Characterizations of the Minus Ordering in Fuzzy Matrix Set

ZHOU Min－na
（ College of Science and Technology，Ningbo University，Ningbo 315211，China ）

Abstract

The matrix minus ordering is introduced into fuzzy matrix set．The minus ordering is a partial ordering in $F_{m, n}^{-}$．Some characterizations of the minus ordering are given．

Key words：Fuzzy matrix；minus ordering；characterization
CLC number：O159
Document code：A

Let $F_{m, n}$ stand for the set of all $m \times n$ fuzzy matrices．Given $A \in F_{m, n}, A\{1\}$ and $A\{2\}$ will denote the sets of all inner and outer inverses of A ，specified as

$$
\begin{equation*}
A\{1\}=\left\{X \in F_{n, m} \mid A X A=A\right\}, \tag{1}
\end{equation*}
$$

and
$A\{2\}=\left\{X \in F_{n, m} \mid X A X=X\right\}$,
write $A\{1,2\}=A\{1\} \cap A\{2\}$ ．And，$A^{-}, A^{=}$or A^{-} will denote an element in $A\{1\}$ and A^{\wedge}, A^{\vee} or $A^{(1,2)}$ an element in $A\{1,2\}$ ．Write $F_{m, n}^{-}=\{A \mid A\{1\} \neq$ $\left.\varnothing, A \in F_{m, n}\right\}$ ．

Now，we define the minus ordering $A \leq{ }^{-} B$ and the preorder $A \preceq B$ in $F_{m, n}$ ．

Let $A \in F_{m, n}^{-}, B \in F_{m, n}$ ．The minus ordering $A \leq$ －B in $F_{m, n}$ is defined as follow：

$$
\begin{equation*}
A \leq^{-} B \Longleftrightarrow A^{-} A=A^{-} B, A A^{=}=B A^{=}, \tag{3}
\end{equation*}
$$

where $A^{-}, A^{=} \in A\{1\}$ ．
It is clear that $A \leq^{-} A$ ，for each $A \in F_{m, n}^{-}$．In general，the minus ordering $A \leq{ }^{-} B$ is not a partial ordering in $F_{m, n}$ ．In section 2，We will prove that the minus ordering $A \leq{ }^{-} B$ is a partial ordering in $F_{m, n}^{-}$．

Let $A \in F_{m, n}$ ．Write
$A F_{n, n}=\left\{A X \mid X \in F_{n, n}\right\}, F_{m, m} A=\left\{Y A \mid Y \in F_{m, m}\right\}$ ．
Let $A, B \in F_{m, n}$ ．The preorder $A \preceq B$ in $F_{m, n}$ is defined as follow：

$$
\begin{equation*}
A \preceq B \Longleftrightarrow A F_{n, n} \subseteq B F_{n, n}, F_{m, m} A \subseteq F_{m, m} B . \tag{4}
\end{equation*}
$$

It is clear that $A \preceq A$ ，for each $A \in F_{m, n}$ ．The preorder $A \preceq B$ in $F_{m, n}$ is not a partial ordering in $F_{m, n}$ ．In section 3，by use of this preorder in $F_{m, n}$ ，we will discuss some characterizations of the minus partial ordering in $F_{m, n}^{-}$．

1 Minus partial ordering

In this section，we will prove that the minus ordering is a partial ordering in $F_{m, n}^{-}$．First，we have the following．

Theorem 1 Let $A \in F_{m, n}^{-}, B \in F_{m, n}$ ．The following statements are equivalent：
（i）$A \leq{ }^{-} B$ ．
（ii）There exists A^{\wedge} in $A\{1,2\}$ such that $A A^{\wedge} B=A=B A^{\wedge} A$ ．
（iii）There exists A^{\wedge} in $A\{1,2\}$ such that
$A^{\wedge} A=A^{\wedge} B, A A^{\wedge}=B A^{\wedge}$ ．
Proof（i）\Rightarrow（ii）：Set $A^{\wedge}=A^{=} A A^{-}$where A^{-}， $A^{=} \in A\{1\}$ ．Then，
$A A^{\wedge} A=A A^{-} A A^{-} A=A A^{-} A=A$,
$A^{\wedge} A A^{\wedge}=A^{-} A A^{-} A A^{=} A A^{-}=A^{=} A A^{=} A A^{-}=$

$$
A^{=} A A^{-}=A^{\wedge},
$$

Thus，$A^{\wedge} \in A\{1,2\}$ ，and
$A A^{\wedge} B=A A^{-} A A^{-} B=A A^{-} B=A A^{-} A=A$,
$B A^{\wedge} A=B A^{=} A A^{-} A=B A^{=} A=A A^{=} A=A$.
(ii) holds.
(ii) \Rightarrow (iii): Since $\quad A^{\wedge} \in A\{1,2\}, \quad A^{\wedge} A=A^{\wedge} A A^{\wedge} B=$ $A^{\wedge} B, A A^{\wedge}=B A^{\wedge} A A^{\wedge}=B A^{\wedge}$. Then, (iii) holds.
(iii) \Rightarrow (i): It is clear.

