Ep
32
@+ +(s—hp]

“g, 4. (5 o
p _27T/p_0 [Uiup(pas)+0ilp(p75)] pdpv
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whereQjyp andQ;, are respectively the total induced chargeforce arising between the induced charges on the surfabe of t
on the surface of the upper and the lower conductor platedower electrode plate and the charged-particle and theefisr

With Egs. [59) and(80), th@t becomes

Qr _ _2/“ 3[y(b®—ad) — b3 Eps?
TTEQK3 0 (p2_|_32)5/2
3[y(b®—a%) — b3 Ep(h—9)°
15/2
02+ (h— 7]
L vs— [v(b®—a%) — b3 Ep
(p?+)°"

+v(h—s)+ [y (b®—a®) — b3 Ep

372 pdp.  (61)
|02+ (h—s7]
Equation[(6]l) involves the following integral types:
/ pdp32:_ 1 :}’ 62)
o (p2+c2)% ViR,
®  pdp 1 T

With the integral formulas of Eqs[(62) ard163), ®@g of
Eq. (61) is integrated to yield
Qit = —47EpK3V.
Insertion of the explicit expression forfrom Eq. [51) yields
QT =—(Q+Q+Q2), (64)

where

Q= 8ma(b—a) o=,
K2
Q1 = 4ma’o,

Q2 = 47Tb20'2.

The three quantities are identified as follow. TQgandQ,
are the “free charges” on the surfaces at a andr = b, re-

denoted a$». The net force exerted on the charged-particle
by induced charges on each surfaces of the conductor ptates i
therefore given by

F=F1+F,

:—%QT /dE1+/dE2 ,

S 4

(65)

where Qr is the effective charge carried by the charged-
particle anddE; anddE; are respective differential electric
fields corresponding to the upper and lower electrode plate
surfacesS; and S, respectively. For instancelE; is the
differential electric field associated with the inducedface
charge at locatioR; in Fig.[2(a). SimilarlydE; is the differ-
ential electric field associated with the induced surfacegh

at locationR; of Fig.[2(a).

The presence of extra factor of 4, the negative sign, and
the exact form ofQr in Eq. (6%) can be explained as follow.
The extra factor of 12 in Eqg. [65) comes from the fact that
each parallel conductor plates sees only an hemisphere of th
charged-particle. The effective charge carried by theigart
is identical in magnitude to th@;r of Eq. (64), but with op-
posite charge polarity. Thus,

Qr=-Qir
or

Qr = 8ma(b—a) 012—‘;’ +4m(aloy+b2a,) . (66)
The negative sign in EqL(B5) is necessary for specifying cor
rectly the direction of the forces exerted on the core-shell
structured charge-particle by induced surface charges fro

each parallel conductor plates. To demonstrate this, the in
tegrals in Eq.[(@855) can be represented by

1 2 P ‘R pdpoid
/dEi R _/ / %,
L 4es Jg-0/p=0 (Ri-Ri)

where ¢ is the induced surface charge at locatign(i.e.,
i =1,2) in Fig. 2(a). Now, suppose if; is positive, then
the direction ofdE; must be in—R31, as it can be inspected

(67)

spectively. Th&, is the charge contribution arising from the ¢,y Fig.[2(a). On the other hand, df is negative, then the

presence of a dielectric shell surrounding the metalliecor i action ofdE; must be inR;. The same argument can be
This contribution vanishes in the absence of free charge 0Biq for those involvingy, dE,, andR,. And, this explains

metallic core (i.e.g1 = 0) or dielectric shell (i.,eb—a=0).

D. Particledynamics

Two major electrostatic forces are acting on the core-shell Fi=
structured charged-particle in Fi§] 2. One such force is the

the presence of negative sign in Eg.1(65).
That said, using the form defined in Eq._167), the force
expression of Eq[(65) becomes

Qr [¥" [P GRipidpdg

e s (68)
813 Jg-0/p=0 (R;-Rj)*/?

electrostatic force between the induced charges on thacaurf wherei = (1,2), ¢; = gjyp 0of Eq. (89),¢ = gij, of Eq. (60),
of the upper electrode plate and the charged-particle. Thiand &3 is the electric permittivity of the regioMs. The ex-
force is denoted by;. The other force is the electrostatic plicit expression folR;, which defines the position of thg



associated withlS as illustrated in Fig[]2(a) for= (1,2),
are given by
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The expression for the force exerted on the particle by the
induced charges on the surface of the lower conductor date i
obtained by insertingr, of Eq. (Z0) into Eq. [(68). Repeat-

