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Limits of Reliable Communication with Low
Probabllity of Detection on AWGN Channels

Boulat A. Bash, Dennis Goeckel, Don Towsley

Abstract

We present a square root limit on the information rate with fisobability of detection (LPD) over
additive white Gaussian noise (AWGN) channels. Specific#ilthe transmitter has AWGN channels
to a receiver and a warden, both with non-zero noise powerpnwee thato(,/n) bits can be sent
from the transmitter to the receiver i channel uses while lower-bounding the warden’s probabilit
of detection error byl — € for any e > 0. Moreover, in most practical scenarios, a lower bound on the
noise power on the warden’s channel to the transmitter isvknand O(,/n) bits can be covertly sent
in n channel uses. Conversely, attempting to transmit more ¢h@yin) bits either results in detection
by the warden with probability one or a non-zero probabitifydecoding error ag — oc.

I. INTRODUCTION

Securing information transmitted over wireless links ispafamount concern for consumer,
industrial, and military applications. The taxonomy ofwetk security classifies secure com-
munication into two distinct categoriekw probability of intercept (LPI) communication and
low probability of detection (LPD) communication[[1]. In recent years, the wireless rmeking
community has made tremendous strides in the former arearisg data transmitted in wireless
networks from interception by an untrusted eavesdroppeargugarious encryption and key
exchange protocols. However, the latter area, LPD commatinit, which concerns the prevention
of transmissions from beindetected in the first place, has been relatively underexplored.

Consider a node that tries to send data on a wireless chamraidther node so that the
presence of this transmission is not detected by an eavesdropping tharty. There are many
real-life scenarios where this is preferable to standaybtographic security. Encrypted data
arouses suspicion, and even the most theoretically rolmesygtion can often be defeated by
a determined adversary using non-computational methods as side-channel analysis. Thus,
the study of covert communications over LPD channels iseexély important.

We examine the fundamental limits of covert communicatieeravireless channels subject to
additive white Gaussian noise (AWGN). In our scenario, dlaommunicates with Bob over an
AWGN channel, while passive eavesdropper Warden Willienagits to detect her transmission.
The channel between Willie and Alice is also subject to AWGN &Villie is passive in that
he does not actively jam Alice’s channel. Alice sends lowwpo covert signals to Bob that
Willie attempts to classify as either noise on his channenfrAlice or Alice’s signals to Bob.
If he detects covert communication, Willie can potentiahut the channel down or otherwise
punish Alice. If the noise on the channel between Willie arlité\has non-zero power, Alice
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can communicate with Bob while tolerating a certain proligbof detection, which she can
drive down by transmitting with low enough power. Thus, Alipotentially transmits non-zero
mutual information across the covert channel to Bolminses of the channel.

Our problem is related to steganography, which considetsdiinformation by altering the
properties of fixed-size, finite-alphabet covertext olgéstich as images or software binary code)
with imperfect steganography systems allowing some fixexbaiility of detection of hidden
information. The square root law of steganography in thesigasvarden environment states that
O(y/n) symbols in the covertext of size may safely be modified to hide af(/nlogn)-bit
steganographic messade [2, Ch. 13], whereltle: factor stems directly from the fact that
transmission to Bob is noiseless [2, Ch. 8]. In our scenaiice uses the noise on her channel
to Willie instead of the statistical properties of the cdegt to hide information. However, having
to code against the noise on her channel to Bob allows Gxilyn) bits to be covertly sent in
uses of the LPD channThe mathematics of statistical hypothesis testing yield@age root
law in both problems, but as answers to different questiaresstd the fundamental differences
in the communication channels. This relationship is disedsfurther at the end of Sectionl lll.