Lemma 1 Let $A \in F_{m, n}^{-}, B \in F_{m, n}$. If $A \leq{ }^{-} B$, then
(i) $A \preceq B$.
(ii) There exists A^{\wedge} in $A\{1,2\}$ such that $A=B A^{\wedge} B, A^{\wedge}=A^{\wedge} B A^{\wedge}$.

Proof (i) holds clearly by Theorem 1(ii). And, by (6) and (5) in Theorem 1,
$B A^{\wedge} B=B A^{\wedge} A=A, A^{\wedge} B A^{\wedge}=A^{\wedge} A A^{\wedge}=A^{\wedge}$.
(ii) holds.

Lemma 2 Let $A, B \in F_{m, n}^{-}$. If $A \leq{ }^{-} B$, then
(i) For each $B^{-} \in B\{1\}, A B^{-} A=A, A B^{-} B=A=$ $B B^{-}$.
(ii) For each $A^{(1,2)} \in A\{1,2\}, B^{-} \in B\{1\}, B^{-} B A^{(1,2)}$. $B B^{-} \in A\{1,2\}$.
(iii) There exists A^{\vee} in $A\{1,2\}$ such that $A A^{\vee}=$ $B A^{\vee}=A B^{-}, A^{\vee} A=A^{\vee} B=B^{-} A, \forall B^{-} \in B\{1\}$.

Proof (i) By Lemma 1(ii), there exists A^{\wedge} in $A\{1,2\}$ such that $A=B A^{\wedge} B, A^{\wedge}=A^{\wedge} B A^{\wedge}$. Thus, for each $B^{-} \in B\{1\}, \quad A B^{-} A=B A^{\wedge} B B^{-} B A^{\wedge} B=B A^{\wedge} B A^{\wedge} B=$ $B A^{\wedge} B=A, \quad A=B A^{\wedge} B=B B^{-} B A^{\wedge} B=B B^{-} A$. Similarly, we have that $A=A B^{-} B$. (i) holds.
(ii) By (i),
$A B^{-} B A^{(1,2)} B B^{-} A=A A^{(1,2)} A=A$,
$B^{-} B A^{(1,2)} B B^{-} A B^{-} B A^{(1,2)} B B^{-}=$

$$
B^{-} B A^{(1,2)} B B^{-} A A^{(1,2)} B B^{-}=
$$

$$
B^{-} B A^{(1,2)} A A^{(1,2)} B B^{-}=B^{-} B A^{(1,2)} B B^{-} .
$$

That is $B^{-} B A^{(1,2)} B B^{-} \in A\{1,2\}, \forall B^{-} \in B\{1\}$. (ii) holds.
(iii) Set $A^{\vee}=B^{-} B A^{\wedge} B B^{-}$where A^{\wedge} in Lemma 1(ii). Then, $A^{\vee} \in A\{1,2\}$ by (ii). And, by Theorem 1 (ii) and Lemma 1(ii),

$$
\begin{gathered}
A A^{\vee}=A B^{-} B A^{\wedge} B B^{-}=A A^{\wedge} B B^{-}=A B^{-}= \\
B A^{\wedge} B B^{-}=B B^{-} B A^{\wedge} B B^{-}=B A^{\vee} .
\end{gathered}
$$

Similarly, we can obtain that $A^{\vee} A=B^{-} A=A^{\vee} B$. Thus, (iii) holds.

Lemma 3 Let $A \in F_{m, n}, B \in F_{m, n}^{-}$. Then,
$A \preceq B \Longleftrightarrow A B^{-} B=A=B B^{-} A, \forall B^{-} \in B\{1\}$.
Proof $" \Rightarrow$ ": Since $A \preceq B$, there exist X in $F_{n, n}$ such that
$A=B X=B B^{-} B X=B B^{-} A, \forall B^{-} \in B\{1\}$. Similarly, it is proved that $A=A B^{-} B$.
$" \Leftarrow "$: Since $A=A B^{-} B$, for $Y A \in F_{m, m} A, Y A=$ $Y A B^{-} B \in F_{m, m} B$. Thus, $F_{m, m} A \subseteq F_{m, m} B$. Similarly, it is proved that $A F_{n, n} \subseteq B F_{n, n}$. Thus, $A \preceq B$.