R1 = &xp1C0SQ; + &yp1Singy + €5, (69)  ing the similar procedure outlined in Eq§_171) aid (72), one
Ro = expocosg, + eyposingy +€,(s—h), (70)  obtains
whereh > s. Fp— g2 (=9 / GipP2dpz sz (78)
The force exerted on the particle by the induced charge on 4és 0 {p§+ (h— 3)2}

the surface of the upper conductor plate is obtained bytnser

ing Ry of Eq. [69) into Eq.[(68). This yields

|
! 871534,10’)1[

G1p1Singy Te Gs
74
(P2+9)7* " (pp+2)*

The two terms in the integrand with cgsand sing, vanish
when integrated ovetg. Thus, Eq.[(7]L) reduces to
GiupP1dP1

S /" _GupP1dpr
4e3 Jo (pf+32)3/2’

where¢; = giyp. Insertion of the explicit expression faxyp
from Eq. [59) into Eq.[(72) yields

_ . Qrs [P [3[y(b®—a’) — b3] Eps®
H‘%TA{ o7+ )"
+vs— [y (b®—a%) — b Ep

C1P1COS@y
24+ ) (p2+2)%?

] pidprden.  (71)

Fi1= (72)

(pl+32)
Ep }
———— 373 ( Pudp1 (73)
(p7+)¥?
Equation[[7B) involves the following type of integrals:
P prdps 1 1
S e 74
/o(prrsz)4 6s°  6(p2+)° U
P pudpy 1 1
e e S S 75
/o(pf+s2)3 4t 4(p2+2)? 7o
/p pdpr 1 1 (76)
0 (p12+52)3/2 s J/p2+ &

Insertion of Eqs.[{74)[{75), and (76) into EQ.73) yields
Fi—e QrJv vs? Jr[(b3 a®) — b Ep
1=%6 12 (p2+)? s
LB —a)-BEs2y(-a) -bY S

(P2 +8)° (p2+9)°

(77)

whereb < s < h—b. Equation[[7T) is the force exerted on the
charged-particle by the induced charges on the surfacesof th

upper conductor plate.

Insertion of the explicit expression fa, from Eq. [60) into
Eq. (78) yields
Qr(h—s) /P 3[y(b*~a®) —b*| Ep(h—9)*

4 4

° 03+ (h—97]

[v(b®—a°) — b’ E,

3
5)2]

Fo=¢

v(h—s)+

o3+ (h—

E
- i 3/2 pzde'
2 2
[Pz +(h—s) }

Using the integral formulas from Eqs[_{74), {75), ahd] (76)
with sreplaced byh — s, Eq. (79) becomes

(79)

Qr v(h—s)? v
16 [p2+(h—5)2r (h—s)?
[y(b*—a%) —b*|Ep [y(b®—a%) —b%|Ep(h—y9)
(h—s o2+ (b7
[v(b®—a%) ~b|Ep(h—s5°
3
|02+ (h—s7]

Fo=¢

+

4E,(h—s
G

—4Ep (80)

p2+(h—s)

whereb < s< h—b. Equation[(8D) is the force exerted on the
charged-particle by the induced charges on the surfacesof th
lower conductor plate.

For a parallel plate system, which is microscopically large
but macroscopically small, the forces in EqE._(77) (80)
can be approximated by making go to infinity. This ap-
proximation is certainly valid for very small charged-pelds
confined between large parallel conductor plates. In thi lim
p goes to infinity, Eqs[{47) and (BO) simplify in form as

b3_ 3 _b3
g [ )
and
O [y -blE, v
Fz_ez4{ 4(h—s9) 4(h—s)? S
(82)
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whereb < s< h—bandv is defined in Eq.[(51), wherev'= dv/dt. Knowing that
2a(b—a)o; a0y +b?o _
V= (€0K2) l+ 1£0K3 2. E 1 — w
. . . dt 1V B 2 2\ %2
Notice that the resulting forces in Eqs[_{81) and] (82) are 2 (1— ;)
now just one dimensional forces; that 5; = F1(s) and )
F, = F2(s), where the paramete is the relative distance €quation[(8l7) becomes
between the center of mass point of core-shell structured o .
charged-particle and the surface of upper conductor pléte. VVe, ve. _Fr
dynamics of charged-particle system illustrated in Eig.ag h 2 (1 _ v2)3/2 f1-% m
now reduced down to solving a nonlinear ordinary differainti &
equation.

