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Abstract

We consider the classical Merton problem of lifetime congtiom-portfolio optimiza-
tion problem with small proportional transaction costseTinst order term in the asymptotic
expansion is explicitly calculated through a singular eigaontrol problem which can be
solved in closed form in the one-dimensional case. Unlikesttisting literature, we consider
a general utility function and general dynamics for the ullyiieg assets. Our arguments are
based on ideas from the homogenization theory and use thergamce tools from the the-
ory of viscosity solutions. The multidimensional case igl#d in our accompanying paper
[31] using the same approach.
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1 Introduction

The problem of investment and consumption in a market wéhgaction costs was first studied
by Magill & Constantinides[[26] and later by Constantinid&8]. Since then, starting with
the classical paper of Davis & Norman [11] an impressive ustdading of this problem has
been achieved. In these papers andin([12, 36] the dynamicqroning approach in one space
dimension has been developed. The problem of proporticaasaction costs is a special case
of a singular stochastic control problem in which the stateepss can have controlled discon-
tinuities. The related partial differential equation fhist class of optimal control problems
is a quasi-variational inequality which contains a gratimnstraint. Technically, the multi-
dimensional setting presents intriguing free boundarplenms and the only regularity result to
date are[[34] and [35]. For the financial problem, we refehmm recent book by Kabanov &
Safarian[[24]. It provides an excellent exposition to thedalevelopments and the solutions in
multi-dimensions.

It is well known that in practice the proportional transanticosts are small and in the
limiting case of zero costs, one recovers the classicallpnobf Merton [28]. Then, a natural
approach to simplify the problem is to obtain an asymptatigamsion in terms of the small
transaction costs. This was initiated in the pioneeringepap Constantinides [10]. The first
proof in this direction was obtained in the appendix [ofl [3&Jater several rigorous results
[5, [20,[22,32] and formal asymptotic results [1) 21| 38] haeen obtained. The rigorous
results have been restricted to one space dimensions witkxtteption of the recent manuscript
by Bichuch and Shreve][6].

In this and its accompanying paper[31], we consider thissital problem of small propor-
tional transaction costs and develop a unified approachetptbblem of asymptotic analysis.
We also relate the first order asymptotic expansionito an ergodic singular control problem.

Although our formal derivation in Sectidi 3 and the analp$if31] are multi-dimensional,
to simplify the presentation, in this introduction we rédtiourselves to a single risky asset
with a price proces§S,t > 0}. We assume; is given by a time homogeneous stochastic
differential equation together witf = s and volatility functiono(-). For an initial capitak,
the value function of the Merton infinite horizon optimal somption-portfolio problem (with
zero-transaction costs) is denoted \gg,z). On the other hand, the value function for the
problem with transaction costs is a functionsdind the pairx,y) representing the wealth in
the saving and in the stock accounts, respectively. Thentatal wealth is simply given by
z=x+y. For a small proportional transaction cast> 0, we letvé(s,x,y) be the maximum
expected discounted utility from consumption. It is cldwati* (s,x,y) converges ta/(s,x+y)
ase tends to zero. Our main analytical objective is to obtaingmaasion forvé in the small
parametek.

To achieve such an expansion, we assumevigsmooth and let

V4(S,2)
a VzAS, 2)
be the corresponding risk tolerance. The solution of thetthgoroblem also provides us an op-
timal feedback portfolio strategy(s, z) and an optimal feedback consumption functigs z).

Then, the first term in the asymptotic expansion is givenugloan ergodic singular control
problem defined for every fixed poifs, z) by

n(sz (1.1)

a(s,z) :=infJ(s,z M),
whereM is a control process of bounded variation with variatiormngM||,

T 2
J(s,zM) ;= IimsuplE {/ [o(9&[" +[M|lT],
Tow T 0 2
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and the controlled procegssatisfies the dynamics driven by a Brownian motmand param-
eterized by the fixed dai®, 2):

dé& =a(s2dB +dM where a:=0ly(l-y,) —syd.

The above problem is defined more generally in Rerhark 3.3 alved explicitly in the sub-
sectiorL 4.1l below in terms of the zero-transaction costesalnctionv.

Let{Z>*,t > 0} be the optimal wealth process using the feedback stratggieand starting
from the initial conditionsS, = s andZ5? = z. Our main result is on the convergence of the

function
V(57 X+ y) - Va(sa X, y)

82
Main Theorem. Letabe as above and set& nv,a. Then, ag tends to zero,

as(xay) =

E(xy) = u(sz) =E [/ e Pla(g,22%)dt| , locally uniformly. (1.2)
0

Naturally, the above result requires assumptions and vee tie¢ reader to Theordm 6.1 for
a precise statement. Moreover, the definition and the cgewee ofué is equivalent to the
expansion
VE(s,X,Y) = V(2) — £2U(Z) + o(£?), (1.3)

where as before= x+y ando(£¥) is any function such that(¢¥) /e converges to zero locally
uniformly.

A formal multi-dimensional derivatioaf this result is provided in Sectidn 3. Our approach
is similar to all formal studies starting from the initial per by Whalley & Willmont [38].
These formal calculations also provide the connection aitbther important class of asymp-
totic problems, namely homogenization. Indeed, the dyngmgramming equation of the
ergodic problem described above is ttaarector (or cell) equatiorin the homogenization ter-
minology. This identification allows us to construct a rigas proof similar to the ones in
homogenization. These assertions are formulated intoradiotheorem at the end of Section
B The analysis of Sectidd 3 is very general and can easigneixto other similar problems.
Moreover, the above ergodic problem is a singular one andhew $n [31] that its continu-
ation region also describes the asymptotic shape of theaue-tegion in the transaction cost
problem.

The connection between homogenization and asymptotidgrabin finance has already
played an important role in several other problems. FouRapanicolaou & Sircaf [18] use
this approach for stochastic volatility models. We refettte recent book [19] for information
on this problem and also extensions to multi dimensionshérstochastic volatility context the
homogenizing (or the so-called fast variable) is the viita@nd is given exogenously. Indeed,
for homogenization problems, the fast variable is almastgs given. In the transaction cost
problem, however, this is not the case and the main diffidgslty identify the “fast” variable. A
similar difficulty is also apparent in a problem with an illig financial market which becomes
asymptotically liquid. The expansions for that problem wasained in[[30]. We use their
techniques in an essential way.

The later sections of the paper are concerned with the riggguooof. The main technique is
the viscosity approach of Evans to homogenization[13, Thjs powerful method combined
with the relaxed limits of Barles & Perthani€ [2] provides tiexessary tools. As well known,
this approach has the advantage of using only a simple Igtd&lound which is described in
Sectior[b. In addition td ]2, 18,714], the rigorous proofimtik several other techniques from
the theory of viscosity solutions developed in the pagderd52 17 25, 33, 37] for asymptotic
analysis.



For the rigorous proof, we concentrate on the simpler onedsional setting. This simpler
setting allows us to highlight the technique with the leassgible technicalities. The more
general multi-dimensional problem is consideredin [31].

The paper is organized as follows. The problem is introduedte next section and the
approach is formally introduced in Sect{dn 3. In one dimengsihe corrector equation is solved
in the next section. We state the general assumptions ino&&tand prove the convergence
result in Sectiofl6. In Sectidd 7 we discuss the assumptigimally a short summary for the
power utility is given in the final Section.

2 The general setting

The structure we adopt is the one developed and studied irettent book by Kabanov &
Safarian[[24]. We briefly recall it here.

We assume a financial market consisting of a non-risky &setdd risky assets with price
process S = (§,...,),t > 0} given by the stochastic differential equations,

g — r(S)dt, dg — ui(S)dtJriloi*j(S)de, 1<i<d,

wherer : RY — R, is the instantaneous interest rate andR® — RY, o : RY — .74 (R) are the
coefficients of instantaneous mean return and volatilitg. W&e the notationZy(R) to denote
d x d matrices with real entries. The standing assumption ondakéicients

1

r,u,o are bounded and Lipschitz, andoo ')~ is bounded,

will be in force throughout the paper (although not recaifedur statements). In particular, the
above stochastic differential equation has a unique stsohgion.

