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Limits of Reliable Communication with Low
Probability of Detection on AWGN Channels

Boulat A. Bash, Dennis Goeckel, Don Towsley

Abstract

We present a square root limit on the information rate with low probability of detection (LPD) over
additive white Gaussian noise (AWGN) channels. Specifically, if the transmitter has AWGN channels
to a receiver and a warden, both with non-zero noise power, weprove thato(

√
n) bits can be sent

from the transmitter to the receiver inn channel uses while lower-bounding the warden’s probability
of detection error by1− ǫ for any ǫ > 0. Moreover, in most practical scenarios, a lower bound on the
noise power on the warden’s channel to the transmitter is known andO(

√
n) bits can be covertly sent

in n channel uses. Conversely, attempting to transmit more thanO(
√
n) bits either results in detection

by the warden with probability one or a non-zero probabilityof decoding error asn → ∞.

I. INTRODUCTION

Securing information transmitted over wireless links is ofparamount concern for consumer,
industrial, and military applications. The taxonomy of network security classifies secure com-
munication into two distinct categories:low probability of intercept (LPI) communication and
low probability of detection (LPD) communication [1]. In recent years, the wireless networking
community has made tremendous strides in the former area, securing data transmitted in wireless
networks from interception by an untrusted eavesdropper using various encryption and key
exchange protocols. However, the latter area, LPD communication, which concerns the prevention
of transmissions from beingdetected in the first place, has been relatively underexplored.

Consider a node that tries to send data on a wireless channel to another node so that the
presence of this transmission is not detected by an eavesdropping third party. There are many
real-life scenarios where this is preferable to standard cryptographic security. Encrypted data
arouses suspicion, and even the most theoretically robust encryption can often be defeated by
a determined adversary using non-computational methods such as side-channel analysis. Thus,
the study of covert communications over LPD channels is extremely important.

We examine the fundamental limits of covert communication over wireless channels subject to
additive white Gaussian noise (AWGN). In our scenario, Alice communicates with Bob over an
AWGN channel, while passive eavesdropper Warden Willie attempts to detect her transmission.
The channel between Willie and Alice is also subject to AWGN and Willie is passive in that
he does not actively jam Alice’s channel. Alice sends low-power covert signals to Bob that
Willie attempts to classify as either noise on his channel from Alice or Alice’s signals to Bob.
If he detects covert communication, Willie can potentiallyshut the channel down or otherwise
punish Alice. If the noise on the channel between Willie and Alice has non-zero power, Alice
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can communicate with Bob while tolerating a certain probability of detection, which she can
drive down by transmitting with low enough power. Thus, Alice potentially transmits non-zero
mutual information across the covert channel to Bob inn uses of the channel.

Our problem is related to steganography, which considers hiding information by altering the
properties of fixed-size, finite-alphabet covertext objects (such as images or software binary code)
with imperfect steganography systems allowing some fixed probability of detection of hidden
information. The square root law of steganography in the passive warden environment states that
O(

√
n) symbols in the covertext of sizen may safely be modified to hide anO(

√
n logn)-bit

steganographic message [2, Ch. 13], where thelog n factor stems directly from the fact that
transmission to Bob is noiseless [2, Ch. 8]. In our scenario,Alice uses the noise on her channel
to Willie instead of the statistical properties of the covertext to hide information. However, having
to code against the noise on her channel to Bob allows onlyO(

√
n) bits to be covertly sent inn

uses of the LPD channel.1 The mathematics of statistical hypothesis testing yield a square root
law in both problems, but as answers to different questions due to the fundamental differences
in the communication channels. This relationship is discussed further at the end of Section III.

We state our main result that limits the capacity of the covert channel between Alice and Bob
using asymptotic notation wheref(n) = O(g(n)) denotes an asymptotically tight upper bound
on f(n) (i.e. there exist constantsm,n0 > 0 such that0 ≤ f(n) ≤ mg(n) for all n ≥ n0),
f(n) = o(g(n)) denotes an upper bound onf(n) that is not asymptotically tight (i.e. for any
constantm > 0, there exists constantn0 > 0 such that0 ≤ f(n) < mg(n) for all n ≥ n0),
andf(n) = ω(g(n)) denotes a lower bound onf(n) that is not asymptotically tight (i.e. for any
constantm > 0, there exists constantn0 > 0 such that0 ≤ mg(n) < f(n) for all n ≥ n0) [3,
Ch. 3.1]:

Theorem (Square root law). Suppose the channel between Alice and each of Bob and Willie
experiences additive white Gaussian noise (AWGN) with power σ2

b > 0 and σ2
w > 0, respectively,

where σ2
b and σ2

w are constants. Then, for any ǫ > 0 and unknown σ2
w, Alice can reliably send

o(
√
n) information bits to Bob in n channel uses while lower-bounding Willie’s probability of

detection error by 1 − ǫ. Moreover, if Alice can lower-bound σ2
w ≥ σ̂2

w, she can send O(
√
n)

bits in n channel uses while maintaining the same error bound. Conversely, if Alice attempts to
transmit ω(

√
n) bits in n channel uses, then, as n → ∞, either Willie detects her with arbitrary

low probability of error or Bob cannot decode her message reliably (i.e. with arbitrary low
probability of decoding error).

After introducing our system framework and hypothesis testing background in Section II,
we prove the achievability of the square root law in Section III. We then prove the converse
in Section IV. We discuss the mapping to the continuous-timechannel and the relationship to
previous work in Section V, and conclude in Section VI.