N . 3/2 .
Insertion of Eqs.[{81) an@(82) into EG{65) yields the totalMultiplying both sides bye? (1-v?/c?) ™" yields
force exerted on the charged-particle by the induced ckarge

3/2
on the surfaces of parallel plate conductors. The resultis Ve — Fr ( - v_2> / (@)
m c? '
QrJv v [v(b®—a%) — b3 Ep
F= eZE 2 (h— s)2 + 3 Sincev = $andv = §, Eq. (88) becomes
2N 3/2
[y (6~ 2%) — %], e 52)
+ —8Ep ;. =—[(1-= ,
(h— 5)3 P m c2
If the gravitational effect is included, the force expeded by ~ wheres= d?s/dt?. With Fr explicitly inserted from Eq.(85),
the particle is the expression fos becomes
Fr=F—-emg . 1_§ 3/2 meokav [ v v
or N c? 4m | (h—9)?
Free )Y V. [v(b*—2%) — b Ep N [v(b®—a®) —b%| E,
16 | 2 (h—9)? s3 3
b3 —a®) — b’ E
[v(b*—a°) —b%| Ep L P 8B,y —g (89)
_ _ ] )
+ oo 8Ep » —emg, (83) (h—s)?3

wheree; has been dropped for convenience. It is convenient
{o re-express EqL(89) in terms of the variagjéllustrated in
Fig.[2(a). Two variables andzy, are related to each other by

wheremis the mass of the particlg,= 9.8 m-s 2 s the grav-
ity constant, and the gravitational force has been assumed
be in the—e; direction. SinceQy is related tov by

Qr = 47TEpK3V, (84) s=z+b, $=%, $=1Z, (90)
theFr of Eq. (83) may be re-expressed for convenience as wherebis a constant. Hence, in termszf Eq. (89) becomes
gk [v v [y -bE, (1 B\ (meokav [ v
4 52 (h — S)Z Sg 4= C2 am (Zd + b)z
b —a3) - b E b —a) — b3 E
+[V( ) 3 ] p—8Ep}_eng_ (85) - v 2+[y( ) 3 B
(h—s) (h—z5—b) (z4+b)
i illati -particle is gi b®—a3) —b’|E
The dynamics of oscillating charged-particle is given by N lv( ) 3] > el g ©1)
(h—2z3—Db)
ezg nmv —Fr (86) Equation[(91l) governs the dynamics of an oscillating chdwge
dt 1_ % ’ particle, subjected to high electrostatic fields, at alkesise
C

wherec = 3x 10°m-s1is the speed of light in vacuum. The

left hand side of EqL{86) can be differentiated to give E. Criterion for charged-particle oscillation in the absence of
chargetransfer process

d 1 \'/ez FT L. . . . .
ezva = |t == m’ (87) The criterion for charged-particle oscillation in the afse
1-Y y/1— § of charge transfer process between the rebounding electrod

2
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and the charged-particle can be obtained by analyzing th8olving forEp, | obtain

force expression of Eql_(85),

_ TEKsv | V.V
FT—eZ 4 {52 (h_s)z
ly(b®-a%) —b%| Ep
+ 3
ly(b*~a%) —b*| Ep
—8E, b — 92
+ h_ pr—&mg,  (92)

The kinematics of charged-particle motion associated thigh

1 1% v 4mg
Ep<i— |5 — 5 — .
Wl | Zim  (h—2zam)®  TiE0K3V

In terms of the effective charg@r defined in Eq. [(84), this
result becomes

Q%[l 1

1
En< —— - -
P < Qrlyl {47TSOK3 Zim (h—zd’m)2

-1amo).
(94)

By definition, E, > 0 because it is the magnitude of elec-
tric field. Therefore, the right hand side of Ed._1(94) must

forceFr of Eq. (92) is illustrated in Fid.16, where the param- pe nositive. But, according to the plot illustrated in Fig. 6

eterss andz, are related by = z3 + b. For the plot illustrated
in Fig.[g, the turning points of charged-particle motionarsc
approximately atzy = zZg m = 0.25h.