We state our main result that limits the capacity of the cogkannel between Alice and Bob
using asymptotic notation whergn) = O(g(n)) denotes an asymptotically tight upper bound
on f(n) (i.e. there exist constants,n, > 0 such that0 < f(n) < mg(n) for all n > ny),
f(n) = o(g(n)) denotes an upper bound ¢giin) that is not asymptotically tight (i.e. for any
constantm > 0, there exists constant, > 0 such that0 < f(n) < mg(n) for all n > ny),
and f(n) = w(g(n)) denotes a lower bound of{n) that is not asymptotically tight (i.e. for any
constantn > 0, there exists constamt, > 0 such thatd < mg(n) < f(n) for all n > ny) [3|
Ch. 3.1]:

Theorem (Square root law) Suppose the channel between Alice and each of Bob and Willie
experiences additive white Gaussian noise (AWGN) with power o7 > 0 and o2 > 0, respectively,
where o7 and o2 are constants. Then, for any ¢ > 0 and unknown o2, Alice can reliably send
o(y/n) information bits to Bob in n channel uses while lower-bounding WIlie's probability of
detection error by 1 — . Moreover, if Alice can lower-bound 02 > 62, she can send O(y/n)
bits in n channel uses while maintaining the same error bound. Conversely, if Alice attempts to
transmit w(+/n) bitsin n channel uses, then, as n — oo, either Wilie detects her with arbitrary
low probability of error or Bob cannot decode her message reliably (i.e. with arbitrary low
probability of decoding error).

After introducing our system framework and hypothesisingsbackground in Sectionlll,
we prove the achievability of the square root law in SectibhWe then prove the converse
in Section[1V. We discuss the mapping to the continuous-tiim@nnel and the relationship to
previous work in Sectiof VvV, and conclude in Section VI.

Il. PREREQUISITES
A. System Framework

Alice and Bob construct a covert communications systenth alitthe details known to Willie
except for a secret key that is shared before communicatibis. follows “best practices” in
security system design as the security of our system depamgon the keyl[4]. Note that, if

The capacity of aoiseless LPD channel between Alice and Bob would be infinite due to inpeontinuously-valued, and
a noiseless channel between Alice and Willie would preclindeexistence of the LPD channel between Alice and Bob.



information-theoreticsecrecy (LPI communication) was desired, a sufficiently long keyigily
provides such through the employment of a one-time pad [&]tHis is not sufficient for LPD
communication.

We use the discrete-time AWGN channel model with real-vé@kyanmbols (and defer discussion
of the mapping to a continuous-time channel to Sediion V) fotmal system framework is
depicted in Figuréll. Alice transmits a vectorofeal-valued symbolf = { f;}!" ,. Bob receives
vector yb = {yi(b A wherey = fi + zi(b) with an independent and identically distributed
(iid) 2" ~ J\/(O,ab). Willie observes vectoy,, = {y\’}", wherey™ = f; + z\*), with
ii.d. z( 2) ~ N(0,02). Willie uses statistical hypothesis tests pp to determine whether Alice
has communicated, which we discuss next.
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Fig. 1. System framework: Alice and Bob share a secret befaréransmission. Alice encodes information into a vecfaeal
symbolsf = {f;};—; and transmits it on an AWGN channel to Bob, while Willie atfmto classify his vector of observations
of the channel from Alicey., as either an AWGN vectat,, = {z§’w)};;1 or a vector{ f; +sz)}7:1 of transmissions corrupted
by AWGN.

B. Hypothesis Testing

Willie expects vectow,, of n channel readings to be consistent with his channel noiseemod
He performs a statistical hypothesis test on this vectaih wie null hypothesigi, being that
Alice is not covertly communicating. In this case each saripli.i.d.yi(w) ~ N(0,02). The
alternate hypothesi#; is that Alice is transmitting, which corresponds to sam@,{lié“é coming
from a different distribution. Willie can tolerate somedalpositives, or cases when his statistical
test incorrectly accuses Alice. This rejection /&§ when it is true is known as the type | error
(or false alarm), and, following the standard nomenclature denote its probability by [6].
Willie’s test may also miss Alice’s covert transmissionscAptance off/, when it is false is
known as the type Il error (or missed detection), and we daeitstprobability bys. The lower
bound on the sumx + 3 characterizes the necessary trade-off between the fasmsland the
missed detections in the design of a hypothesis test.