The portfolio of an investor is represented by the dollaugx invested in the non-risky
asset and the vector proceés- (Y?,...,Y9) of the value of the positions in each risky asset.
The portfolio position is allowed to change in continuoimse by transfers from any asset to
any other one. However, such transfers are subjgataportional transaction costs

We continue by describing the portfolio rebalancing in thesent setting. For all j =
0,...,d, letL{’ be the total amount of transfers (in dollars) from ifh to thej-th asset cumu-
lated up to timei. Naturally, the processd4;’,t > 0} are defined as cad-lag, nondecreasing,
adapted processes with- = 0 andL'' = 0. The proportional transaction cost induced by a
transfer from the-th to the-th stock is given bye3A "l wheres > 0 is a small parameter, and

Al >0, At =0, i,j=0,....d.

The scalings2 is chosen to state the expansion results simpler. We redeetider to the recent
book of Kabanov & Safariam [24] for a thorough discussionhaf model.

The solvency region Kis defined as the set of all portfolio positions which can la@gr
ferred into portfolio positions with nonnegative entriesaugh an appropriate portfolio rebal-
ancing. We use the notatidn-= (gi,J)i’j:Q'_'d to denote this appropriate instantaneous transfers
of size/"!. We directly compute that the induced change in each erter, subtracting the
corresponding transaction costs is given by the linearaipeR : .Zg.1(R ) — R9*1,

R'(0) := Z)(é’"—(l—f—es/\"l)ﬂu), i=0,..d foral (e.#3.1(R,),
=



wheref"l > 0 and¢l' > 0 for somei, j would clearly be suboptimal. TheK; is given by
Ke i= {(x,y) eRxRY: (xy)+R(£) e R for some/ e //{d+l(R+)}.

For later use, we denote lfgy, ..., &) the canonical basis @%** and set
N=a—e+eAle,  i,j=0,...d

In addition to the trading activity, the investor consumiea ete determined by a nonnega-
tive progressively measurable procésst > 0}. Herec; represents the rate of consumption in
terms of the non-risky ass&?. Such a paiv := (c,L) is called aconsumption-investment strat-
egy. For any initial position Xy, Yy ) = (x,y) € R x RY, the portfolio position of the investor
are given by the following state equation

dX% = (r(S)% —&)dt+R%(dL), and dY/ =Y{ % +R(dL), i=1,....d.
The above solution depends on the initial conditigyy), the controlv and also on the initial
condition of the stock processLet (X,Y)":S*Y be the solution of the above equation. Then, a
consumption-investment strategys said to beadmissiblegor the initial position(s, x,y), if

X, Y)Y eKe, Vt>0, P-—as.

The set of admissible strategies is denote@®bfs, x,y). For given initial position§ =sec RY,
Xo- =X€R, Yy =yeRY, the investment-consumption problem is the following meixation
problem,

VE(s,Xy) = sup E [/m e Pt U(ct)dt} ,
y) 0

(c.L)e@®(sx,

whereU : (0,0) — R is a utility function. We assume thitis C?, increasing, strictly concave,
and we denote its convex conjugate by,

U@ := sup{U(c)—ct}, EeR.
c>0

ThenU is aC? convex function. It is well known that the value function isiacosity solution
of the corresponding dynamic programming equation. In amedsion, this is first proved in
[36]. In the above generality, we refer o [24]. To state thaation, we first need to introduce
some more notations. We define a second order linear paiffedeshtial operator by,

1
L = u-(Ds—i—Dy)—i—er—i—éTr[OUT(Dyy—i—Dss—i—ZDsy)], (2.1)
where' denotes the transpose and fgr=1,...,d,
9 N d9 Ny d
DX._an, DS._§0§., Dy._y'ay.,

- o 92 . .92 L .92

L) = J— . ] = J— - I, = J— -
Dgd :=Ss 3905 DYy :=VY'y ayayl” Dy := sy FEENE

Ds = (DY)1<i<d, Dy = (D})1<i<d, Dyy:= (D) 1<i j<d» Dss:= (D&1)1<i j<d, Dsy:= (D§))1<i.j<d-
Moreover, for a smooth scalar functigg x,y) € R4 x R x R4+ ¢(x,y), we set
_9¢ _9¢

._ 99 ._99 d
Ox = % €eR, oy ay eR".



Theorem 2.1 Assume that the value functiofi is locally bounded. Then s a viscosity
solution of the dynamic programming equatiorﬁﬁ x Ke,
min { BV — 2V —U () , Afj- (%, V) } =0. (2.2)

0<i,j<d dAOTY

Moreover, ¥ is concave inx,y) and converges to the Merton value functior=n®, ase > 0
tends to zero.

Under further conditions the uniqueness in the above stterm proved in[[24]. However,
this is not needed in our subsequent analysis.

2.1 Merton Problem

The limiting case o = 0 corresponds to the classical Merton portfolio-investhpeoblem in
a frictionless financial market. In this limit, since thertséers from one asset to the other are
costless, the value of the portfolio can be measured in tefrtiee nonrisky asse®’. We then
denote byZ := X+ Y1 +...+YH the total wealth obtained by the aggregation of the positamn
all assets. In the present setting, we denot@'hy- Y' and@ := (8,...,69) the vector process
representing the positions on the risky assets. The weaqlithatmn for the Merton problem is
then given by

d ) dS

dz = (r(S)Zt—Ct)dt—i-Xi g (g—r(S)dt). (2.3)

1=
An admissible consumption-investment strategy is now eefas a paitc, 0) of progressively
measurable processes with value®in andRY, respectively, and such that the corresponding
wealth process is well-defined and almost surely non-neg#bir all times. The set of all
admissible consumption-investment strategies is dermt€(s, z).

The Merton optimal consumption-investment problem is aefiby

v(sz):= sup E [/ e Pt U(q)dt} , seR%, z>o0.
(c,8)c0(s,2) 0

Throughout this paper, we assume that the Merton valueifumets strictly concave irz and
is a classical solution of the dynamic programming equation

~ 1
Bv—rzv,— 2% —U(v,) — sup {9- ((U—r1g)V,+ 00 Ds) + §|0T6|2vzz} =0,
fcRrd

wherely == (1,...,1) € RY, Ds;:= £ Ds, and
0o . 1 T
<Y = u-Ds+ zTr[ao Dss|- (2.4)

The optimal controls are smooth functiot(s, z) andy(s, z) obtained by as the maximizers of
the Hamiltonian. Hence,

0=PBv—L%—U(v) —rzvy—y- (U—rlg)vz— 00"y -Dsy — :—2L|0Ty|2vzz, (2.5)
the optimal consumption rate is given by,

c(s.2) = -U'(v(s2) = (U’)*l(vz(s,z)) for seRY, z>0, (2.6)



and the optimal investment strategys obtained by solving the finite-dimensional maximiza-
tion problem,

1 T2 T
Er)r;%é({zm 0|“Vzz+ 6 (U —rlg)V.+ 00 Dszv)}.

Sincev is strictly concave, the Merton optimal investment stryte@, z) satisfies

—VzA$,2) 007 (5)y(5,2) = (U —114)(S)Vz(S,2) + 00T (S)DsV(S, 2). 2.7)

3 Formal Asymptotics

In this section, we provide the formal derivation of the axgan in any space dimensions.
In the subsequent sections, we prove this expansion riglydéor the one dimensional case.
Convergence proof in higher dimensions is carried out inrthémming paper [31]. In the
sequel we use the standard notat®fzX) to denote any function which is less than a locally
bounded function times* ando(£¥) is a function such that(gk) /X converges to zero locally
uniformly.

Based on previous resulfs |38/ 1] P1] 22, 36], we postulatéaifowing expansion,

V(sxy) =V(s2) — £°U(s,2) — £'W(S,Z &) +o(£?), (3.1)
where(z, &) = (z &) is a transformation ofx,y) € K¢ given by

iy
Z=x+y 4. 4y &' ::Eg(x,y):w, i=1,....d,
y= (yl, ... ,yd) is the Merton optimal investment strategy[of (2.7). In thetptated expansion

(3.1), we have also introduced two functions
u:RI xRy —R, and w:RY xR xRY—R.