By definition, when the particle is in vicinity of the turn-
ing point, but not past it, the net force acting on the paegticl

is directed in the opposite direction of particle’s motidm-
mediately past the turning point, the particle’s motiomishie

Zym < h/2; and, thus
1
Zg,m (h_zd’m)z

For a positive particleQr > 0 and Eq.[(94) can always be sat-
isfied for a sufficiently ionized positive core-shell sturetd

same direction as the net force. Thus, immediately past thBarticle. For convenience, | shall expré3s in terms ofEp.

turning point, the net force satisfies

Fr (Zd,m) >0
TEQK3V {L B v N [y (0% —a3) — b Ep
4 thi,m (h - Zd,m)2 Zg-,m
116 ) o

w
Referring to the plot in Fig[]6, this result simply statesttha

net force is ine; direction atzg = z4m. This relation can be
rewritten as

where

3K3b3
K2 + 2K3) b3+ 2(ko— K3) as

V:(
and
3 .3\ 13 3 .3\ 13
w:y(b a’) b+y(b a’) 3b 8
ﬁ,m (h_zd,m)

Notice that O< y < 1; therefore < 0. Thus, the previous
relation can be rewritten as

(93)

v, v 4mg
(h— Zd,m)2 Zim o3V

> —WEp = Y[ Ep.

Equation[(9#) can be rearranged to yield
¢ | 1
4TTEpK3 Zg,m (h _ Zd,m) 2

Utilizing the quadratic formula, this can be solved @f to
yield

] —|Qr[|¢|Ep—16mg > 0.

2TTEQK3 16mgé
3 <|’~I’|Ep+ YPEZ+ m) ) (95)

Qr >

here

(96)

and
b®—a3) —b? b®—a%) —b®
y(E-) b y(pPa) - g
Zg,m (h - Zd,m)
When the core-shell structured charged-particle is nega-
tively charged, how does the charged-particle oscilladiite-

rion get modified? For the negatively charged core-sheitstr
tured particley < 0, where

Y=

. 2a(b—a)oy
B €o0K2
Thus, theFt of Eqg. (92) becomes

320'1 + b202
&o0K3 '

TEoK3 V| | |V 4
Fr — e 17
T=6€ 2 {52 (h—s)2
ly(b*-a%) —b*| Ep

s3
[y(b®—a%) —b’|E

P
—~ +8Ep p — e;mg.
(h—s)3 p} >
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Furthermore, sincg(b3—a3) —b% <0, have Now, Ep cannot be negative because it is the magnitude of
electric field. Sinceym > h/2 in Fig.[13, it must be true that
Fr—g M MM 1 1
4 £ (h—ys) — >
3 .3 3 (h_ Zd,m) Zg,m
(6~ ) B[ | y
+ 3 Therefore, Eq. [(98) can always be satisfied for a core-shell
|y(b3—a3) —b3| E structured particle which is sufficiently charged negayive
n T Py 8Ep} —emg. (97) Rearranging EqL(98), | have
-5
o o Qrf? 1 1
Now, immediately past the turning point @jm = 7.5 x AmeoRs | h 272 |~ |Qry/|Ep+16mg > 0.
10 *m in Fig. [13, the net force acting on the particle satis- ( _Zdvm) om
fies the condition given by Introducingn,
Fr (zam) <0 n= 1 1
or (h— Zd,m)2 Zim
Mok |V| {M_ v, ly(b°—a®) — %[ E, this becomes
4 _ 2 2
Zim  (h—zam) Zim 1Qrl™n 5 g, + 16mg > 0.
3_.3)_p3 ATTE0K3
_ 3 p mg <o, Utilizing the quadratic formula, I find
(h—2z4m)
where Eq.[(97) has been substituted in for the explicit esqpre Qr| > 2TTEpK3 | Ep+ |/ W2E2 — 16mgn
sion. This relation is rearranged as P P megks
ly(b®—a3) —b* |y(b®—a)—bd| Since|Qr| cannot be negative, one must make sure the right
Zg + s +8|E side is positive. But, since
.m (h - Zd,m)

4
<D, _4m Wy > |/ y2Ez— 23091
(h - Zd,m) Zg,m TTEOK3 | V| TTEQK3

One notices that | have
3.3\ _ 13 3.3 p3 270K 16mgn
v (b ﬁa) b|+\v(;3 a))3b‘+8_|tp|, O[> no 3<|w|Ep— . 7T£oK3>’ ©9)
,m h—Zd,m
wherey is defined in Eq.[{93). Thus, | have where
1 1
|V| |V| 4m r] = T 2 o -
YEp< ————= -5 +— - h— Z
v P (h—zd,m)2 Zé,m TiEQK3 |V ( Zd’m) M