[1l. ACHIEVABILITY OF SQUARE ROOT LAW

Willie's objective is to determine whether Alice transrait covert data given the vector
of observationsy,, of his channel from Alice. Denote the probability distrilout of Willie’'s
channel observations when Alice does not transmit (i.e.nwhg is true) asP,, and the
probability distribution of the observations when Alicarismits (i.e. wher#; is true) asP,. To
strengthen the achievability result, we assume that Aiceannel input distribution, as well as
the distribution of AWGN on the channel between Alice andlM/iare known to Willie. Then



P, andP; are known to Willie, and he can construct an optimal statsthypothesis test that
minimizes the sum of error probabilities+ g [6, Ch. 13]. The following holds for such a test:

Fact 1 (Theorem 13.1.1 in |6])For the optimal test,

a+pf = 1=Vp(Py,Py)
whereV,(Pg, P;) is the total variation distance betwe®q and P, defined as follows:
Definition 1 (Total variation distance [6])The total variation distancéetween two continuous
probability measures P, and P, is

1
Vr(Po, P1) = Sllpo(z) = pr(2)lh 1)
where po(z) and p,(x) are densities of P, and P, respectively, and ||a — b||; is the £, norm.

Since total variation lower-bounds the error of all hypasiketests Willie can use, a clever
choice off allows Alice to limit Willie’s detector performance. Unfoinately, the total variation
metric is unwieldy for the products of probability measuynetich are used in the analysis of
the vectors of observations. We thus use Pinsker’s Indguali

Fact 2 (Pinsker’'s Inequality (Lemma 11.6.1 inl[7]))

: ( / " 1po(@) —pl<x>\dx)2 < D(Py||Py)

where relative entropP(P,||P,) is defined as follows:
Definition 2. The relative entropy(also known as Kullback-Leibler divergencebetween two
probability measures P, and P is:

= x npo(x) T
D@P) = [ i) @

where X is the support of p;(x).
If P" is the distribution of a sequendeX;}", where eachX; ~ P is i.i.d., then:
Fact 3 (Relative Entropy Product)From the chain rule for relative entropy [7, Eq. (2.67)]:
D(P§|[Py) = nD(Po|P)

Relative entropy is related to hypothesis testing via ther@biff-Stein Lemmal |7, Ch. 11.8]
as an exponent in the expression fogiven 5 and visa-versa, and can be used to analyze the
hypothesis test performance, as is commonly done by thamstggaphy community [2], [8].
However, lower-boundingr + 5 has a natural signal processing interpretation via theivece
operating characteristic (ROC) curve [9, Ch. 2.2.2], whitbts probability of detectionl — 3
versusa. Sincel — 3 > a anda+ 5 > 1 —¢, smalle implies that the ROC curve lies very close
to the line of no-discrimination (the diagonal line whdre- 5 = a) over the entire domain of
a becausex + ¢ > 1 — 5 > «. We thus state the achievability theorem under an averagermo
constraint as follows:

Theorem 1.1(Achievability). Suppose Willie's channel is subject to ANWGN with average power
o2 > 0. Then Alice can maintain Wlie's sum of the probabilities of detection errorsa+3 > 1—¢



for any € > 0 while reliably transmitting o(y/n) bits to Bob over n uses of an AWGN channel
if 02 is unknown and O(y/n) bits over n channel uses if she can lower-bound o2 > 2.

Proof: Construction: Alice’s channel encoder takes input in blocks of lengthbits and
encodes them into codewords of lengtht the rate of? = M /n bits/symbol. We employ random
coding arguments and independently genepafe codewords{c(W}), k = 1,2,...,2"} from
R" for message§IV, }7,, each according tpx (x) =[], px(z:), where X ~ N (0, Py) and
P; is defined later. The codebook is used only to send a singlsagesand is the secret that is
not revealed to Willie, though he knows how it is constructedluding the value ofP;. The
length of this secret is discussed in the remark following phoof of Theoreni 1]2.

The channel between Alice and Willie is corrupted by AWGNhniiowers2. Willie applies
statistical hypothesis testing on a vectorrofchannel readings,, to decide whether Alice
transmitted. Next we show how Alice can limit the performarad Willie's methods.