II. PREREQUISITES

A. System Framework

Alice and Bob construct a covert communications system, with all the details known to Willie
except for a secret key that is shared before communication.This follows “best practices” in
security system design as the security of our system dependsonly on the key [4]. Note that, if

1The capacity of anoiseless LPD channel between Alice and Bob would be infinite due to it being continuously-valued, and
a noiseless channel between Alice and Willie would precludethe existence of the LPD channel between Alice and Bob.
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information-theoreticsecrecy (LPI communication) was desired, a sufficiently long key trivially
provides such through the employment of a one-time pad [5], but this is not sufficient for LPD
communication.

We use the discrete-time AWGN channel model with real-valued symbols (and defer discussion
of the mapping to a continuous-time channel to Section V). Our formal system framework is
depicted in Figure 1. Alice transmits a vector ofn real-valued symbolsf = {fi}ni=1. Bob receives
vector yb = {y(b)i }ni=1 where y

(b)
i = fi + z

(b)
i with an independent and identically distributed

(i.i.d.) z
(b)
i ∼ N (0, σ2

b ). Willie observes vectoryw = {y(w)
i }ni=1 wherey

(w)
i = fi + z

(w)
i , with

i.i.d. z(w)
i ∼ N (0, σ2

w). Willie uses statistical hypothesis tests onyw to determine whether Alice
has communicated, which we discuss next.

secret

❄ ❄
Alice ✲f1, f2, . . . , fn r

❄♠ ✲ Willie

decidez(w)
1 , z

(w)
2 , . . . , z

(w)
n or

f1 + z
(w)
1 , f2 + z

(w)
2 , . . . , fn + z

(w)
n ?

✲z
(w)
i

z
(b)
i

♠
✻

✲ Bob
decodef1, f2, . . . , fn

Fig. 1. System framework: Alice and Bob share a secret beforethe transmission. Alice encodes information into a vector of real
symbolsf = {fi}

n
i=1 and transmits it on an AWGN channel to Bob, while Willie attempts to classify his vector of observations

of the channel from Aliceyw as either an AWGN vectorzw = {z
(w)
i }ni=1 or a vector{fi+z

(w)
i }ni=1 of transmissions corrupted

by AWGN.

B. Hypothesis Testing

Willie expects vectoryw of n channel readings to be consistent with his channel noise model.
He performs a statistical hypothesis test on this vector, with the null hypothesisH0 being that
Alice is not covertly communicating. In this case each sample is i.i.d. y(w)

i ∼ N (0, σ2
w). The

alternate hypothesisH1 is that Alice is transmitting, which corresponds to samplesy
(w)
i coming

from a different distribution. Willie can tolerate some false positives, or cases when his statistical
test incorrectly accuses Alice. This rejection ofH0 when it is true is known as the type I error
(or false alarm), and, following the standard nomenclature, we denote its probability byα [6].
Willie’s test may also miss Alice’s covert transmissions. Acceptance ofH0 when it is false is
known as the type II error (or missed detection), and we denote its probability byβ. The lower
bound on the sumα+ β characterizes the necessary trade-off between the false alarms and the
missed detections in the design of a hypothesis test.

III. A CHIEVABILITY OF SQUARE ROOT LAW

Willie’s objective is to determine whether Alice transmitted covert data given the vector
of observationsyw of his channel from Alice. Denote the probability distribution of Willie’s
channel observations when Alice does not transmit (i.e. when H0 is true) asP0, and the
probability distribution of the observations when Alice transmits (i.e. whenH1 is true) asP1. To
strengthen the achievability result, we assume that Alice’s channel input distribution, as well as
the distribution of AWGN on the channel between Alice and Willie are known to Willie. Then
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P0 andP1 are known to Willie, and he can construct an optimal statistical hypothesis test that
minimizes the sum of error probabilitiesα+ β [6, Ch. 13]. The following holds for such a test:

Fact 1 (Theorem 13.1.1 in [6]). For the optimal test,

α + β = 1− VT (P0,P1)

whereVT (P0,P1) is the total variation distance betweenP0 andP1 defined as follows:

Definition 1 (Total variation distance [6]). The total variation distancebetween two continuous
probability measures P0 and P1 is

VT (P0,P1) =
1

2
‖p0(x)− p1(x)‖1 (1)

where p0(x) and p1(x) are densities of P0 and P1, respectively, and ‖a− b‖1 is the L1 norm.

Since total variation lower-bounds the error of all hypothesis tests Willie can use, a clever
choice off allows Alice to limit Willie’s detector performance. Unfortunately, the total variation
metric is unwieldy for the products of probability measures, which are used in the analysis of
the vectors of observations. We thus use Pinsker’s Inequality:

Fact 2 (Pinsker’s Inequality (Lemma 11.6.1 in [7])).

1

2

(
∫ ∞

−∞
|p0(x)− p1(x)|dx

)2

≤ D(P0‖P1)

where relative entropyD(P0‖P1) is defined as follows:

Definition 2. The relative entropy(also known as Kullback-Leibler divergence) between two
probability measures P0 and P1 is:

D(P0‖P1) =

∫

X
p0(x) ln

p0(x)

p1(x)
dx (2)

where X is the support of p1(x).