Theorem 2 " \leq^{-}" is a partial ordering in $F_{m, n}^{-}$.
Proof Let $A \leq{ }^{-} B, B \leq{ }^{-} A$ where $A, B \in F_{m, n}^{-}$. If $A \leq{ }^{-} B$, by Lemma 2(i), $A=B B^{-} A$ for each $B^{-} \in B\{1\}$. If $B \leq^{-} A$, by Theorem 1 , there exists $B^{\wedge} \in B\{1,2\}$ such that $B=B B^{\wedge} A$. Then, $A=$ $B B^{\wedge} A=B$. And, let $A \leq{ }^{-} B, B \leq{ }^{-} C$ where A, B, $C \in F_{m, n}^{-}$. If $A \leq{ }^{-} B$, by Lemma 2(iii), there exists $A^{\vee} \in A\{1,2\}$ such that

$$
A A^{\vee}=A B^{-}, A^{\vee} A=B^{-} A, \forall B^{-} \in B\{1\}
$$

If $B \leq{ }^{-} C$, by Theorem 1(iii), there exists $B^{\wedge} \in B\{1,2\}$ such that

$$
B^{\wedge} C=B^{\wedge} B, C B^{\wedge}=B B^{\wedge} .
$$

By Lemma 2(i),

$$
\begin{gathered}
\left(A A^{\vee}\right) C=\left(A B^{\wedge}\right) C=A\left(B^{\wedge} C\right)=A B^{\wedge} B= \\
A=B B^{\wedge} A=C B^{\wedge} A=C A^{\vee} A,
\end{gathered}
$$

and Lemma 2(i). Thus, $A \leq{ }^{-} C$ by Theorem 1. Therefore, " \leq^{-}" is a partial ordering in $F_{m, n}^{-}$.

2 Characterizations of the minus ordering

In this section, we discuss only fuzzy matrices in $F_{m, n}^{-}$.

Theorem 3 Let $A, B \in F_{m, n}^{-}$. The following statements are equivalent:
(i) $A \leq{ }^{-} B$.
(iv) There exists A^{\vee} in $A\{1,2\}$ such that $A A^{\vee}=$ $B A^{\vee}=A B^{-}, A^{\vee} A=A^{\vee} B=B^{-} A, \forall B^{-} \in B\{1\}$.
(v) There exists A^{\vee} in $A\{1,2\}$ such that
$A A^{\vee} \leq{ }^{-} B B^{(1,2)}, \quad A^{\vee} A \leq{ }^{-} B^{(1,2)} B$ and $B A^{\vee} B=$
$A=A B^{(1,2)} A, \quad \forall B^{(1,2)} \in B\{1,2\}$.
（vi）There exists A^{\vee} in $A\{1,2\}$ such that $A A^{\vee} \preceq^{-}$ $B B^{(1,2)}, A^{\vee} A \leq{ }^{-} B^{(1,2)} B$ and $A=A B^{-} A, \forall B^{-} \in B\{1\}$ ．
（vii）There exists $X \in F_{n, m}$ such that $A=B X B$ ， $B\{1\} \subseteq A\{1\}$.
（viii）$A \preceq B$ and $B\{1\} \subseteq A\{1\}$ ．
（ix）$A \preceq B$ and $A\{1\} \cap B\{1\} \neq \varnothing$ ．
（x）For all $B^{-}, B^{=}, B^{(1)} \in B\{1\}, A B^{-} B=B B^{=} A=$ $A=A B^{(1)} A$ ．
（xi）There exist an idempotent fuzzy matrix $E_{m} \in F_{m, m}$ and an idempotent fuzzy matrix $E_{n} \in F_{n, n}$ such that $E_{m} B=A=B E_{n}$ ．
（xii）There exist an idempotent fuzzy matrix $E_{m} \in F_{m, m}$ and $D \in F_{n, n}$ such that $E_{m} B=A=B D$ ．
（xiii）There exist $C \in F_{m, m}$ and $D \in F_{n, n}$ such that $C A=C B=A=B D$ ．
（xiv）There exist $C \in F_{m, m}$ and an idempotent fuzzy matrix $E_{n} \in F_{n, n}$ such that $C B=A=B E_{n}$ ．
（xv）There exist $C \in F_{m, m}$ and $D \in F_{n, n}$ such that $C B=A=A D=B D$ ．
（xvi）There exist $C \in F_{m, m}$ and $D \in F_{n, n}$ such that $C B=C A=A=A D=B D$ ．