Analysis: Consider the case when Alice transmits codewo(@;). Suppose that Willie
employs a detector that implements an optimal hypothestsae hisn channel readings. His
null hypothesisH, is that Alice did not transmit and he observed noise on hisweéha His
alternate hypothesig#l; is that Alice transmitted and he observed Alice’s codewardupted
by noise. By Factll, the sum of the probabilities of Willie'stelctor's errors is expressed by
a+ 6 =1-Vp(Py, Py), where the total variation distance is between the digiobuP, of n
noise readings that Willie expects to observe under his mypothesis and the distributidf,
of the covert codeword transmitted by Alice corrupted byseoiAlice can lower-bound the sum
of the error probabilities by upper-bounding the total &dn distanceV,(Py, P;) <.

The realizations of noisg(w) in vectorz,, are zero-mean i.i.d. Gaussian random variables with
variances?, and, thusP, = P? whereP,, = A'(0,02). Recall that Willie does not know the
codebook. Therefore, Willie’s probability distributiof thhe transmitted symbols is of zero-mean
i.i.d. Gaussian random variables with varianée Since noise is independent of the transmitted
symbols, when Alice transmits, Willie observes veciqr, Whereygw) ~ N(0, Py +c2) = P,
is i.i.d. , and thusP; = P”. By Factd 2 andl3:

r(P", P ,/ (Pr||Pr) = ,/ D(P,,||P,)

The relative entropy follows as:

1 Py Py
D(P.P,) = 3 [m (1+ 0—2) - wagj

While the expression faP (P, ||P;) has a closed form, its Taylor series expansion with respect
to P; aroundP; = 0 is more useful. While the zeroth and first order terms are,zbesecond
order term is:

Pi 9*D(P.|Py)

x i
2! OP?

4
4o,

Py=0

9?D(Py||Ps)

Relative entropy being locally quadratic is well-known [ITh. 2.6]; in fact oP?

Py=0
P 4 is the Fisher information that an observation of noise earabout its power. Now, the third
order term is:
P} 0°D(Py||Py)

X
3! oP?




If P; < o2, then the Taylor series converges and we can apply Tayltesiem to upper-bound
relative entropy with the second order term. The upper bovadeek is:

" on P n
WELPY < 25\ @

Suppose Alice sets her average covert symbol paferx % wherec = 2¢v/2. In most
practical scenarios Alice can lower-bound > 42 and setf(n) = 62 (a conservative lower
bound is the thermal noise power of the best receiver cuyrengilable). If o2 is unknown,
selectf(n) such thatf(n) = o(1) and f(n) = w(1/4/n) (the latter condition is used to bound
Bob’s decoding error probability). In either case, folarge enoughp; < o2 satisfies the Taylor
series convergence criterion, and Alice obtains the uppent V(P P") < ¢, limiting the
performance of Willie’'s detector.

Since Alice’s symbol poweP; is a decreasing function of the codeword lengtlthe standard
channel coding results for constant power (and constas) da not directly apply. Thus, we
examine the probability?, of Bob’s decoding error averaged over all possible codebobét
Bob employ a maximum-likelihood (ML) decoder (i.e. minimulistance) to process the received
vectory, whenc(W}) was sent. The decoder suffers an error evele (1)) wheny, is closer
to another codeword(1V;), ¢ # k. The decoding error probability, averaged over all cod&bspo
is then:

P. = IEc(‘/Vk) |:P <U$Zg,z#kEl(c(Wk))>]
< Eewy) Z P (Ei(c(Wy))) (4)
i=0,i#k
gnR
= S By [P (E(c(W))) (5)
i=0,i#k

where Ex[-] denotes the expectation operator over random variabland [4) follows from
the union bound. Letd = c(W}) — c(W;). Then||d||» is the distance between two codewords,
where|| - |2 is the £, norm. Since codewords are independent and Gaussjan N (0, 2P;) for
j=1,2,...,nand||d|? = 2P;U, whereU ~ x2, with x? denoting the chi-squared distribution
with n degrees of freedom. Therefore, by [11, Eq. (3.44)]:

PU
@ ( 207 )

[ e/2dt. SinceQ(x) < te=**/? [12, Eq. (5)] andP; = L.