If Pn is the distribution of a sequence{Xi}ni=1 where eachXi ∼ P is i.i.d., then:

Fact 3 (Relative Entropy Product). From the chain rule for relative entropy [7, Eq. (2.67)]:

D(Pn
0‖Pn

1 ) = nD(P0‖P1)

Relative entropy is related to hypothesis testing via the Chernoff-Stein Lemma [7, Ch. 11.8]
as an exponent in the expression forα given β and visa-versa, and can be used to analyze the
hypothesis test performance, as is commonly done by the steganography community [2], [8].
However, lower-boundingα + β has a natural signal processing interpretation via the receiver
operating characteristic (ROC) curve [9, Ch. 2.2.2], whichplots probability of detection1 − β
versusα. Since1−β ≥ α andα+β ≥ 1− ǫ, smallǫ implies that the ROC curve lies very close
to the line of no-discrimination (the diagonal line where1 − β = α) over the entire domain of
α becauseα+ ǫ ≥ 1− β ≥ α. We thus state the achievability theorem under an average power
constraint as follows:

Theorem 1.1(Achievability). Suppose Willie’s channel is subject to AWGN with average power
σ2
w > 0. Then Alice can maintain Willie’s sum of the probabilities of detection errors α+β ≥ 1−ǫ
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for any ǫ > 0 while reliably transmitting o(
√
n) bits to Bob over n uses of an AWGN channel

if σ2
w is unknown and O(

√
n) bits over n channel uses if she can lower-bound σ2

w ≥ σ̂2
w.

Proof: Construction: Alice’s channel encoder takes input in blocks of lengthM bits and
encodes them into codewords of lengthn at the rate ofR = M/n bits/symbol. We employ random
coding arguments and independently generate2nR codewords{c(Wk), k = 1, 2, . . . , 2nR} from
R

n for messages{Wk}2nR

k=1, each according topX(x) =
∏n

i=1 pX(xi), whereX ∼ N (0, Pf) and
Pf is defined later. The codebook is used only to send a single message and is the secret that is
not revealed to Willie, though he knows how it is constructed, including the value ofPf . The
length of this secret is discussed in the remark following the proof of Theorem 1.2.

The channel between Alice and Willie is corrupted by AWGN with powerσ2
w. Willie applies

statistical hypothesis testing on a vector ofn channel readingsyw to decide whether Alice
transmitted. Next we show how Alice can limit the performance of Willie’s methods.

Analysis: Consider the case when Alice transmits codewordc(Wk). Suppose that Willie
employs a detector that implements an optimal hypothesis test on hisn channel readings. His
null hypothesisH0 is that Alice did not transmit and he observed noise on his channel. His
alternate hypothesisH1 is that Alice transmitted and he observed Alice’s codeword corrupted
by noise. By Fact 1, the sum of the probabilities of Willie’s detector’s errors is expressed by
α+ β = 1−VT (P0,P1), where the total variation distance is between the distribution P0 of n
noise readings that Willie expects to observe under his nullhypothesis and the distributionP1

of the covert codeword transmitted by Alice corrupted by noise. Alice can lower-bound the sum
of the error probabilities by upper-bounding the total variation distance:VT (P0,P1) ≤ ǫ.

The realizations of noisez(w)
i in vectorzw are zero-mean i.i.d. Gaussian random variables with

varianceσ2
w, and, thus,P0 = Pn

w wherePw = N (0, σ2
w). Recall that Willie does not know the

codebook. Therefore, Willie’s probability distribution of the transmitted symbols is of zero-mean
i.i.d. Gaussian random variables with variancePf . Since noise is independent of the transmitted
symbols, when Alice transmits, Willie observes vectoryw, wherey(w)

i ∼ N (0, Pf + σ2
w) = Ps

is i.i.d. , and thus,P1 = Pn
s . By Facts 2 and 3:

VT (P
n
w,P

n
s ) ≤

√

1

2
D(Pn

w‖Pn
s ) =

√

n

2
D(Pw‖Ps)

The relative entropy follows as:

D(Pw‖Ps) =
1

2

[

ln

(

1 +
Pf

σ2
w

)

− Pf

Pf + σ2
w

]

While the expression forD(Pw‖Ps) has a closed form, its Taylor series expansion with respect
to Pf aroundPf = 0 is more useful. While the zeroth and first order terms are zero, the second
order term is:

P 2
f

2!
× ∂2D(Pw‖Ps)

∂P 2
f

∣

∣

∣

∣

∣

Pf=0

=
P 2
f

4σ4
w

Relative entropy being locally quadratic is well-known [10, Ch. 2.6]; in fact ∂
2D(Pw‖Ps)

∂P 2
f

∣

∣

∣

Pf=0
=

1
2σ4

w
is the Fisher information that an observation of noise carries about its power. Now, the third

order term is:
P 3
f

3!
× ∂3D(Pw‖Ps)

∂P 3
f

∣

∣

∣

∣

∣

Pf=0

= − P 3
f

3σ6
w

≤ 0
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If Pf < σ2
w, then the Taylor series converges and we can apply Taylor’s Theorem to upper-bound

relative entropy with the second order term. The upper boundwe seek is:

VT (P
n
w,P

n
s ) ≤ Pf

2σ2
w

√

n

2
(3)

Suppose Alice sets her average covert symbol powerPf ≤ cf(n)√
n

, wherec = 2ǫ
√
2. In most

practical scenarios Alice can lower-boundσ2
w ≥ σ̂2

w and setf(n) = σ̂2
w (a conservative lower

bound is the thermal noise power of the best receiver currently available). If σ2
w is unknown,

selectf(n) such thatf(n) = o(1) and f(n) = ω(1/
√
n) (the latter condition is used to bound

