论文

A FURTHER GENERALIZATION OF JUNG'S THEOREM

LI Jianping(1), TIAN Feng(1), SHEN Ruqun(2)

(1)Institute of Systems Science, Academia Sinica, Beijing 100080, China; (2)Institute of Biophysics, Academia Sinica, Beijing 100101, China

收稿日期 修回日期 网络版发布日期 接受日期

摘要 Let G be a graph of order n. We define the distance between two vertices u andv in G, denoted by d(u, v), as the minimum value of the lengths of all u-v paths. We write $\sigma_k(G)=\min\{\sum_{i=1}^{k} d(v_i)|\{v_1, v_2, ..., v_k\}$ is an independent set in G} and NC2(G)=min { $|N(u) \cup N(v)| | d(u, v)=2$ }. We denote by $\omega(G)$ the number of components of a graph G. A graph G is called 1-tough if $\omega(GWS) \leq |S|$ for every subset S of V(G) with $\omega(G\setminus S)>1$. By c(G) we denote the length of the longest cycle in G; in particular, G is called a Hamiltonian graph if c(G)=n. H.A. Jung proved that every 1-tough graph with order n ≥ 11 and $\sigma_2 \geq n-4$ is Hamiltonian. We generalize it further as follows: if G is a 1-tough graph and $\sigma_3(G) \geq n$, then c(G) $\geq \min\{n, 2NC2(G)+4\}$. Thus, the conjecture of D. Bauer, G. Fan and H.J. Veldman in [2] is completely solved.

关键词 <u>Neighborhood unions,1-tough graph,Hamilt</u> 分类号

A FURTHER GENERALIZATION OF JUNG'S THEOREM

LI Jianping(1), TIAN Feng(1), SHEN Ruqun(2)

(1)Institute of Systems Science, Academia Sinica, Beijing 100080, China; (2)Institute of Biophysics, Academia Sinica, Beijing 100101, China

Abstract Let G be a graph of order n. We define the distance between two vertices u andv in G, denoted by d(u, v), as the minimum value of the lengths of all u-v paths. We write $\sigma_k(G)=\min\{\sum_i=1 \sim k \ d(v_i) \mid \{v_1, v_2, ..., v_k\}$ is an independent set in G} and NC2(G)=min { $|N(u) \cup N(v)| \mid d(u, v)=2$ }. We denote by $\omega(G)$ the number of components of a graph G. A graph G is called 1-tough if $\omega(G \oplus S) \leq |S|$ for every subset S of V(G) with $\omega(G \setminus S) > 1$. By c(G) we denote the length of the longest cycle in G; in particular, G is called a Hamiltonian graph if c(G)=n. H.A. Jung proved that every 1-tough graph with order n ≥ 11 and $\sigma \geq n-4$ is Hamiltonian. We generalize it further as follows: if G is a 1-tough graph and $\sigma \otimes (G) \geq n$, then c(G) $\geq \min\{n, 2NC2(G)+4\}$. Thus, the conjecture of D. Bauer, G. Fan and H.J. Veldman in [2] is completely solved.

Key words <u>Neighborhood unions</u> <u>1-tough graph</u> <u>Hamiltonian graph</u> <u>circumference</u>

DOI:

通讯作者

	扩展功能
	本文信息
	Supporting info
	▶ <u>PDF</u> (0KB)
	▶ [HTML全文](0KB)
	▶ <u>参考文献</u>
	服务与反馈
	▶ <u>把本文推荐给朋友</u>
ent	▶ <u>加入我的书架</u>
	▶ <u>加入引用管理器</u>
ith	▶ <u>复制索引</u>
)	Email Alert
	▶ <u>文章反馈</u>
	▶ <u>浏览反馈信息</u>
	相关信息
	▶ <u>本刊中 包含 "Neighborhood</u>
	<u>unions,1-tough graph,Hamilt"的</u> 相关文章
	▶本文作者相关文章
	• LI Jianping
	• TIAN Feng
	SHEN Rugun
	· · · · ·