Eeqw) [P (Ei(c(Wh)))] = Eu

whereQ(z) = =

-
P:U cf(n)U
E — < E —
v (@ < 207 ) = v [exp ( 4y/no}
_cf(mu _u
00 o 4 no? 22_%@6%_1
= / du
0 I'(n/2)

N cf(n) e
- 2 (3+ 1) ©
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where [6) is from the substitution= « (% + Cf(")2> and the definition of the Gamma function

0 1 ; 1 cf(n) 10g2(%+ cf(n) )
I'(n) = [, 2" ‘e "dz. Since; + v 2 inof ) -

n cf(n)
2 10g2 <1+ 2 7L<7b§>

Eeary [P (Ei(c(Wi)] < 2
Hence, the summand ial(5) does not depend,and [5) becomes:

n cf(n)
R—E 1Og2 (1"1‘ Qﬁgg )

P, < 2 (7)

Sincef(n) = w(1//n), if rate R = £log, (1 + ;j(ﬁ’%) for a constanp < 1, asn increases, the

probability of Bob’s decoding error averaged over all cantets decays exponentially to zero and

Bob obtainsiR = v/n% log, <1 + %)I covert bits inn channel uses. SinceR < %
approaching equality as gets large, Bob receives(/n) bits in n channel uses, an@(\/n)
bits in n channel uses iff (n) = 52. ]
Unlike Shannon’s coding theorem for AWGN channéls [7, Tke0®.1.1], we cannot select
a codebook that performs better than average, as that walitesthe i.i.d. condition needed to
limit Willie’s detection ability. If such a codebook is deable, the construction of Theordm 1.2
can be employed using the modification given by the remat&ahg its proof. This construction

also satisfies both the peak and the average power consframtiemonstrated below.

Theorem 1.2 (Achievability under a peak power constrainfuppose Alice's transmitter is
subject to the peak power constraint b and Willie's channel is subject to AWGN with power
o2 > 0. Then Alice can maintain Wlie's sum of the probabilities of detection errorsa+3 > 1—¢
for any e > 0 while reliably transmitting o(/n) bits to Bob over n uses of an AWGN channel
if 2 is unknown and O(,/n) bitsin n channel uses if she can lower-bound o2 > 2.

Proof: Construction: Alice encodes the input in blocks of lengitd bits into codewords of
lengthn at the rateR = M /n bits/symbol with the symbols drawn from alphaljeta, a }, where
a satisfies the peak power constrairtt < b and is defined later. We independently generate
2"E codewords{c(W}),k = 1,2,...,2"%} for message{W,} from {—a,a}" according to
px(x) = [Il, px(z;), wherepy(—a) = px(a) = 3. As in the proof of Theoreri 1.1, this
single-use codebook is not revealed to Willie, though hennbow it is constructed, including
the value ofa. While here the entire codebook is secretly shared betwdier And Bob, in the
remark following the proof we discuss how to reduce the arhof@ishared secret information.

Analysis: When Alice transmits a covert symbol during tffesymbol period, she transmitsa
or a equiprobably by construction and Willie observes the cosgmbol corrupted by AWGN.
Therefore P, = 3 (N (—a,02) + N(a,02)), and, withP,, = N'(0,02), we have:

e 20%} e 20%}

In
xr a 2 C—a 2
—co V 27TUw 1 (6_( +2) -l 2) )
2

o

dx

D(P,|[P,) =

2073, _|_ e 207,

There is no closed-form expression (P, ||P;), but it can be expanded using the Taylor
series with respect ta arounda = 0. While the zeroth through third order terms are zero, the

fourth order term is:

0,4

at  0'D(P,||Ps)
4o}

e da?




While the fifth order term is zero, for the sixth order term waaon:
a®  O°D(P,||P,)
- X e
6! 0ab 00

If « < oy, then the Taylor series converges and we can apply Taylbesiiem and upper-bound
relative entropy with the fourth order term. The upper bowelseek is:

. a> [n
VELPY) < 2 ®)

Since the power of Alice’s covert symbolis = P;, (8) is identical to[(B) and Alice set8 <
C{/(f wherec and f(n) are defined as in Theorém 1L.1. Then, #idarge enoughy < o,, satisfies
the Taylor series convergence criterion, and Alice obtdlives upper bound/,(P? P?) < ¢
limiting the performance of Willie’s detector.