Equation [[9D) is the oscillation criterion for the negaljve

or charged core-shell structured particle. The resultinghfa

1 V] v 4 different from the positively charged case, i.e., Hq.] (@kle
Ep<im|l——= 5 i} ) to the fact that negatively charged particle oscillates tiea
Wl (h—2z4m)° Zim Tr0K3|V| lower conductor plate whereas the positively chargedgarti

. oscillates near the upper conductor plate in Elg. 2.
Notice that|v| can be expressed as

lv| = M F. Electromagnetic radiation
AT1E0KS’
where Eq.[(84) has been used. Thesbecomes It is well known that the oscillating charged-particle radi

ates electromagnetic energy. With respect to the reference
point on the surface of the upper conductor plate, the oscil-
+16mg ;. lating charged-particle has a dipole moment given by

(98) Pd = —€Qrs

(h— Zd,m)2 ZS m

1 1Qr?
Ep< |Qr Y| {47T€OK3

1 1
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or and

Pd = —€A4TTEK3VS 3k3b3

Y= (K2 +2K3) b3+ 2 (k2 — k3) @3 <L

wherepg = pg (t), s=s(t), and Eq. [[84) has been inserted for
Qr. The negative sign comes from the fact that the particle is=or the parallel plate configuration illustrated in Fig. Bet
perceived as residing in the negativaxis to someone on the positively charged core-shell structured particle cary alve
surface of the upper conductor plate. Intermzpf z4(t)  oscillatory modes in region where0zg < h/2. This region is
defined in Eq.[(90)pq becomes further divided into subregions andB, and this is illustrated
_ in Fig. [8. In this work, the upper conductor plate is located
P_d N —ez47T€0K3VFZd +b), atzy = 0 and the lower conductor plate is locatedzat= h.
Pd = —€ATEK3V L, Further, the upper conductor plate is held at voltsigeand
e lower conductor plate has a voltage/of whereViy >V, .
hat said, the magnitude of a dominant force in regidalls
off with distance like ¥s® and this force acts to repulse the

whereb is a constant. The electromagnetic power radiated b
an oscillating charged-particl®,q, is given by the Liénard

formula, positively charged core-shell structured particle from tip-
1 2\ 2 per conductor plate. In regid® the magnitude of a dominant
Prad = 6763 <1— @) Pd - Pd force falls of like 1/s* with distance and this force acts to at-
. tract the particle towards the upper conductor plate. hiss t
B 87T£oK§v2 1 2[2, 2(21 competition between the two dominant forces from regiéns
T 33 T2 ‘ andB that puts particle in an oscillatory motion.
) . ) Such oscillatory mechanism does not involve any charge
Insertion of Eq. [(91) foeg finally yields exchange; therefore, it is fundamentally different from tita-
8 2 9 ditional description by charge exchangyélevertheless, the
Py = —JEOKsV" [ TTEoK3V v novel finding in this work does not invalidate the charge ex-
3c? 4m (zg+ b)2 change description altogether because the two oscillatoey
Y [y(b3 _ a3) _ b3] Ep nomena are not exactly the same. For instance, the traalition
— 5+ 3 picture deals with charged particle oscillation in whiclke th
(h—2z3—b) (za+b) particle sweeps the entire gap between the two plates wherea
[y(b3—a3) _ b3] Ep 2 here, the particle only oscillates in the restricted r_egibe—
3 — 8Ep} — g) , tween the plates. Further, here, the charged-particle brust
(h—zg—b) structured and not a “point” particle in order to have any os-
Where cillatory motion. The reason for this is because the repelsi
force in regionA arises as a consequence of induced polariza-
2a(b—a)o; a’0y+b%0, tion and a point particle does not have such property. Withou
V= goK2 &Kz such force appearing in regigh there would not be a way

to repulse the positively charged particle from stickinghe
surface of the upper conductor plate in Fily. 8. The tradéion
description by process of charge transfer does not have such
restrictions, of course. Thus, the two phenomena are not ex-
actly the same. Nonetheless, the novel finding here presents
yet another mechanism for a charged-particle oscillaticami
otherwise uniform and constant electric field.