Proof（i）\Rightarrow（iv）：It is clear by Lemma 2（iii）．
（iv）\Rightarrow（v）：There exists A^{\vee} in $A\{1,2\}$ such that $A=A A^{\vee} A=A B^{(1,2)} A, \forall B^{(1,2)} \in B\{1,2\}$ ．And

$$
B A^{\vee} B=B B^{(1,2)} A=B A^{\vee} A=A A^{\vee} A=A
$$

Also，we have that

$$
\begin{aligned}
& A A^{\vee} B B^{(1,2)}=A B^{(1,2)} B B^{(1,2)}=A B^{(1,2)}= \\
& A A^{\vee}=B A^{\vee}=B B^{(1,2)} B A^{\vee}=B B^{(1,2)} A A^{\vee} .
\end{aligned}
$$

Since $A A^{\vee}$ is idempotent，$A A^{\vee} \in\left(A A^{\vee}\right)\{1\}$ ．Write $\left(A A^{\vee}\right)^{-}=A A^{\vee}$ ．Then，
$\left(A A^{\vee}\right)\left(A A^{\vee}\right)^{-}=A A^{\vee}=B B^{(1,2)} A A^{\vee}=\left(B B^{(1,2)}\right)\left(A A^{\vee}\right)^{-}$,
$\left(A A^{\vee}\right)^{-}\left(A A^{\vee}\right)=A A^{\vee}=A A^{\vee} B B^{(1,2)}=\left(A A^{\vee}\right)^{-} B B^{(1,2)}$.
That is，$A A^{\vee} \leq{ }^{-} B B^{(1,2)}$ ．Similarly，we have that $A A^{\vee} \preceq^{-} B^{(1,2)} B$ ．Thus，（v）holds．
（v）\Rightarrow（vi）：$\forall B^{-} \in B\{1\}, \quad A=A B^{(1,2)} A=B A^{\vee} B$.
$B^{(1,2)} B A^{\vee} B=B A^{\vee} B B^{-} B A^{\vee} B=A B^{-} A$ ．Thus，（vi）holds．
（vi）\Rightarrow（vii）：Since $B B^{(1,2)}$ is idempotent and $A A^{\vee} \leq{ }^{-} B B^{(1,2)}$ by Lemma 2（i），
$A A^{\vee}=B B^{(1,2)}\left(B B^{(1,2)}\right)^{-} A A^{\vee}=B B^{(1,2)} A A^{\vee}$.

Thus，$A=A A^{\vee} A=B B^{(1,2)} A A^{\vee} A=B B^{(1,2)} A$ ．
Similarly，we can prove that $A=A B^{(1,2)} B$ ．Therefore，

$$
\begin{gathered}
A=A A^{\vee} A=B B^{(1,2)} A A^{\vee} A B^{(1,2)} B= \\
B B^{(1,2)} A B^{(1,2)} B=B X B .
\end{gathered}
$$

where $X=B^{(1,2)} A B^{(1,2)} \in F_{n, m}$ ．And，$A=A B^{-} A, \quad \forall B^{-} \in$ $B\{1\}$ ．Thus，$B\{1\} \subseteq A\{1\}$ ．Then，（vii）holds．
（vii）\Rightarrow（viii）：Since $A=B X B$ ，it is clear that $A \preceq B$ by（6）．（viii）holds．
（viii）\Rightarrow（ix）：It is clear．
（ix）$\Rightarrow(\mathrm{x})$ ：By Lemma 3，since $A \preceq B, A B^{-} B=$ $A=B B^{=} A, \forall B^{-}, B^{-} \in B\{1\}$ ．Since $A\{1\} \cap B\{1\} \neq \varnothing$ ， there exist $B^{\sim} \in A\{1\} \cap B\{1\}$ such that $A=A B^{\sim} A=$ $A B^{-} B B^{\sim} B B^{=} A=A B^{-} B B^{(1)} B B^{=} A=A B^{(1)} A, \forall B^{(1)} \in B\{1\}$. Thus，（x）holds．
（x）\Rightarrow（xi）：In $A B^{-} B=B B^{-} A=A$ ，set $A B^{-}=E_{m}$ ， $B^{-} A=E_{n}$ ．Since $A B^{-} A=A, E_{m}$ and E_{n} are idem－ potent．Thus，（xi）holds．
（xi）\Rightarrow（xii）：It is clear．
（xii）\Rightarrow（xiii）：Set $C=E_{m}$ ，then $C A=E_{m} E_{m} B=$ $E_{m} B=C B=A=B D$ ．Thus，（xiii）holds．