As in Theorem_1]1, we cannot directly apply the standard temtgoower channel coding
results to our system where the symbol power is a decreasimgion of the codeword length.
We upper-bound Bob’s decoding error probability by anailgza suboptimal decodlng scheme.
Suppose Bob uses a hard-decision device on each receiver eymbolyf = f; —i—z ) via the

rule f; = {a if y” >0, —a otherwis%, and applies an ML decoder on its output. The effective

channel for the encoder/decoder pair is a binary symmetranicel with cross-over probability
pe = Q(a/o,) and the probability of the decoding error averaged over @disfple codebooks is
P, < 2nfi-n(1=%(pe) [13], whereH (p ) = —plogyp — (1 — p)log,(1 — p) is the binary entropy

function. We expand the analysis in_[14, Section 1.2.1] tarelterize the raté. The Taylor

series ok /2 alternates, and the Taylor series expansiop.cf Q o) = %— 0"” 6}2 dt with

respect taz arounda = 0 (which converges since is small for largen) yields an upper bound:

pe < 3— = (ib — 6“—33) 2 pU)_since(p) is a monotonically increasing function on the
T g, Ub

interval [0, 1], H(p.) < H(ngB ). The odd terms of the Taylor series expanserﬂfo(UB )

with respect toa arounde = 0 are zero, and, thuéH( De )) =1- + O(a%). Since
Vrcf(n

a2 =40 p, < 2" 300 Since fn) = w(l/ Vi), if rate R — S£edin) - bits/symbol

for a constanp < 1, the probability of Bob’s decoding error averaged over adebooks decays

exponentially to zero as increases and Bob obtaims? = o(y/n) bits in n channel uses, and

O(y/n) bits inn channel uses if (n) = 62. |

o 7rln2

Remarks

Employing the best codebook: Following the standard argument [7, p. 204], there must be
at least one codebook that performs at least as well as thhage/eConsider this “best” binary
codebook, but now assume that it is public (i.e. known to Mjill Theorem_1]2 shows that
Alice can use it to transmi®)(/n) bits to Bob inn channel uses with exponentially-decaying
probability of error. However, since the codebook is publdllie can use it to detect Alice’s
transmissions by performing the same decoding as Bob.

Now, suppose that, prior to communication, Alice and Bobegate and share binary vector
k wherepk (k) = [], px(k;) with px(0) = px(1) = 3. Alice XORs k and the binary
representation of the codewordV}), resulting in an equiprobable transmission -ef and
a when Alice transmits a covert symbol during ti& symbol period. Provided is never re-
used and is kept secret from Willie, the i.i.d. assumptiarttie vectory,, in Theoreni 1.2 holds



without the need to exchange an entire secret codebook betikce and Bob. Bob decodes
by XORing k with the output of the hard-decision device prior to applythe ML decoder.
While the square root law implies that the shared secret lemuadratic in the length
M = O(y/n) of a message, we can construct a coding scheme that, on ayveeagires an
O(y/nlogn)-bit secret in two stages. First, Alice and Bob randomly &tetke symbol periods
that they will use for their transmission by flipping a biasmin » times and selecting th&"
symbol period with probability-. Denote the number of selected symbol periods;land note
that E [n] = mn. Alice and Bob then use the best public binary codebook wittieavords of
lengthn on these selecteg symbol periods. They also generate and share a random binary
vectork wherepk (k) = [, px (k) with px(0) = px(1) = 5. Alice XORsk and the binary
representation of the codewoediV,.). The symbol location selection is independent of both the
symbol and the channel noise. When Alice is transmitting @ewemrd, the distribution of each

of Willie’s observations isP, = (1 — 7)N(0,02) + 2 (N(— 02)+ N(a,c?)) and, thus,
22
o ;{ 2o'w 2 2
pE.p) = [ < TR,
VI, (e #8 | o (Cah | Sah
2mow 2 \/27r02 + \/27rcr2

There is no closed-form expression fo(P, | P,), but a Taylor series expansion with respect
to a arounda = 0 yields the following bound:

n n Ta,2 n
Vo (P, PY) < ﬂ\/; 9)