The phenomenon of charged-particle oscillation subjected For a negatively charged core-shell structured partitle, t
to a constant electric field has been investigated. For a poshscillatory criterion is given by

tively charged core-shell structured particle, the cidterfor

an oscillatory motion is given by 270K 1
Qr| > 22K 1y g, fyez— 2091 oy
n TTEQK3

which is the result defined in Eq.{|17) for the Liénard radiati
power.

IV. CONCLUDING REMARKS

2TTEQK3 16mgé
> Ep+ | WP2EZ+ —2 || 100
Qr z |W[Ep+ 1/ W2ES ek (100) where
where n:#—i>0.
h—zam)® %
1 1 0 ( Z4m m
=5 ————>0,
Zg,m (h—zd.m)2 The oscillatory behavior for negatively charged core-shel

structured particle is observed only in the region whet2<

Z4 < h; and, this is illustrated in Fig.12. For the case of neg-

Y= + _ +— —8<0, atively charged patrticle, supregioAsandB are fqrme;d near
23d,m (h— zd,m) the lower conductor plate side of Fi§. 112, which is exactly
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the opposite of the positively charged particle case. Againticipate in the dynamics. This is so because only finite numbe
the force in regiorA repulses the particle from the lower con- of ionized particles can be contained in such small scale con
ductor plate and the force in regi@attracts the particle to finement. In such system, effects arising from the collectiv
the lower conductor plate. It is this “push-pull” compeatiti  motion of particles may only be a small perturbation com-
between the two dominant forces in regighandB that puts  pared to the effects arising from individual particle dyrnam

charged-particle in an oscillatory motion. Such oscillgtze-  ics. For very large scale systems, wherein enormous num-
havior is only possible because the particle can be pol&rizeber of ionized particles are involved, exactly the oppossite
under applied electric field. true. There, effects arising from the collective motion of

Because of the explicit mass dependence in (100) amghrticles become predominant. As the technology evolves,
(101), the charged particle oscillation discussed in thaskw plasma systems will eventually enter the regime of submicro
is more favorably satisfied by microscopic or smaller parti-to nanometer scale plasma confinements. Already, the size
cles than by macroscopic counterparts due to various experdf display pixels is approaching the dimensions of few visi-
mental limitations. In principle, particles of any size da&  ble wavelengths; and, display technologies based on ctharge
charged to satisfy the oscillation criterion of Eq§._(100) o particles are beginning to involve fewer ionized nanogées,
(101) provided a DC electric field of sufficient strength canwhere individual particle effects are no longer small pexéd
be applied without electrical breakdown taking place. Wnfo tions. In the electronics industry, the finite particle neatral
tunately, electrical breakdown occurs at some point even iplasma systems are becoming technologically very impbrtan
vacuum and this may limit macroscopic particles from satis-as nanoscale fabrication processes demand for the develop-
fying Eqs. [(10D) or[{1013! ment of extreme UV (ultraviolet) to X-ray lasers. For in-
The charged-particle oscillator based on the presentestance, device fabrication process at length scale 80 nm
novel mechanism represents a natural prototype for illatain or less by photolithography requires extreme UV lasers. Be-
ing electric dipole radiation. In such system, the freqyenc cause solid state devices cannot generate such high freguen
of emitted electromagnetic radiation is controlled by a DClaser waves, plasma based sources are the only viable candi-
voltage biased across the two plane-parallel electrodes. T dates for building extreme UV or X-ray lasers. The macro-
strength of emitted radiation power from such system dependscopic plasma sources can readily generate extreme UV elec-
directly on the magnitude of effective charge carried by theromagnetic waves, but at the cost of losing the coherent na-
charged-particle. ture of laser waves. Inevitably, the coherent nature of erlas
As for potential applications, the finding in this work can source demands for finite particle plasma sources, wherein
be utilized to build a source for generating microwave radiathe physics of individual particle dynamics is predomihant
tion. Microwaves thus generated, for instance, might bel useimportant. In this respect, the results obtained in thiskwor
to heat water or to excite gases in tiny plasma capsules tshould be useful and interesting to certain areas of plasma
produce light. As another potential application, the repal  physics.
mechanism discussed here can be utilized to build an anti-
friction device. Such device would not require any grease or
oil, which are known to be environmentally hazardous. In-
stead, the friction in such device would be controlled by ap-
plied DC voltage.
In nanoscale plasma confinements, nanocavities for in- The author acknowledges the support for this work pro-
stance, only scarce number of ionized atoms or particles pavided by Samsung Electronics Co., Ltd.
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