The main goal of this section is to formally derive equatiémsthese two functions. A rig-
orous proof will be also provided in the subsequent sectamtkthe precise statement for this
expansion is stated in Sectigh 6.

Notice that the above expansion is assumed to hold @p,toe. theo(£?) term. Therefore,
the reason for having a higher term likéw(z, &) explicitly in the expansion may not be clear.
However, this term contains the fast variaBl@nd its second derivative is of ordet, which
will then contribute to the asymptotics sing& soves a second order PDE. This follows the
intuition introduced in the pioneering work of Papanicalamd Varadhan [29] in the theory of
homogenization.

Since(x,y) € Ke — (2, &) € R, x RY is a one-to-one change of variables, in the sequel for
any functionf of (s x,y) we use the convention,

f(s2&):=f(sz— €& —y(s.2),e& +y(s.2)). (3.2)

The new variabl€ is the “fast” variable and in the limitit homogenizes to yi¢ghe convergence
of ¥¥(s,z &) to the Merton functiorv(s,z) which depends only on thg, z)-variables. This is
the main formal connection of this problem to the theory ofmlegenization. This variable
was also used centrally by Goodman & Ostriov|[21]. Indeedr #mymptotic results use the
properties of the stochastic equation satisfied&¥(X%, Y;).

First we directly differentiate the expansidn (3.1) and paie the terms appearing [0 (R.2)
in term ofu andw. The directional derivatives are given by,

/\fj ’ (Via\,f/) = —84(3 - eJ) ’ (WX(Sa Z, E)’WY(Sa Z, E)) + £3Ai’jVZ+ 0(84)'



We directly calculate that,

(W, Wy)(8,2,&) = (Wz— %yZ'WE) lgi1+ % (0,wg). (3.3)
To simplify the notation, we introduce
Dew(s,z,€) == (0,Dgw(s, 2, §)) € R (3.4)
Then,
(Vo) = e3(AMlv+ (g — &) - Dw) + O(e%). (3.5

The elliptic equation inIIZIZ) requires a longer calculatand we will later use the Merton

identities [2.b),[(Z16) and(2.7). Firstly, Hy (2.5),
= BV -2V —U(V)
= (y=y)[(H—rla)v; + 00 D] + %(IU yI?=10TY?)vzz
+ (U (Vz) — U (v + €%u, + 0(83)))
—&? (Bu — fu) + %ATr[aaTDyyw] +0(&3).
We use Taylor expansions on the terms involuihgnd [Z.6){(Z17) in the first line, to arrive at

= (0Ty-y) 0Ty 5107V~ 0TY?) Jver
—g2 (Bu - ZLu+ Cuz) - 7Tr[aaTDyyw] +0(&3)
1 1 2 2 A gt T 3
= 310"y -y Pa-e (Bu—$u+cuz)+7Tr[oa Dyyw] + O(£3)
of L 12 A e* T 3
= € (—§|0 | vzz—Bu+$u—cuz)+7Tr[aa DyyW| 4+ O(£7). (3.6)
Finally, from [3.3), we see that
1
Oyw =Wyl + = (Ig — ay; )wg
Therefore,
T 17 7,1 T 1 T T
AW = Wy 1q1] — Yz lala + 2 (lg— 1ayz )Wz + 2 (lg — 1ay; )Wee (la — yz1q)-
We substitute this i (316) and use the fact thaty + O(¢). This yields,
e_2f_ L1 152 1 T 3
1®=¢ (—§|o &|Vzz+ éTr[aa Wee | —,sz%u)JrO(e ), (3.7)
wherea (s, z) is given by

a(s.2) = { (la—y.A3) diadly] - yldiags]} (5,20 (). (3.8)

diagy] denotes the diagonal matrix witkth diagonal entry', and

Au=Pu—L%— (rz+y-(H—rlg) —C)u— :—2L|0Ty|2uzz— oo’y -Dspl.  (3.9)



Recall that#? is the infinitesimal generator of the stock price processsedke that the above
operator is the infinitesimal generator of the pair prod&s&) whereZ is the optimal wealth
process in the Merton zero-transaction cost problem cporading to the optimal feedback
controls(c,y). In particular, the dynamic programming equationl(2.5)tfer Merton problem
may be expressed as,

2V(s,2) =U(c(s,2)). (3.10)

We have now obtained expressions for all the terms in themimarogramming equatiof (2.2).
We substitute[(3]5) anf(3.7) infa(2.2). Notice that siace0, for anyA, B, max{e2A, 3B} =0
is equivalent to mafA, B} = 0. Hencew andu satisfy,

}Tr[aaT(s, 2)Wee (s.2,€)] +a(s2),

max  max {%\UT(S)HZsz(S,z)—Z

0<i,j<d
~Athvy(s.2) + (e —e)) - Dew(z &) | =
Wherelﬁg = (0,Dgw) is as in[(3.4) ana is given by,
a(s2):=u(s,z, scRY, z>0.

In the first equation above, the pasg; z) is simply a parameter and the independent variable is
&. Also the value of the function(s, z,0) is irrelevant in [[3.11) as it only contributes to tbé
term. Therefore, to obtain a unigue we set its value at the origin to zero. We continue by
presenting these equations in a form that is compatible tv@éhpower case. So we first divide
the above equation by and then introduce the new variable

p = &/n(s2),
wheren is the risk tolerance coefficient defined by {1.1). We also set
VV(S, Z, p) = W(Sa Za r’ (57 Z)p) ’ a—(57 Z) = a(Sa Z) 5(3, Z) — a(S, Z)

r’ (57 Z)VZ(57 Z) B r’ (Sa Z)VZ(Sa Z) ’ B r’ (57 Z) '
Then, the corrector equations in this context is the follaypair of equations.

Definition 3.1 (Corrector Equations) For a given poin{s,z) € R‘j x Ry, the first corrector
equationis for the unknown paifa(s, z),w(s,z-)) € R x C2(RY),

lo"(9pl® ;Tr[Ea (s, 2Wpp(s,z,p)] +als,2), (3.11)

max max{
2

0<i,j<d
_)\|J+(a_ej) DpWS,zp}_O VpERd

together with the normalization(s, z,0) = 0.
Thesecond corrector equatiarses the constant ter(s, z) from the first corrector equation
and it is a simple linear equation for the functilmnIRS’r x RT —R?,

FU(s,z2) = a(s,z) = V«(s,2)n (s, 2z)a(s, z), VseRY, zeRY. (3.12)

We say that the paifu,w) is the solution of the corrector equatiofer a given utility function
or equivalently for a given Merton value function. m

We summarize our formal calculations in the following.

Formal Expansion Theorem. The value function has the expansi@) where(u,w) is the
unigue solution of the corrector equations.



Remark 3.1 The functionu introduced in[(Z.R) is a solution of the second correctoratign
(3.12), provided that it is finite. Then, assuming that ueiggss holds for the linear PDE(3.12)
in a convenient class, it follows thatis given by the stochastic representation|(1.2).

Remark 3.2 Usually a second order equation like (3.12) ) needs to be completed by a
boundary condition at the origin. However, as we have ajreacharked, the operatey is the
infinitesimal generator of the optimal wealth process inMerton problem. Then, under the
Inada conditions satisfied by the utility functibh we expect that this process does not reach
the origin. Hence, we only need appropriate growth conatioear the origin and at infinity to
ensure uniqueness. m

Remark 3.3 The first corrector equation has the following stochasticesentation as the dy-
namic programming equation of an ergodic control problean tkis representation we fis, z)
and let{M;"’,t > 0} be non-decreasing control processes, for éack 0,...,d. Let p be the
controlled process defined by,

HMQ

szB{—i—% MJI 'J)

for some arbitrary initial conditiopg and ad dimensional standard Brownian motiBnThen,
the ergodic control problem is
a(s.2) :==inf J(s.z M),

where

J(s,zM) _Ilmsup— / loT( pt\ dt+ z /\”M#‘].
T—o0 i,J=0

In the scalar case, this problem is closely related to thesidal finite fuel problem introduced
by Benes, Shepp & Withenhaussén [4]. We refer to the paper &yaldi, Robin and Taksar
[27] for the present multidimensional setting.