The only difference in[(9) from[(8) is- in the numerator. Thus, if Alice sets the product
Ta? < c{/(g , with ¢ and f(n) as previously defined, she limits the performance of Wilie’
detector. This product is the average symbol power used lme ANow let’s fixa and, thus, set

= O(1/+4/n). Since, on average;n symbol periods are selected, it takes (again, on average)
O(y/n) positive integers to enumerate the selected symbols. HEreretotal symbols, and, thus,
it takes at mostog(n) bits to represent each selected symbol location @a¢fn logn) bits to
represent all the locations of selected symbols. Also, Weeage length of kek is O(y/n) bits.
Thus, on average, Alice and Bob need to exchafiggn log n) bits under this coding scheme.
The possibility of LPD communication with a key linear to thessage length and a detailed
consideration of the key length in general is an open proliteahwe defer to the future work.

Relationship with Square Root Law in Seganography: The LPD communication problem is
related to the problem of steganography. A comprehensiieweof steganography is available
in a book by Fridrich[[2]. In finite-alphabet imperfect steggraphic systems at moé&t(,/n)
symbols in the original covertext of length may safely be modified to hide a steganographic
message of lengtiD(y/nlogn) bits [2, Ch. 13] [15]. This result was extended to Markov
covertext [16] and was shown to either require a key lineahé&olength of the message [17] or
encryption of the message prior to embedding [18].

The square root law in steganography has the same form agjoaresroot law because both
laws follow from the relative entropy being locally quadegilO, Ch. 2.6]:

DPoP) = TI(0)+ O

where 7 (6) = [, (& In f(z; 9)) f(z;0)dx is the Fisher information associated with parameter
0, and P, and P, are probablllty measures with density functions from theedamily over
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the supportX, but with parameters differing by: po(z) = f(z;6) and p;(x) = f(x;0 + 9).
Fisher information is thus used as a metric for steganogeag@curity [19], [20].

In a typical steganography scenario with a passive wardeding techniques similar to
Hamming codes allow embedding tfg(n) bits per changed symball[2, Ch. 8], which make
hiding O(y/n log n) bits inn symbols possible. However, due to the noise on the chanhetba
Alice and Bob, and the resultant need for error correctiba,ltPD channel only allow®(/n)
bits to be transmitted im channel uses, as we prove in the following section.

IV. CONVERSE

Here, as in the proof of achievability, the channel betwetoefand Bob is subject to AWGN
of power o?. Alice’s objective is to covertly transmit a messagé that is M = w(/n) bits
long to Bob inn channel uses with arbitrarily small probability of decaglgrror asn gets large.
Alice encodes each messaé. arbitrarily into n symbols at the raté? = M /n symbols/bit.
For an upper bound on the reduction in entropy, the messageshasen equiprobably.

Willie observes alln of Alice’s channel uses. To strengthen the converse, he ligials to
her signal properties. Nevertheless, even with Willie’swledge limited, Alice cannot transmit
a message withv(y/n) bits of information inn channel uses without either being detected by
Willie or having Bob suffer a non-zero decoding error.

Theorem 2. If over n channel uses, Alice attempts to transmit a covert message to Bob that is
w(y/n) bitslong, then, asn — oo, either Wilie can detect her with arbitrarily low sum of error
probabilities o + 3, or Bob cannot decode with arbitrarily low probability of error.

Proof: Suppose Alice employs an arbitrary codebdekiV), k = 1,2, ...,2"%}, To detect
Alice’s covert transmissions, Willie performs the follavg hypothesis test:

Hy : yi(w):zi(w), 1=1,...,n
H, : yi(w):fmtsz),i:l,...,n

Rejection of H, means that Alice is covertly communicating with Bob. Finse show how
Willie can bound the errora and of this test as a function of Alice’s signal parameters. Then
we show that if Alice’s codebook prevents Willie's test fratatecting her, Bob cannot decode
her transmissions without error.