Bob’s decoding error probability). In either case, forn large enough,Pf < σ2
w satisfies the Taylor

series convergence criterion, and Alice obtains the upper boundVT (P
n
w,P

n
s ) ≤ ǫ, limiting the

performance of Willie’s detector.
Since Alice’s symbol powerPf is a decreasing function of the codeword lengthn, the standard

channel coding results for constant power (and constant rate) do not directly apply. Thus, we
examine the probabilityPe of Bob’s decoding error averaged over all possible codebooks. Let
Bob employ a maximum-likelihood (ML) decoder (i.e. minimumdistance) to process the received
vectoryb whenc(Wk) was sent. The decoder suffers an error eventEi(c(Wk)) whenyb is closer
to another codewordc(Wi), i 6= k. The decoding error probability, averaged over all codebooks,
is then:

Pe = Ec(Wk)

[

P
(

∪2nR

i=0,i 6=kEi(c(Wk))
)]

≤ Ec(Wk)





2nR
∑

i=0,i 6=k

P (Ei(c(Wk)))



 (4)

=

2nR
∑

i=0,i 6=k

Ec(Wk) [P (Ei(c(Wk)))] (5)

whereEX [·] denotes the expectation operator over random variableX and (4) follows from
the union bound. Letd = c(Wk) − c(Wi). Then‖d‖2 is the distance between two codewords,
where‖ ·‖2 is theL2 norm. Since codewords are independent and Gaussian,dj ∼ N (0, 2Pf) for
j = 1, 2, . . . , n and‖d‖22 = 2PfU , whereU ∼ χ2

n, with χ2
n denoting the chi-squared distribution

with n degrees of freedom. Therefore, by [11, Eq. (3.44)]:

Ec(Wk) [P (Ei(c(Wk)))] = EU

[

Q

(
√

PfU

2σ2
b

)]

whereQ(x) = 1√
2π

∫∞
x

e−t2/2dt. SinceQ(x) ≤ 1
2
e−x2/2 [12, Eq. (5)] andPf = cf(n)√

n
:

EU

[

Q

(
√

PfU

2σ2
b

)]

≤ EU

[

exp

(

−cf(n)U

4
√
nσ2

b

)]

=

∫ ∞

0

e
− cf(n)u

4
√

nσ2
b

−u
2 2−

n
2 u

n
2
−1

Γ(n/2)
du

= 2−n/2

(

1

2
+

cf(n)

4
√
nσ2

b

)−n/2

(6)
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where (6) is from the substitutionv = u
(

1
2
+ cf(n)

4
√
nσ2

b

)

and the definition of the Gamma function

Γ(n) =
∫∞
0

xn−1e−xdx. Since 1
2
+ cf(n)

4
√
nσ2

b
= 2

log2

(

1
2
+

cf(n)

4
√

nσ2
b

)

:

Ec(Wk) [P (Ei(c(Wk)))] ≤ 2
−n

2
log2

(

1+ cf(n)

2
√

nσ2
b

)

Hence, the summand in (5) does not depend oni, and (5) becomes:

Pe ≤ 2
nR−n

2
log2

(

1+ cf(n)

2
√

nσ2
b

)

(7)

Sincef(n) = ω(1/
√
n), if rateR = ρ

2
log2

(

1 + cf(n)

2
√
nσ2

b

)

for a constantρ < 1, asn increases, the
probability of Bob’s decoding error averaged over all codebooks decays exponentially to zero and

Bob obtainsnR =
√
nρ

2
log2

(

1 + cf(n)
2
√
nσ2

b

)

√
n

covert bits inn channel uses. SincenR ≤
√
nρcf(n)
4σ2

b ln 2
,

approaching equality asn gets large, Bob receiveso(
√
n) bits in n channel uses, andO(

√
n)

bits in n channel uses iff(n) = σ̂2
w.

Unlike Shannon’s coding theorem for AWGN channels [7, Theorem 9.1.1], we cannot select
a codebook that performs better than average, as that would violate the i.i.d. condition needed to
limit Willie’s detection ability. If such a codebook is desirable, the construction of Theorem 1.2
can be employed using the modification given by the remark following its proof. This construction
also satisfies both the peak and the average power constraints, as demonstrated below.

Theorem 1.2 (Achievability under a peak power constraint). Suppose Alice’s transmitter is
subject to the peak power constraint b and Willie’s channel is subject to AWGN with power
σ2
w > 0. Then Alice can maintain Willie’s sum of the probabilities of detection errors α+β ≥ 1−ǫ

for any ǫ > 0 while reliably transmitting o(
√
n) bits to Bob over n uses of an AWGN channel

if σ2
w is unknown and O(

√
n) bits in n channel uses if she can lower-bound σ2

w ≥ σ̂2
w.

Proof: Construction: Alice encodes the input in blocks of lengthM bits into codewords of
lengthn at the rateR = M/n bits/symbol with the symbols drawn from alphabet{−a, a}, where
a satisfies the peak power constrainta2 < b and is defined later. We independently generate
2nR codewords{c(Wk), k = 1, 2, . . . , 2nR} for messages{Wk} from {−a, a}n according to
pX(x) =

∏n
i=1 pX(xi), where pX(−a) = pX(a) = 1

2
. As in the proof of Theorem 1.1, this

single-use codebook is not revealed to Willie, though he knows how it is constructed, including
the value ofa. While here the entire codebook is secretly shared between Alice and Bob, in the
remark following the proof we discuss how to reduce the amount of shared secret information.