$$
\text { (xiii) } \Rightarrow \text { (xiv): } A=A A^{-} A=B D A^{-} A, A^{-} \in A\{1\}
$$ Set $X=D A^{-} A \in F_{n, n}$ ，Then，

$$
\begin{gathered}
X^{2}=D A^{-} A D A^{-} A=D A^{-} C B D A^{-} A= \\
D A^{-} C A A^{-} A=D A^{-} A=X
\end{gathered}
$$

Thus，$C B=A=B E_{n}$ where $E_{n}=X$ ．Therefore，（xiv） holds．
（xiv）$\Rightarrow(x v)$ ：Similar to the proof of＂（xii）\Rightarrow （xiii）＂．

$$
(\mathrm{xv}) \Rightarrow(\mathrm{xvi}): C A=C A D=C B D=A D=A .(\mathrm{xvi})
$$ holds．

$$
\text { (xvi) } \Rightarrow(\mathrm{i}): \text { Let } A^{(1,2)} \in A\{1,2\}, \text { Write } A^{\vee}=
$$ $A^{(1,2)} C$ ．Then，

$$
\begin{aligned}
& A A^{\vee} A=A A^{(1,2)} C A=A A^{(1,2)} C B D= \\
& \quad A A^{(1,2)} A D=A D=A, \\
& A^{\vee} A A^{\vee}=A^{(1,2)} C A A^{(1,2)} C=A^{(1,2)} C B D A^{(1,2)} C= \\
& \quad A^{(1,2)} A D A^{(1,2)} C=A^{(1,2)} A A^{(1,2)} C=A^{(1,2)} C=A^{\vee}
\end{aligned}
$$

That is，$A^{\vee} \in A\{1,2\}$ ．And，$A A^{\vee} B=A A^{(1,2)} C B=A A^{(1,2)} A=$ A．Then，$A^{\vee} A=A^{\vee} A A^{\vee} B=A^{\vee} B$ ．
Set $A^{\wedge}=D A^{(1,2)}$ ．Similarly，we have $A^{\wedge} \in A\{1,2\}$ and $A A^{\wedge}=B A^{\wedge}$ ．Thus，$A \leq{ }^{-} B$ ．Therefore，（i）holds．

Corollary 1 Let $A, B \in F_{m, n}^{-}$．
（i）If $B B^{-}=I_{m}, B^{-} \in B\{1\}, A \leq{ }^{-} B \Longleftrightarrow A B^{-}$． $A=A=A B^{-} B$ ．
（ii）If $B^{-} B=I_{n}, B^{-} \in B\{1\}, A \leq{ }^{-} B \Longleftrightarrow A B^{-}$． $A=A=B B^{-} A$ ．
（iii）If B^{-1} exists，$A \leq^{-} B \Longleftrightarrow A B^{-1} A=A$ ．
Corollary 2 Let $A, B \in F_{m, n}^{+}$．Then，the following statements are equivalent：
（i）$A \leq{ }^{-} B$ ．
（ii）$A B^{+} A=A B^{+} B=A=B B^{+} A$ ．
（iii）$A B^{+} B=A=B B^{+} A$ ，and $B^{+} A$ and $A B^{+}$ are idempotent．
（iv）$B A B^{+}=A=B^{+} A B$ ，and $B^{+} A$ and $A B^{+}$ are idempotent．

References：

［1］Baksalary J K，Pukelsheim S F，Styan P H．Some properties of matrix partial orderings［J］．Linear Algebra Appl，1989，119：57－85．
［2］Cen Jianmiao．On generalized inverses of fuzzy matrices ［J］．Fuzzy System and Math，1991，5：66－75．
［3］Cen Jianmiao．Fuzzy matrix partial orderings and generalized inverses［J］．Fuzzy Sets and Systems，1999， 105：453－458．

Fuzzy 矩阵集中减序的特征刻划

周敏娜

（宁波大学 科学技术学院，浙江 宁波 315211）
摘要：在 Fuzzy 矩阵集中引进 Fuzzy 矩阵减序，减序是 $F_{m, n}^{-}$中的偏序。给出了 Fuzzy 矩阵减序的一些特征刻划。
关键词：Fuzzy 矩阵；减序；特征刻划
中图分类号：O159 文献标识码：A