The functionw is the so-called potential function in ergodic control. Véer the reader
to the book and the manuscript of Borkar[[7, 8] for informatmn the dynamic programming
approach for the ergodic control problems. m

Remark 3.4 The calculation leading t6 (3.7) is used several times irptqger. Therefore, for
future reference, we summarize it once again. et andé be as above. Faany smooth
functions

@:RIXxR, =R, @:RIxR;xRI—R,
ande € (0,1] set

We(sx,Y) 1= V(s,2) — £°9(s,2) — &*m(s,2. ).
In the above calculations, we obtained an expansion forebersl order nonlinear operator

(W) = BY - 2w -U(¥)
V. 1
— 52( ZZ|0TE|2+ 2Tr[aa wss| — gf(p+%£), (3.13)

wherea, 7 are as before ané??(s x,y) is the remainder term. Moreove#?¢ is locally
bounded by & times a constant depending only on the values of the Mertoctionv, ¢ and

w. Indeed, a more detailed description and an estimate witrbeed in one space dimension
in Sectior{®6. m
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4 Corrector Equation in one dimension

In this section, we solve the first corrector equation exhfién the one-dimensional case.
Then, we provide some estimates for the remainder intratlicBemark3.}4.

4.1 Closed-form solution of the first corrector equation

Recall thatw = nv,w, a = nv;a, and the solution of the corrector equations is a paira)
satisfying,

1 1_,_ _ — _ _
max{ — éazp2 — éﬁzwpp +a A0 4w, 20— wp} =0, W(s,20) =0, (4.1)
wherea = a/n anda(s,z) is given in [3.8). We also recall that the variab(es) are fixed
parameters in this equation. Therefore, throughout thii@® we suppress the dependences
of o,a andw on these variables.

In order to compute the solution explicitely in termsmpfwe postulate a solution of the
form

W(p1) =A% (p—p1), p<pi, (4.2)
W(po) +A(p—po), P> po.
We first determinés andk, by imposing that the fourth order polynomial solves the seco
order equation irfpg, p1). A direct calculation yields,

- kap? +kop? +kip,  p1<p < po,
w(p) =

—0? a
=—= d k=—=.
ka a2 ¢ T
We now impose the smooth pasting condition, namely assuatevtis C2 at the pointgg and
p1. Then, the continuity of the second derivatives yield,

2a

2a _ 1/2
P =pi= P implyingthat a>0 andpg=—p1 = (—02) . (4.3)

The continuity of the first derivatives ¥ at the pointgg andp, yield,
4ka(po)® + 2k2po + K1
Akg(p1)® +2kopr +kg = AMO

Sincepp = —p1, we determine the value & by summing the two equations,

01
—A0L

Al,O_/\O,l
2

Finally, we obtain the value af by further substituting the values kf, k, andpg = —p;. The
resultis

ki =

2 ~2
= 0" 2 _ 3i 1,0 , 101 1/3
a=—pg and po_(402(/\ +A )) . (4.4)
All coefficients of our candidate are now uniquely deterrdin&loreover, we verify that the
gradient constraint
— A0 <w, <201 (4.5)

holds true for allp € R. Hencew constructed above is a solution of the corrector equatiore O
may also prove that it is the unique solution. However, inghbsequent analysis we simply
use the functionv defined in [[4.R) with the constants determined above. Thegefve do not
study the question of uniqueness of the corrector equation.

11



Remark 4.1 In the homothetic case with constant coefficients, anda, one can explicitly
calculate all the functions, see Sectidn 8. Here we onlyntetpat, in that case, all functions are
independent of the—variable angpp,a(z) are constants. Therefor&z) is a positive constant
times the Merton value function. m

Remark 4.2 Pointwise estimates on the derivativeswfill be used in the subsequent sections.
So we record them here for future references. Indeed, by &#hdbthe fact thaiv(-,0) = 0,

W(s,2,&)| <AVy(s,2)[E], [We(s,2E)] <AVy(s,2), where A =A%V AL0, (4.6)
Moreover, under the smoothness assumption, ve obtain the following pointwise estimates

(IW] + [ws| + [Wsd + [W| + Wz4) (z, &) < C(s,2)(1+]&]), (4.7)
(Iwe |+ [Wee | + [Weg ) (5.2) < C(s,2) and|Wgg | < (Clig, 1) (S,2), (4.8)

whereC is an appropriate continuous functionlmi, depending on the Merton value function
and its derivatives. m

4.2 Remainder Estimate

In this subsection, we estimate the remainder term in Re@&kSo, let¥? be as in Remark
[3:2 with w satisfying the same estimatés {4 .[7)-14.8)vasVe have seen il (3.13) that

/(Ws)(sv va) = (BLPS — LY~ O (LP)&;)) (vaay)
= £ {—%vzz(s,z)éer %az(s, 2)wss (5.2.8) — A 9(s.2) + %5 (s, z,E)] ,

wherea, <7 are defined in[(318)=(319), an@* is the remainder. By a direct (tedious) calcula-
tion, the remainder term can be obtained explicitly. In vigvour previous bound§ (4.7)-(4.8)
on the derivatives ofv, we obtain the estimate,

1
#5(s28) < e(1€lu—rllol+50%(e82+2E ) ed + o€ @) (52
+eC(5,2) (1+€|E| + € &[>+ €3|E°),
+e 2|0 () — U(vy) — (4 —vo)U' (v2)|

for some continuous functio®(s, z). SinceU is C! and convex,

1
|%%(s,2.8)| < £(|5||H ||+ 502(852+2|5||y|)|¢zz| + 02|5||(05z|) (s2)
+6C(s,2) (1+¢€|&| + €% &P+ €3€3),
+(1@| + €%\ @l + ey @ )| U’ (Vo) + 7] | + £*| @y | + €3y g |) — U (v) |

Suppose that satisfies the same estimates{4[7)J(4.8yashen,
1
(#s28)| < e(IEllu—rllol+50%(e8%+2EY])gd + 0% led ) (5.2

+6C(s,2) (1+¢€|&| +€%E 2+ €3€3),
+&2(|q| + £C(s,2)(1+ £1])) 0" (vz + £/ + £3C(s,2) (1 + €€ ).
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5 Assumptions

The main objective of this paper is to characterize the lohthe following sequence,

V(s,2) —VE(sxY)
82
Our proof follows the general methodology developed by &a& Perthame in the context
of viscosity solutions. Hence, we first define relaxed semit$ by,

UE(S,X,y) == , >0, (xy) eKe.

u*(¢):= limsup ("), u.(¢):= liminf (¢
Q) (s,z'H(ol,OZ) (€% Q) (o hminf (")

Then, we show under appropriate conditions that they amosity sub-solution and super-
solution, respectively, of the second corrector equaoi?).
We shall now formulate some conditions which guarantee that

i. the relaxed semi-limits are finite,
ii. the second corrector equatidn (3.12) verifies comparfeoviscosity solutions.

We may then conclude that < u,. Since the opposite inequality is obvious, this shows that
u= u* = u, is the unigue solution of the second corrector equalior®j3.1

In this short subsection, for the convenience of the readercollect all the assumptions
needed for the convergence proof, including the ones thet aleeady used.

We first focus on the finiteness of the relaxed semi-limitandu*. A local lower bound
is easy to obtain in view of the obvious inequality(s,x,y) < v(s,x+y) which implies that
Ut > 0. Our first assumption complements this with a local uppemnilo

Assumption 5.1 (Uniform Local Bound) The family of functiong? is locally uniformly bounded
from above.