Analysis: When Alice transmits a covert symbol during theith symbol period, she transmits−a
or a equiprobably by construction and Willie observes the covert symbol corrupted by AWGN.
Therefore,Ps =

1
2
(N (−a, σ2

w) +N (a, σ2
w)), and, withPw = N (0, σ2

w), we have:

D(Pw‖Ps) =

∫ ∞

−∞

e
− x2

2σ2
w√

2πσw

ln
e
− x2

2σ2
w

1
2

(

e
− (x+a)2

2σ2
w + e

− (x−a)2

2σ2
w

)dx

There is no closed-form expression forD(Pw‖Ps), but it can be expanded using the Taylor
series with respect toa arounda = 0. While the zeroth through third order terms are zero, the
fourth order term is:

a4

4!
× ∂4D(Pw‖Ps)

∂a4

∣

∣

∣

∣

a=0

=
a4

4σ4
w
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While the fifth order term is zero, for the sixth order term we obtain:

a6

6!
× ∂6D(Pw‖Ps)

∂a6

∣

∣

∣

∣

a=0

= − a6

3σ6
w

< 0

If a < σw, then the Taylor series converges and we can apply Taylor’s Theorem and upper-bound
relative entropy with the fourth order term. The upper boundwe seek is:

VT (P
n
w,P

n
s ) ≤ a2

2σ2
w

√

n

2
(8)

Since the power of Alice’s covert symbol isa2 = Pf , (8) is identical to (3) and Alice setsa2 ≤
cf(n)√

n
, wherec andf(n) are defined as in Theorem 1.1. Then, forn large enough,a < σw satisfies

the Taylor series convergence criterion, and Alice obtainsthe upper boundVT (P
n
w,P

n
s ) ≤ ǫ,

limiting the performance of Willie’s detector.
As in Theorem 1.1, we cannot directly apply the standard constant-power channel coding

results to our system where the symbol power is a decreasing function of the codeword length.
We upper-bound Bob’s decoding error probability by analyzing a suboptimal decoding scheme.
Suppose Bob uses a hard-decision device on each received covert symboly(b)i = fi+z

(b)
i via the

rule f̂i =
{

a if y
(b)
i ≥ 0;−a otherwise

}

, and applies an ML decoder on its output. The effective
channel for the encoder/decoder pair is a binary symmetric channel with cross-over probability
pe = Q(a/σb) and the probability of the decoding error averaged over all possible codebooks is
Pe ≤ 2nR−n(1−H(pe)) [13], whereH(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy
function. We expand the analysis in [14, Section I.2.1] to characterize the rateR. The Taylor

series ofe−t2/2 alternates, and the Taylor series expansion ofpe = Q
(

a
σb

)

= 1
2
−
∫

a
σb
0

e−t2/2
√
2π

dt with
respect toa arounda = 0 (which converges sincea is small for largen) yields an upper bound:
pe ≤ 1

2
− 1√

2π

(

a
σb

− a3

6σ3
b

)

, p
(UB)
e . SinceH(p) is a monotonically increasing function on the

interval
[

0, 1
2

]

, H(pe) ≤ H(p
(UB)
e ). The odd terms of the Taylor series expansion ofH(p

(UB)
e )

with respect toa arounda = 0 are zero, and, thus,H(p
(UB)
e ) = 1 − a2

σ2
bπ ln 2

+ O(a4). Since

a2 = cf(n)√
n

, Pe ≤ 2
nR−

√
ncf(n)

σ2
b
π ln 2

+O(1)
. Sincef(n) = ω(1/

√
n), if rate R = ρcf(n)√

nσ2
bπ ln 2

bits/symbol
for a constantρ < 1, the probability of Bob’s decoding error averaged over all codebooks decays
exponentially to zero asn increases and Bob obtainsnR = o(

√
n) bits in n channel uses, and

O(
√
n) bits in n channel uses iff(n) = σ̂2

w.

Remarks

Employing the best codebook: Following the standard argument [7, p. 204], there must be
at least one codebook that performs at least as well as the average. Consider this “best” binary
codebook, but now assume that it is public (i.e. known to Willie). Theorem 1.2 shows that
Alice can use it to transmitO(

√
n) bits to Bob inn channel uses with exponentially-decaying

probability of error. However, since the codebook is public, Willie can use it to detect Alice’s
transmissions by performing the same decoding as Bob.

Now, suppose that, prior to communication, Alice and Bob generate and share binary vector
k where pK(k) =

∏n
i=1 pK(ki) with pK(0) = pK(1) = 1

2
. Alice XORs k and the binary

representation of the codewordc(Wk), resulting in an equiprobable transmission of−a and
a when Alice transmits a covert symbol during theith symbol period. Providedk is never re-
used and is kept secret from Willie, the i.i.d. assumption for the vectoryw in Theorem 1.2 holds
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without the need to exchange an entire secret codebook between Alice and Bob. Bob decodes
by XORing k with the output of the hard-decision device prior to applying the ML decoder.