The above assumption states that for ésyxo,Yo) € R x R? with xo + Yo > 0, there exist
ro = ro(So,%o,Yo) > 0 andep = £ (S0, %o, Yo) > 0 so that

b(s0, X0, Yo) 1= sup{ U*(s,X,y) : (S,X.y) € Bry(S0,X0,Y0), € € (0,&0] } <o,  (5.1)

whereBy, (S0, %o, Yo) denotes the open ball with radiug centered atsy, Xo, Yo)-

This assumption is verified in Sectibh 7 under some conditamv and its derivatives by
constructing an appropriate sub-solution to the dynandg@mming equatiofi (2.2). However,
the sub-solution does not need to have the exattehavior as needed in other approaches to
this problem starting froni [36, 22]. Indeed, in these eadigproaches, both the sub and the
super-solution must be sharp enough to have the exactigrtiehavior in the leading? term.

For the above estimate, however, this term needs to be ordylydounded.

The next assumption is a regularity condition on the Mert@bf@m.

Assumption 5.2 (Smoothness)rhe Merton value function v and the Merton optimal invest-
ment strategy are twice continuously differentiable in the open don{@iyo)? and (s, z) > 0
for all s,z > 0. Moreover, there exist;c> ¢y > 0 such that

Cz<[y(1-yz) —sy](s,z) <cyz forall szeR,. (5.2)
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In particular, together with our condition standing asstiorpon the volatility functiono,
the above assumption implies that the diffusion coefficte(s z) in the first corrector equation
is non-degenerate away from the origin. For later use werdettat there exist two constants

0< a, <a*sothat

<a*, Vs zeR,. (5.3)

We will not attempt to verify the above hypothesis. Howewerthe power utility case, the
value function is always smooth and the condition](5.2) cawibectly checked as the optimal
investment policy is explicitly available.

We next assume that the second corrector equdfionl (3.12pngsarison. Recall the func-
tion u introduced in[(T.R), leb be as in[(&11), and set

B(s.2) :=b(s,z—y(2),y(2)), szeR,. (5.4)

Assumption 5.3 (Comparison) For any upper-semicontinuoysesp. lower-semicontinuols
viscosity sub-solutiofresp. super-solutionu; (resp. ) of (3.12)in (0,%)? satisfying the
growth conditionu;| < B on(0,)?,i = 1,2, we have y< u < up in (0,)?.

In the above comparison, notice that the growth of the swh#tien and the subsolution is
controlled by the functio® which is defined in[(5]4) by means of the local bound function
In particular,B controls the growth both at infinity and near the origin.

We observe however that, as discussed earlier, the operai®the infinitesimal generator
of the optimal wealth process in the limiting Merton probleim view of our Assumptiofi 512,
we implicitly assume that this process does not reach tlygnomiith probability one.

We finally formulate a natural assumption which was verifie{Bi6], Remark 11.3, in the
context of power utility functions. This assumption will bsed for the proof of the sub-solution
property. To state this assumption, we first introducentrransaction regiomefined by,

&= {(sxy) € Ke :AG1-DVE(s,x,y) >0, andAf 5- DV¥(s,x,y) > 0} (5.5)
By the dynamic programming equatidn (2.2), the value funmoif is a viscosity solution of
BV — 2V —U(ME)=0 on &

Assumption 5.4 (No transaction region) The no-transaction regiont® contains the Merton
line 7 :={(s,2—y(2),y(2)) : s,ze R, }.

Remark 5.1 In our accompanying paper [31], the expansion result irdthdimensional con-
text is proved without Assumptidn®.4. However, this indsiaa important additional technical
effort. Therefore, for the sake of simplicity, we refrainfedm including this improvement in
the present one-dimensional paper.

6 Convergence in one dimension

For the convergence proof, we introduce the following “ected” version ofi€,
UE(S,X,Y) := IE(S,X,Y) — £2W(S,Z &), >0, (xy) € Ke.

Notice that both families® andu® have the same relaxed semi-limitsandu,.

Theorem 6.1 Under Assumptiois 3.1, 5[2. 5.3, 4nd 5.4 the sequéufde .o converges locally
uniformly to the function u defined {@.2).
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Proof. In the next subsections, we will show that, the semi-limitsand u* are viscosity

super-solution and sub-solution, respectively[of (B.12)en, by the comparison Assumption

3, we conclude that* < u < u,. Since the opposite inequality is obvious, this implies tha

u* = u, = u. The local uniform convergence follows immediately froristhnd the definitions.
m

6.1 First properties

In this subsection, we only use the assumptions on the smesstof the limiting Merton prob-
lem and the local boundedness{of } .. We first recall that

A= A%hvAte

Lemma 6.1 (i) For all £,5> 0, (X,y) € K¢, UE(S,X,y) > —€AVy(S,2)|y —Y(s,2)|. In particular,
u*>0.
(ii) If in addition Assumption 511 holds, then

0< u(sXxy) <u(s,x,y) <o forall sxy>0.

Proof. Since (ii) is a direct consequence, we focus on (i). From bwiaus inequality® (s, x,y) <
v(s,x+Y), it follows thatué (s, x,y) > —£w(s, z &), so that the required result follows from the
bound [4.5) ow; together withw(-,0) = 0. m

We next show that the relaxed semi-limitsandu, depend on the paiix,y) only through
the aggregate variabfe= x+.

Lemma 6.2 Let Assumptioris 5.1 and .2 hold true. Thenand u. are functions ofs, z) only.
Moreover, for all sz > 0,

u.(sz)= liminf u®(s,Z —y(2),y(2)),

(,9,7)—(0,5.2)

and
u‘(sz)= limsup u®(s,Z-y(Z),y(2)).

(¢,9,7)—(0,5.2)

Proof. This result is a consequence of the gradient constraintserdynamic programming

equation[(Z.R),
No- (V. Vy) >0 and Aj; - (i, Vy) > 0 in the viscosity sense.
1. We change variables and use the above inequalities to obtain
(1+AM03(1—yy)) 0 > —AM0eNE,  (1+A%0e%,) 08 <A™, (6.1)

in the viscosity sense. Sine& is concave inx,y), the partial gradiente andvf, exist almost
everywhere. By the smoothness of the Merton optimal investratrategy, this implies that
the partial gradieniZ"also exists almost everywhere. Then, by the definitiouf pive conclude
that the partial gradientss "and u“g exist almost everywhere. In view of Conditidn (5.2) in

Assumptioi 5.2, we conclude frofn (6.1) and the fact that O that

Vi <AeNE (6.2)
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We now claim that

V2(sz§) < Vi(sxy)
= V(52— €) + £(UE(S,X—£,Y) + (S, X,y — €)) (6.3)

y(s.2) ~y(sz— e)l)_
£

We postpone the justification of this claim to the next stegh@mtinue with the proof. Then, it
follows from (6.2), [6.8) together with Assumptibnb.2 addH),

(52| < €A (vils2)+E(s2.8))
< A (s +VE(s2E)). (6.4)

+Ava(52) (1+1y2(s.2)| + €] +

Hence, 1 _
(01— ) (1) = ~ 30 < £ (wls2)+ ¥ (528))

By the local boundedness ¢t }¢, for any (s, x,y), there is an open neighborhood(sfx,y)
and a constar, both independent &f, such that the maps

t— Uu(s,x—t,y+t)+ €Kt and t— —uf(s,x—t,y+t)+eKt

are nondecreasing for @l> 0. Then, it follows from the definition of the relaxed sermiiis
thatu* andu, are independent of thg-variable.