While the square root law implies that the shared secret hereis quadratic in the length
M = O(

√
n) of a message, we can construct a coding scheme that, on average, requires an

O(
√
n logn)-bit secret in two stages. First, Alice and Bob randomly select the symbol periods

that they will use for their transmission by flipping a biasedcoin n times and selecting theith

symbol period with probabilityτ . Denote the number of selected symbol periods byη and note
that E [η] = τn. Alice and Bob then use the best public binary codebook with codewords of
length η on these selectedη symbol periods. They also generate and share a random binary
vectork wherepK(k) =

∏η
i=1 pK(ki) with pK(0) = pK(1) =

1
2
. Alice XORsk and the binary

representation of the codewordc(Wk). The symbol location selection is independent of both the
symbol and the channel noise. When Alice is transmitting a codeword, the distribution of each
of Willie’s observations isPs = (1− τ)N (0, σ2

w) +
τ
2
(N (−a, σ2

w) +N (a, σ2
w)) and, thus,

D(Pw‖Ps) =

∫ ∞

−∞

e
− x2

2σ2
w√

2πσw

ln
e
− x2

2σ2
w /
√

2πσ2
w

(1−τ)e
− x2

2σ2
w√

2πσw
+ τ

2

(

e
−

(x+a)2

2σ2
w√

2πσ2
w

+ e
−

(x−a)2

2σ2
w√

2πσ2
w

)dx

There is no closed-form expression forD(Pw‖Ps), but a Taylor series expansion with respect
to a arounda = 0 yields the following bound:

VT (P
n
w,P

n
s ) ≤ τa2

2σ2
w

√

n

2
(9)

The only difference in (9) from (8) isτ in the numerator. Thus, if Alice sets the product
τa2 ≤ cf(n)√

n
, with c and f(n) as previously defined, she limits the performance of Willie’s

detector. This product is the average symbol power used by Alice. Now let’s fixa and, thus, set
τ = O(1/

√
n). Since, on average,τn symbol periods are selected, it takes (again, on average)

O(
√
n) positive integers to enumerate the selected symbols. Therearen total symbols, and, thus,

it takes at mostlog(n) bits to represent each selected symbol location andO(
√
n log n) bits to

represent all the locations of selected symbols. Also, the average length of keyk is O(
√
n) bits.

Thus, on average, Alice and Bob need to exchangeO(
√
n log n) bits under this coding scheme.

The possibility of LPD communication with a key linear to themessage length and a detailed
consideration of the key length in general is an open problemthat we defer to the future work.

Relationship with Square Root Law in Steganography: The LPD communication problem is
related to the problem of steganography. A comprehensive review of steganography is available
in a book by Fridrich [2]. In finite-alphabet imperfect steganographic systems at mostO(

√
n)

symbols in the original covertext of lengthn may safely be modified to hide a steganographic
message of lengthO(

√
n logn) bits [2, Ch. 13] [15]. This result was extended to Markov

covertext [16] and was shown to either require a key linear tothe length of the message [17] or
encryption of the message prior to embedding [18].

The square root law in steganography has the same form as our square root law because both
laws follow from the relative entropy being locally quadratic [10, Ch. 2.6]:

D(P0‖P1) =
δ2

2
J (θ) +O(δ3)

whereJ (θ) =
∫

X
(

∂
∂θ

ln f(x; θ)
)2

f(x; θ)dx is the Fisher information associated with parameter
θ, andP0 andP1 are probability measures with density functions from the same family over
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the supportX , but with parameters differing byδ: p0(x) = f(x; θ) and p1(x) = f(x; θ + δ).
Fisher information is thus used as a metric for steganographic security [19], [20].

In a typical steganography scenario with a passive warden, coding techniques similar to
Hamming codes allow embedding oflog(n) bits per changed symbol [2, Ch. 8], which make
hidingO(

√
n log n) bits inn symbols possible. However, due to the noise on the channel between

Alice and Bob, and the resultant need for error correction, the LPD channel only allowsO(
√
n)

bits to be transmitted inn channel uses, as we prove in the following section.

IV. CONVERSE

Here, as in the proof of achievability, the channel between Alice and Bob is subject to AWGN
of powerσ2

b . Alice’s objective is to covertly transmit a messageWk that isM = ω(
√
n) bits

long to Bob inn channel uses with arbitrarily small probability of decoding error asn gets large.
Alice encodes each messageWk arbitrarily into n symbols at the rateR = M/n symbols/bit.
For an upper bound on the reduction in entropy, the messages are chosen equiprobably.

Willie observes alln of Alice’s channel uses. To strengthen the converse, he is oblivious to
her signal properties. Nevertheless, even with Willie’s knowledge limited, Alice cannot transmit
a message withω(

√
n) bits of information inn channel uses without either being detected by

Willie or having Bob suffer a non-zero decoding error.

Theorem 2. If over n channel uses, Alice attempts to transmit a covert message to Bob that is
ω(

√
n) bits long, then, as n → ∞, either Willie can detect her with arbitrarily low sum of error

probabilities α+ β, or Bob cannot decode with arbitrarily low probability of error.

Proof: Suppose Alice employs an arbitrary codebook{c(Wk), k = 1, 2, . . . , 2nR}. To detect
Alice’s covert transmissions, Willie performs the following hypothesis test:

H0 : y
(w)
i = z

(w)
i , i = 1, . . . , n

H1 : y
(w)
i = fi + z

(w)
i , i = 1, . . . , n

Rejection ofH0 means that Alice is covertly communicating with Bob. First,we show how
Willie can bound the errorsα andβ of this test as a function of Alice’s signal parameters. Then
we show that if Alice’s codebook prevents Willie’s test fromdetecting her, Bob cannot decode
her transmissions without error.