2. We now prove[(613). Foe > 0 and(x,y),(Xx— &,y),(X,y— €) € K¢, we denote as usual
z=x+yandé = (y—y(s,2))/€. By the concavity of# in the pair(x,y) and the concavity of
the Merton functiorv in z that:

WEXY) S C(F(sxY) - ¥(sx-2y)
< %(v(s,z)—v(s,z—e))+%(v(s,z—e)—v£(s,x—£,y))

1
< Vy(s,iz—e)+ : (V(s,z—&) —VE(s,x—¢g,y)).
By the definition ofu?,
Vi(8.XY) < Vo(s.2— &) + (U (s x—&,y) + E2W(s.2— £, &)

whereé; := (y—y(s,z—¢€))/e =& +(y(s,2) —y(s,z— €)) /€. We use the bounf (4.6) an to
arrive at,

|y(57 Z) — y(S, Z— £)| )

VE(S,X,Y) < Vy(S,z2—€) + eUf (S, X—€,Y) +£3sz(s,z)(1+ ||+ -

By exactly the same argument, we also conclude that

|—8+y(S,Z)—y(S,Z—8)|)'

V (S,%,Y) < Vo(5,2—€) +-eUf(S, X,y — €) + 3y (s, z)(1+ |&]+ :

Then, using the bounds gr from Assumptiofi 512,

(s,z&) = 0V (sz—e&—y(s2),e& +Y(s2))
(1—-y2(5,2)Vi(5,%,Y) +Y2(S,2)% (s, X,Y)

< Vy(s,z—€) +e(UE(sX—€,Y) +U(S X,y —€))
N z2)—y(s,z—¢
+€3)‘V2(32)(1+|ﬁ(5,2)|+|E|+ y(s,2) z( )|)'
3. The final statement in the lemma follows from (6.4), the egpien of y* in (€3), and
Assumption 5.1. 0
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6.2 Viscosity sub-solution property

In this section, we prove

Proposition 6.1 Under Assumptioris 3.1 aid b.2, the functidrisia viscosity sub-solution of
the second corrector equatiqB.12)

Proof. Let (o, 20, ) € (0,0)? x C?(R2 ) be such that

0= (U~ ¢)(s0.20) > (U~ 9)(s.2) forall sz>0, (s2)#(s0,%). (6.5
Our objective in the following steps is to prove that
A §(s0,20) —a(s0,20) < 0. (6.6)

1. By the definition ofu* and Lemm&®&l2, there exists a sequefs€e) so that
(s°,7) = (s0,20) and W¥(s°,Z,0) — u*(sp,20), as €0,
where we used the notatidn (B.2). Then, it is clear that
2 =08(s,2,0) - ¢(s",7) =0 (6.7)
and
(XY = (Z —y(,2).y(, 7)) — (Xo.Y0) = (20— Y(%0. 20), (0, %))

Since (uf) is locally bounded from above (Assumptionls.1), thererare= ro(so,Xo,Yo) > 0
andégp := &(%,%o,Yo) > 0 so that

b, :=sup{u®(s,x,y) : (s.x,y) € Bo,e € (0,&]} <o, where Bp:=B,(s0.%0,Y0) (6.8)

is the open ball centered &b, Xo, o) with radiusrg. We may choosey < zp/2 so thatBy does
not intersect the line= 0. Forg, d € (0,1], set

§*0(s2,8) = V(s2)—eMi—e"p(s2) - (1+O)W(s2E) —°P° (s, 2.8),
where, following our standard notatidn (3.8}, is determined from the function,
¢°(sxy) = Cl(s—) "+ (x+y—2)" +(y-y(sx+y)",
andC > 0 is a large constant that is chosen so that for all suffigiesmtialle > 0O,
@ >14+b.—¢, on Bg\By with By := By >(S0,%0,Y0)- (6.9)

The constan€ chosen above may depend on many things including the testidarg, 5, 2o, 9,
but not one. The convergence @&, 7) to (s,2) determines how smadl should be for[(619)
to hold.

2. We first show that, for all sufficiently smadl > 0, & > 0, the differencevé — &), or
equivalently,

VE(S,X,Y) — WEO(s, X,
|E’6(S,X,y) - ( y) gg] ( y)

= —U(SXY)+0(S2) + 0+ ¢F(sxy)+e2dw(s,zE),
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has a local minimizer ifBy. Indeed, by the definition afé, W% and¢, (6.9), [6.8), and the
fact thatw > 0 that, for any(s,x,y) € 9By,

1E9(sx,y) > —US(SXY)+L5+1+b,+£20W(s2E) > 145 > 0,

for sufficiently smalle in view of (6.7). Sincd®9(s°,x¢,y¢) = 0, we conclude that? has a
local minimizer(§,%¢, §¢) in Bo with Z := X 4 §*, £¢ := (¢ —y(§°, %)) /¢ satisfying,

min (- §5%) = (F — §°%)(%,&) <0, |§ —so| + % —2| <ro, |&|<r1/e,

(s.z,&)eBy

for some constant. SinceVf is a viscosity super-solution of the dynamic programmingeeq
tion (2.2), we conclude that

(B\F—Jqf’é—ﬂ( 575))("9‘,%5,95) > 0, (6.10)
and
for (W2 u0) (X F) = (WE0- (1-ATYO) (€85 = 0,
b (U240 E ) = (W0 - (1-A0) (5 %) >

By a direct calculation using the boundednes$§)f2£,£§£), we rewrite the last gradient in-
equalities as follows,

£2(eE5)° + £3vy(&, Z) A0 — (1+ 0)Wp (8, 7,p%)] +0(6%) > 0, (6.11)
2(eE5)3 + (&, Z) A0+ (14 8)W, (&, 7,5°)] +0(3) > 0, (6.12)
wherep® := Ea/n(éf,ig).
3. Let po(s,2) be asin[[4R). In this step, we show that
1p%| < po(§°,Z) for all sufficiently small € € (0,1]. (6.13)

Indeed, assume thfafn < —po(&n, Zn) = py (&, Zn) for some sequenag € (0, 1] with &, — 0.
Then,w, (&, 7 pé) = —A%1, and it follows from inequality[(6.12), together with thecta
pE < pr (&, zgﬂ) g 0, that

0< 4e2(8né )% — £3v, (&, ZM)OA% + o(£3) < — &3V (8", )3 O - o(£:3).

Sinced > 0, this can not happen for large Similarly, if p& > po(§,7) for some sequence
& — 0, we havew, (§n, 7, pn) = A0, and it follows from inequality[{6.11), together with the
fact thatpé > po (&, Zn) > O that

0 < —42(£n& )3 + £3v,(80, 70) (= A L0) + o(£,3) < —£3v,(8, 1) OA0 4 o(£3),

which leads again to a contradiction for langecompleting the proof of (6.13).
4. Since(§,%) is bounded ands, z) — po(s,2) is continuous, we conclude frof (6]13) that
the sequencg€); is bounded. Hence, there exists a sequenee 0 so that

(50,20, &n) 1= (80,20 &%) —  (§2,&) = (0,20, )

for some.,f € R. The fact that the limit of(s,2,) is equal to(sy,z) follows from standard
arguments using the strict minimum property( 8, z) in (€.3). We now take the limit i (6.10)
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along the sequenag. Since the functiony?? has the form as in Remalrk 3.4, we do not repeat
the computations given in Sectioh 3 and, given the remaigstémate of sectidn 4.2, we directly
conclude that

0

IN

im £, 2(Bve — 2~ G () ) (30,70, &)

gn

2(10%)(2,20)8 4 2 (14 8)0 (0, 2t (9,20.8) ~ /B(50.2)  (6.19)

In the above, we also used the fact that all derivativegfofanish at the origin as tends to
zero.

5. In Step 3, we have proved thige| < po(z:). Hence || < (npo)(So,20). Sincew = nv,w,
a= nvza, the first corrector equation (3111) implies that

2(0%0) (0.20) 87+ 50%(50, %)W (50,20, 6).

We use the above identity i (6]14). The result is

a(s0,20) =

%(1+ 8)a? (S0, 20)We g (S0, 20, €)

= a5, ) + 550250, 2%)Weg (50,2, €).

db(s0,20) < %(azn)(So,Zo)32+

Finally, we letd go to zero. Howevelé = 35 depends o and care must be taken. But since

|&n] < (NPo)(Sh,zn), it follows thaté9 is uniformly bounded id. Hence the second term in the
above equation goes to zero withand we obtain the desired inequality (6.6). m

6.3 Viscosity super-solution property

In this section, we prove

Proposition 6.2 Let Assumptiods 5.0, 5.2, andb.4 hold true. Then, the fumatiis a viscosity
super-solution of the second corrector equat{@ri2)

As remarked earlier, the above result holds true withoufgsimption 5.4 as proved in our
forthcoming paper [31]. However, in this paper we utilizpiibvide a somehow shorter proof.
We first need the following consequence of Assumpfioh 5.4thacconvexity ofvé. Similar
arguments are also used in [36].

Lemma 6.3 Assume the hypothesis of Proposifiod 6.2.(kef) be an arbitrary element of K
Then,

(i) fory > y(s,z) (or equivalently > 0), we have\j ; - (Vg (s,X,Y), vy (s.xy)) >

(ii) fory < y(s.2) (or equivalentlyZ < 0), we have\f ,- (vE(s,x,Y), Vé(S.x,y)) >

Proof. Forze R, set
yi(s’ Z) = Sup{y: (Z_yay) € K€7 and /\8,1' ("i?vi)(saz_yay) = O}

In view of the form ofK,, we havey > —z/(£3A%1) and by convention the above supremum is
equal to this lower bound if the set is empty. By the concawfty®, we conclude that

=0forally <yé (s 2),
(Vng"i)(s’x’y){ >0forally >y (s2).
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Let /¢ be as in[(55). Therefore it is included in the $&,x,y) : y> Y4 (s,2)}. Since As-
sumptior 5.4 states that the Merton lifes, x,y) : y=y(s,2)} is included in.#"¢, we conclude
thaty(s,z) > y% (s,z). This proves the statement (i). The other assertion is preireilarly. M

Proof of Propositiof 6.RLet (So,20,¢) € (0,00)? x C?(R ) be such that

0= (U —$)(s0.) < (L. —9)(s2) forall $z>0, (32 #(0.%).  (6.15)

We proceed to prove that
A §(s0,20) — a(s0,20) = 0. (6.16)

1. By the definition ofu, and Lemm&G612, there exists a sequefgez®) so that
(§,7) — (s0,20) and W¥(s°,Z,0) — U(S0,20), as €0,
where we used the notatidn (B.2). Then, it is clear that
0 =0(,2,0)-¢(s,7) — 0

and
(E,¥°) = (Z —y(s",7),¥(s5, 7)) — (%0,Y0) = (20— Y(S0, 0),Y(50, %))

Sinceut (s, x,y) > —&w(s,z, &) > —£C(s,2)|y— y(s,2)|, for some continuous functid®, there
arerg :=ro(So, X0, Yo) > 0 andep := €y(, X0, Yo) > 0 so that

b*:= inf uf(sxy)> —o, where Bg:=By,(S0,Xo,Y0)-
(sx,y)€Bo

We also choosey sufficiently small so thaBy does not intersect the lire= 0. Fore € (0,1]
andod > 0, define

P80(s.2,&) :=V(s,2) — €205 — €29 (s,2) — *(1— )W(S, 2, &) + £29° (5,2, §),

where, following our notation conventiof (B.2), the functip? is obtained from the function
¢ defined by,

P (sxY) :=C[(s=5) + (x+y—2)" + (y—y(sx+¥))"]
and, similar to the proof of the super-solution propetty; 0 is a constant chosen so that,
—b*+ 0+ (¢ —9°)(sxy) <O on JBy. (6.17)
2. Set

|£,5(S’ Za E) = 672 (vf - wf,a) (57 Xa y)
—UE(S,XY) + 0(5,2) + 0 — 9°(S,X,y) — €25W(S,Z,€).

Sincew(s,z 0) = 0, we havd #9(s*,Z,0) = 0. On the other hand, it follows frori (6]17) that
189(5,2,8) < —b* + 05+ (¢ — ¢°) (s, x.y) — €20W(s,2) <O on dBy.
Then, the difference® — @52 has an interior maximize(§, #, 55) in Bo,

rggx(ve—wA*S) = (V* — M) (& %, ), and|& —so| +|% — 20| + €& <11, (6.18)
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for some constant. By the sub-solution property of, at(&, %, z),
min {Bv" — 2= — 0 (4®) Aja- (U Uy ), Ao (W%, g5 °)} <0 (6.19)
3. In this step, we show that for all sufficiently smalt> 0,
Noa (W2 U5 %) (8 %e.Ye) >0 and Afo- (U0, 4y °)(&,%.Ye) > 0. (6.20)
By Lemmd6.8B, it suffices to prove that

DOL:=Ag - (Y, u5 %) (§ %, Ye) >0 for & <O,

] 6.21
DO 1= A o (50, g 0)(§ %, Vi) >0 for >0, (6.21)

We directly compute that

WP = vy 20— 41— 8)(wy— ﬁwf) +46%C((2-Z)° —yaly—y)?).

‘-/-’;’6 = Vz—£2¢z—£4(1—5)( )+4£2C((Z z)° (1—)’2)()’—)’)3)-
Then, it follows from the estimateﬂB]lS) that

DO = £((1-g)we + A1) (8,7, £°) — 4Ce(68°)° + ()
D0 = £3(— (1-0)wg + A1) (&, # &%) +4Ce%(e£5)% +o(%).

Sincew solves[@1L)w; +A%v, > 0 and—w; + A1, > 0. Then,

DOL > 35, (&,¥) — 4Ce%(E%)3 +o(€)
> —£30v(&,Z) +o(ed) for £ <0,
and
D0 > 35, (&, %) +4Ce?(eE5)% + o(£9).
> £30vy(&,7)+o(e%) for € >0.

Sincev; > 0, (6.21) holds for all sufficiently smaél > 0.
4. In this step, we prove thd} is bounded ire € (0,1]. Indeed, in view of[(6.119) an@ (6.R0),

0 > (B -2y —0(y5?))(E % ¥e)

Y

_ g2 5 -
= [CE R e 1002 w2,
—MU(f,ze)Jr%’f(?,xe,Ve)], (6.22)

where we used the fact that the functigfi® is exactly as in the form assumed in RemarR 3.4.
Then, by the remainder estimate of secfiod 4.2, we dedute tha

|5 %, 9e)| <C(E,2) e+ el + £2E . (6.23)

In Sectior#, the functiow is explicitly constructed. Since is linear in& for large values of
&, there is a continuous functid(s, z) so that

0<wse(s,28) <C(sz), forall (sz&)eR? xR
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Then, sincé &, %) is uniformly bounded ire € (0, 1], there are constan&C > 0 so that,
0> %€ [ (1+eld| + &P

Hence(fg)g is also uniformly bounded i € (0,1] by a constant depending only on the test
functions.
5. Since(z;, &s )ec (0,1 is bounded, there exists a seque(&gn such that

10 and (zn.&n) = (2. &e) — (2.8) = (20.€) € (0,) xR,

where the fact that = z, follows from the strict maximum property ii (6]15) and claaé
arguments from the theory of viscosity solutions. We finalbyclude from[(6.22) and (6.23)
that

0 > —%(szzz)(So,zO)efz — /' $(s0,20) — 7 p(0) + %(1— 8)a*(so, 20)Wee (S0, 20, €)

= () 5(0%(80.20)E7 4 2 (1 5)a%(50,20) Wi (50,20, €),

since« @(0) = 0. Now, in view of the first corrector equatidn (3/11),

0 > —/P(s0,20) +a(s02) + 5 50°(50,20)Wee (50,20,

Finally, we conclude that/ ¢ (so,20) — a(S0,20) > 0, by sending to zero. m

7 Verifying Assumption

In this section, we verify Assumptiof (5.1). This is done lanstructing an appropriate sub-
solution of the dynamic programming equatién {2.2). Cleahis construction requires as-
sumptions and here we present only one possible set of aismsiplo simplify the presenta-
tion, we suppose that the coefficients are independent aftagiable. Next, we assume that
there exist constants9 k, < k* so that the limit Merton value function satisfies

0<kz<n(z<kz (7.1)
Let c be the optimal Merton consumption policy given adinl(2.6¢ &¥sume that
U(c(2)) > kezV(2), (7.2)

for some constark, > 0. Notice that all the above assumptions hold in the powdtyutiase.
First, using [5.B) and the explicit representatiorapbne may directly verify that there is a
constang* > 0 so that

a(z) < a‘zv(2).