To perform the test, Willie collects a row vector ofn independent readingsyw from his
channel to Alice and generates the test statisticS = ywyT

w

n
wherexT denotes transpose of vector

x. Under the null hypothesisH0 Alice does not transmit and Willie reads AWGN on his channel.
Thus,y(w)

i ∼ N (0, σ2
w), and the mean and the variance ofS whenH0 is true are:

E [S] = σ2
w (10)

Var [S] =
2σ4

w

n
(11)

Suppose Alice transmits codewordc(Wk) = {f (k)
i }ni=1. Then Willie’s vector of observations

yw,k = {y(w,k)
i }ni=1 contains readings of mean-shifted noisey(w,k)

i ∼ N (f
(k)
i , σ2

w). The mean

of each squared observation isE [y2i ] = σ2
w +

(

f
(k)
i

)2

and the variance isVar [y2i ] = E [y4i ] −
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(E [y2i ])
2
= 4

(

f
(k)
i

)2

σ2
w + 2σ4

w. Denote the average symbol power of codewordc(Wk) by

Pk =
c(Wk)c

T (Wk)
n

. Then the mean and variance ofS when Alice transmits codewordc(Wk) are:

E [S] = σ2
w + Pk (12)

Var [S] =
4Pkσ

2
w + 2σ4

w

n
(13)

The variance of Willie’s test statistic (13) is computed by adding the variances conditioned on
c(Wk) of the squared individual observationsVar [y2i ] (and dividing byn2) since the noise on
the individual observations is independent.

The probability distribution for the vector of Willie’s observations depends on which hypoth-
esis is true. DenoteP0 as the distribution whenH0 holds, andP(k)

1 whenH1 holds with Alice
transmitting messageWk. While P

(k)
1 is conditioned on Alice’s codeword, we show that the

average symbol powerPk =
c(Wk)c

T (Wk)
n

of the codewordc(Wk) determines its detectability by
this detector, and that our result applies to all codewords with power of the same order.

If H0 is true, thenS should be close to (10). Willie picks some thresholdt and compares the
value ofS to σ2

w + t. He acceptsH0 if S < σ2
w + t and rejects it otherwise. Suppose that he

desires false positive probabilityα∗, which is the probability thatS ≥ σ2
w + t whenH0 is true.

We bound it using (10) and (11) with Chebyshev’s Inequality [7, Eq. (3.32)]:

α = P0

(

S ≥ σ2
w + t

)

≤ P0

(

|S − σ2
w| ≥ t

)

≤ 2σ4
w

nt2

Thus, to obtainα∗, Willie setst = d√
n
, whered =

√
2σ2

w√
α∗ is a constant. Asn increases,t decreases,

which is consistent with Willie gaining greater confidence with more observations.
Suppose Alice transmits codewordc(Wk). Then the probability of a missβ(k) given t is the

probability thatS < σ2
w + t, which we bound using (12) and (13) with Chebyshev’s Inequality:

β(k) = P
(k)
1

(

S < σ2
w + t

)

≤ P
(k)
1

(
∣

∣S − σ2
w − Pk

∣

∣ ≥ Pk − t
)

≤ 4Pkσ
2
w + 2σ4

w

(
√
nPk − d)2

(14)

If Pk = ω(1/
√
n), limn→∞ β(k) = 0. Thus, with enough observations, Willie can detect with ar-

bitrarily low error probability Alice’s codewords with average symbol powerPk =
c(Wk)c

T (Wk)
n

=
ω(1/

√
n). Note that Willie’s detector is oblivious to any details of Alice’s codebook construction.

By (14), if Alice desires to lower-bound the sum of the probabilities of error of Willie’s
statistical test byα+β ≥ ζ > 0, her codebook must contain low-power codewords; in particular,
a fractionγ > 0 of the codewords must have symbol powerPU = O(1/

√
n). Let’s denote this

set of codewords asU and examine the probability of Bob’s decoding errorPe. The probability
that a message from setU is sent isP (U) = γ, as all messages are equiprobable. We bound
Pe = Pe (U)P (U) + Pe

(

U
)

P
(

U
)

≥ γPe (U), whereU is the complement ofU andPe (U)
is the probability of decoding error when a message fromU is sent:

Pe (U) =
1

|U|
∑

W∈U
Pe (c(W ) sent) (15)
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wherePe (c(W ) sent) is the probability of error when codewordc(W ) is transmitted,|·| denotes
the set cardinality operator, and (15) holds because all messages are equiprobable.

When Bob uses the optimal decoder,Pe (c(W ) sent) is the probability that Bob decodes the
received signal aŝW 6= W . This is the probability of a union of eventsEj , whereEj is the
event that sent messageW is decoded as some other messageWj 6= W :

Pe (c(W ) sent) = P
(

∪2nR

j=1,Wj 6=WEj

)

≥ P
(

∪Wj∈U\{W}Ej

)

, P(U)
e (16)

where the inequality in (16) is due to the observation that the sets in the second union are
contained in the first. From the decoder perspective, this isdue to the decrease in the decoding
error probability if Bob knew that the message came fromU (reducing the set of messages on
which the decoder can err).