Then, the definition of7 and the above assumptions imply that

V(z) =U(c(2)) > kezV(2) > ga(z) = g,szfu(z). (7.3)

In view of the comparison assumption, we conclude that

0<u(z) < — v(2). (7.4)

| %
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Moreover, since we assume that coefficients are indepentiivgs variable, [2.7) is equivalent
toy(z) = n(z)(u —r)/c? Hence,[[EB) implies that

—V'(2) <n(@ V" < -2V'(2). (7.5)

We now use these observations to construct a sub-solutitimodlynamic programming
equation of the form 3
VE(xY) 1= V(z) — Ke*v(2) + eW(z, ), (7.6)

with a sufficiently large constait > a*/k. and a slightly modified corrector,
W(z&) :=2V(2W(¢/2),

where the functionv(z) and the constara > 0 are the unique solution @f(0) = 0 and

2 a*k* 2~ - N -
max{_k*za p2_ | L ) Wpp +8; —2A%0 4, —2201 p}. (7.7)

The solution of the above equation is explicitly availalbieotgh the general solution obtained
earlier in Sectiof 4]1.

The fact that/¢ is a sub-solution of(2]2) follows from tedious but othemvifirect calcula-
tions. To streamline these calculations, we first state amate that follows from the explicit
form of W.

Lemma 7.1 There is a constant'k> 0 so that
2|Weg (2,6)| <k'V(2),
We(z.8)] <kv(z) (1+£),
2|80(z8)| + 2| W (2. &)| <k2v(2) (1 +12]),
2 ‘ayyv”\/(z,é) - “%}Z”zv“vgg(z,s)‘ <kz(z) (1+14]).

Proof. These estimates follow directly from straightforward eiffntiation and the estimates

(Z.2), @5). mw

Lemma 7.2 (Lower Bound) Assume{7.1), (Z.2) and (5:2). Then, for sufficiently large K 0,
V¢ defined in(Z.8)is a sub-solution ofZ:2)in R2. Moreover,

U (xy) < KV(2) + £2W(z,€)
onR?2 and Assumptio 5.1 holds.

Proof. We need to show that at any poifty) € R? one of the three terms ifi{2.2) is non-
positive. Sincex,y) € R2, by assumptior{512), we have

_ly-y@| _z -._ ¢ 1
fl="——FF=7 = ==Ze-[-11]

Let po > 0 be the threshold in the equatidn(7.7). We analyze sevasalcseparately.
Casel.pp<=<1/e.
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In this caseW (z. &) = 2420/ (z). We use the previous Lemma aid{5.2), to arrive at,
Ao (VEVE) = DUF+e2A20(1—y )V + A1V
= 83 [(1 _ 83/\ 1,0(1 _ y/))wf + (1 _ C€2)\/ —A 1,O£4WZ]
< MV (—1+ked) <o,
provided that is sufficiently small.

Case 2. —1/e <= < —py.
A similar calculation, shows thatg , - (V,Vy’) < 0, for all sufficiently smalk.

Case 3. |Z| < pp. We now use Remafk3.4 to conclude that

2\ /! 2
F(VE) = €2 [—“ ‘;(Z)EZJF a 2(Z>v"v&(z,a) _ va(z)+@£(z,f)} .

We first use[(71)[(512)[{2.7]. (7.3) and pet= & /z The result is
PR\

g2

2 k2
< [T o+ O () - k(7] ¢ 22 )

= &V (2n(z) [A-K(k.)?] + 2% (2,€).

If K is sufficiently large therK (k,)? is larger thara'and by [Z.1), the above estimate implies

that
I < -2 (2)+ %5 (,€).

We now estimate#¢ by recalling the results of subsectibnl4.2. We split thishiree terms
coming from the value function the correctoWV and from the utility function,

| B | == R + Roy+ R .

We estimate each one using Lemimd 7.1. Then,

Z

IN

K [eE(u -nNzv(2) + %2 (62=2+2¢=(y/2)) 2V (2)

IN

eKk*zV(2).
Also
Ry < [BW-1z((1- (y/2)) + €)Wk pz(e=+ (v/2) Wy

2
-T2 (24 (/) Wy~ Wee (1-y2)%/6?)

2 _ 2
% v”vgg(lgizyﬂ (6222 + 262 (y/2))

K*zV(2).

IN

Finally
# = 0()-0(v)
< U()-U(V[1-e’K+k'e¥) <o.
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Hence, there i&* so that.
|%¢| < ek*zV(2).

Hence ifK is sufficiently largeV¢ is a sub-solution of(2]2) for all smadl

Boundary y= 0.
Then, again by[{5]2), for all sufficiently small> 0,
- _yy@_-vy@@
—= 78 = —S < —pPo.

Hence, by the second case, and Lerimh 6.3
Nio- (Vi Vy)(%,0) S0=Afo- (%, W) (X0), Vx>0.

Boundary x= 0.
By a similar analysis, we can show that

/\Sl(v)favyg)(ovy) SO:/\Sl(VeXaV)g/)(Ovy)a vy>0

Then, onRi, V¢ is a sub-solution of(2]2) whilef is a solution. Also on the boundaryRﬁ
againV¢ is a sub-solution of an obliqgue Neumann condition &hds a super-solution. Then,
by comparison (or by a verification argument), we concludévwh> @ on Ri. This proves the
lower bound onué on the positive orthant. m

8 Homothetic case

In this short section, we consider the classical CRRA wtflinction
ctv

U(c):= 1y c>0, (8.1)

for somey > 0 with y = 1 corresponding to the logarithmic utility. Our objectigd® reproduce
the results of Janecek and Shrevel [22] by directly applyimgexplicit expansion result of
Theoreni6.11. Also these calculations show how one may usesuilts to obtain the asymptotic
formulae for problems with power utility that have expligiknown Merton value functions,
such as factor models.

In the context of the power utility (8.1), the Merton valuedtion is explicitly given by,

1 v

with the Merton constant

_ _ _r)2
M:B l'(yl )_%(I-;/ZO;) (1—vy).

Hence the risk tolerance function and the optimal strategie given by,

z H—r _
n(z = v y(z) = Vo2 Z:= Tz c(z2) =vwmz

In particular, sincey andc are linear inz, the comparison Assumptidn 5.3 is immediately

checked to hold true. Moreover, since the conditions ofiBef are satisfied in the present

context, it follows that Assumptiois%.1 holds true in ouwgo utility case, provied thaty €

(0,1). Finally, by Remark 11.3 in Shreve and Sorier! [36], the lasd@®n also implies the

validity of Assumptiod 5.4. We have then verified the follogi
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Lemma 8.1 Assumeriy € (0,1). Then, Assumptiods 5.0 b[2.]5.3 5.4 hold true in the
context of the power utility functio@.7).

Since the diffusion coefficiertt (z) = oy(z)[1 — y,(2)], it follows that
a=—==yomu(1- ).

The constants in the solution of the corrector equation aendy,

—> 1/3
o= <3i ()\1,0+/\o,1)> 7

402
_ o’(1-
a2 =n(@v @a- "5V odvea.
Since
@V(z) =U(c(2)) = 1TV(VMZ)1 Y =wnv(2),
the unique solutiomi(z) of the second corrector equation
o%(1—
ou@) =a@ = TV gdva
y
is given by
21—
u(z) = o=y Pyt V(2) = upZ Y,
2y
where

o 1= (i (1= 78)) /3 .
Finally, we summarize the expansion result in the following
Lemma 8.2 For the power utility function U ir{8.1),

VE(X,Y) = V(2) — £2upZt Y 4+ O(€%).

The width of the transaction region for the first correctiaquation2&y = 2 (z)po is given by

1/3
280 = <€(A°’1+A1’°>> (Tan (1~ 18))?".

The above formulae with"/ = 1 are exactly the same as equation (3.13) in Janecek andeShrev

22 .
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