Our analysis ofP(U)
e uses Cover’s simplification of Fano’s inequality similar tothe proof of

the converse to the coding theorem for Gaussian channels in [7, Ch. 9.2]. Since we are interested
in P

(U)
e , we do not absorb it intoǫn as done in (9.37) of [7]. Rather, we explicitly use:

H(W |Ŵ ) ≤ 1 + (log2 |U|)P(U)
e (17)

whereH(W |Ŵ ) denotes the entropy of messageW conditioned on Bob’s decodinĝW of W .
Noting that the size of the setU from which the messages are drawn isγ2nR and that, since

each message is equiprobable, the entropy of a messageW from U is H(W ) = log2 |U| =
log2 γ + nR, we utilize (17) and carry out steps (9.38)–(9.53) in [7] to obtain:

P(U)
e ≥ 1− PU/2σ

2
b + 1/n

log2 γ
n

+R
(18)

Since Alice transmitsω(
√
n) bits in n channel uses, her rate isR = ω(1/

√
n) bits/symbol.

However,PU = O(1/
√
n), and, asn → ∞, P(U)

e is bounded away from zero. Sinceγ > 0, Pe

is bounded away from zero if Alice tries to beat Willie’s simple hypothesis test.

Goodput of Alice’s Communication

Define the goodputG(n) of Alice’s communication as the average number of bits that Bob
can receive from Alice overn channel uses with non-zero probability of a message being
undetected asn → ∞. Since onlyU contains such messages, by (18), the probability of her
message being successfully decoded by Bob isP

(U)
s = 1−P

(U)
e = O

(

1√
nR

)

and the goodput is

G(n) = γP
(U)
s Rn = O(

√
n). Thus, Alice cannot break the square root law using an arbitrarily

high transmission rate and retransmissions while keeping the power below Willie’s detection
threshold.

V. D ISCUSSION

A. Mapping to Continuous-time Channel

We employ a discrete-time model throughout the paper. However, whereas this is a common
assumption made without loss of generality in standard communication theory, it is important to
consider whether some aspect of the LPD problem has been missed by starting in discrete-time.



13

Consider the standard communication system model, where Alice’s (baseband) continuous-
time waveform would be given in terms of her discrete-time transmitted sequence by:

x(t) =
n
∑

i=1

fi p(t− iTs)

whereTs is the symbol period andp(·) is the pulse shaping waveform. Consider a (baseband)
system bandwidth constraint ofW Hz. Now, if Alice choosesp(·) ideally assinc(2Wt), where
sinc(x) = sin(πx)

πx
, then the natural choice ofTs = 1/2W results in no intersymbol interference

(ISI). From the Nyquist sampling criterion, both Willie (and Bob) can extract all of the infor-
mation from the signaling band by sampling at a rate of2W samples/second, which then leads
directly to the discrete-time model of Section II and suits our demonstration of the fundamental
limits to Alice’s covert channel capabilities. However, when p(·) is chosen in a more practical
fashion, for example, as a raised cosine pulse with some excess bandwidth, then sampling at a
rate higher than2W has utility for signal detection even if the Nyquist ISI criterion is satisfied.
In particular, techniques involving cyclostationary detection are now applicable, and we consider
such a scenario a promising area for future work.

B. Relationship to Previous Work

The relationship of our work to steganography has already been discussed in the remark at
the end of Section III. Here we relate our problem to other work in communication.

The LPD communication problem is related to that of establishing a cognitive radio (CR)
network [21]. An aspect of the CR problem is limiting the interference from the secondary
users’ radios to the primary users of the network. The LPD problem with a passive warden can
be cast within this framework by having primary users only listen [22]. However, the properties
of the secondary signal that allow smooth operation of the primary network are very different
from those of an undetectable signal. While there is a lot of work on the former topic, we are
not aware of work by the CR community on the latter issue.

Analytical evaluation of LPD communication has been sparse. Hero studies LPI/LPD channels
[1] in a multiple-input multiple-output (MIMO) setting. However, he focuses on the constraints
(s.t. power, fourth moment, etc.) that the LPD communication over a MIMO channel should
enforce given the kind of information the adversary possesses and on the signaling methods that
maximize the throughput of the channel given those constraints. While he recognizes that an
LPD communication system is constrained by average power, he does not analyze the constraint
asymptotically and, thus, does not obtain the square root law. It is notable that the LPI portion
of his work has drawn significant attention, while the LPD portion has been largely overlooked.

VI. CONCLUSION

Practitioners have always known that LPD communication requires one to use low power in
order to blend in with the noise on the eavesdropping warden’s channel. However, the specific
requirements for achieving LPD communication and resulting achievable performance have not
been analyzed prior to this work. We quantified the conditions for existence and maintenance
of an LPD channel by proving that the LPD communication is subject to a square root law in
that the number of bits that can be covertly transmitted inn channel uses isO(

√
n).

There are a number of avenues for future research. The key efficiency and, specifically, LPD
communication with a key linear in message length is an open theoretical research problem.
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Practical network settings and the implications of the square root law on the covert transmission
of packets under additional constraints such as delay should be analyzed. The impact of dy-
namism in the network should also be examined, as well as morerealistic scenarios that include
channel artifacts such as fading and interference from other nodes. One may be able to improve
LPD communication by employing nodes that perform friendlyjamming. Eventually, we would
like to answer this fundamental question: is it possible to establish and maintain a “shadow”
wireless network in the presence of both active and passive wardens?
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