To perform the test, Willie collects a row vector of independent readingg,, from his
channel to Alice and generates the test statiStie % wherex” denotes transpose of vector
x. Under the null hypothesig, Alice does not transmit and Willie reads AWGN on his channel.
Thus,yi(“’) ~ N(0,02), and the mean and the variance$fvhen H, is true are:

E[S] = o (10)
Var [S] = % (11)

Suppose Alice transmits codewoediV,) = { fi(k) " ,. Then Willie’s vector of observations
Yuwk = {yf“”k) ", contains readings of mean-shifted no@@’k) ~ J\/(f-(k),o—fu). The mean

(2

2
of each squared observationlisy?] = o2 + ( ff’”) and the variance i¥ar [y?] = E[y}] —
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2
(E[y2])* = 4 (f.("”)) o2 + 20l. Denote the average symbol power of codewefdV;) by

P, = <Wue’ W) Then the mean and variance $fwhen Alice transmits codewore{ V) are:
E[S] = o2+ P, (12)

4P,o2 + 202
Var [S] = kngm (13)

The variance of Willie'’s test statisti€_(1L3) is computed lbddimg the variances conditioned on
c(W},) of the squared individual observatiolar [?] (and dividing byn?) since the noise on
the individual observations is independent.

The probability distribution for the vector of Willie’s obsvations depends on which hypoth-
esis is true. Denot®, as the distribution whertl, holds, andP'*’ when H; holds with Alice
transmitting messag#’,. While PY“) is conditioned on Alice’s codeword, we show that the
average symbol poweP, = %T(W’“) of the codeword:(1W},) determines its detectability by
this detector, and that our result applies to all codeworills power of the same order.

If H, is true, thenS should be close td (10). Willie picks some thresholehd compares the
value of S to o2 + t. He acceptsH, if S < o2 +t and rejects it otherwise. Suppose that he
desires false positive probability*, which is the probability that > o2 + ¢t when H, is true.
We bound it using[(10) and (IL1) with Chebyshev’s InequalyEq. (3.32)]:

Py (S >0l +1t)
Po (IS —o2| > t)
201

nt?

(0%

IA

IA

Thus, to obtairnv*, Willie setst = -, whered = *f"w Is a constant. As increasest, decreases,
which is consistent with Willie galnlng greater confldencmmmore observations.

Suppose Alice transmits codewoedlV, ). Then the probability of a mis§®) givent is the
probability thatS < o2 + ¢, which we bound usind(12) and(13) with Chebyshev’s Ineityal

g® = ng) (S <ol +1)
P (|S— 02— P| > P — 1)
4P,o? + 204
(VnPy — d)?
If P, =w(1/y/n), lim, . 8% = 0. Thus, with enough observations, Willie can detect with ar-
bitrarily low error probability Alice’s codewords with amege symbol powep;, — <Wuel W) _
w(1/4/n). Note that Willie’s detector is oblivious to any details dide’s codebook construction.
By (14), if Alice desires to lower-bound the sum of the prabaés of error of Willie's
statistical test byv+ 3 > ¢ > 0, her codebook must contain low-power codewords; in pdgicu
a fractiony > 0 of the codewords must have symbol pow&r = O(1/+/n). Let's denote this
set of codewords a4 and examine the probability of Bob’s decoding erRy. The probability
that a message from sét is sent isP (i) = v, as all messages are equiprobable. We bound
P.=P.(U)PU)+P.(U)P (U) > P, (U), wherel/ is the complement of/ and P, (i)
is the probability of decoding error when a message ftons sent:

P.(U) = 7 Z P, (c(W) sen} (15)

wel

IN

IN

(14)
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whereP, (c(1W) sen} is the probability of error when codewoedi1') is transmitted|- | denotes
the set cardinality operator, and [15) holds because alsages are equiprobable.

When Bob uses the optimal decod®r, (c(1W) sen} is the probability that Bob decodes the
received signal a$l’ # W. This is the probability of a union of events;, where E; is the
event that sent messadg is decoded as some other messéige# W:

nR
P.(c(W) seny = P<U§:1,WﬁéWEj)
> P (Un,anpmn B;) £ PY (16)

where the inequality in[(16) is due to the observation that ¢kts in the second union are
contained in the first. From the decoder perspective, thikiesto the decrease in the decoding
error probability if Bob knew that the message came fid@nfreducing the set of messages on
which the decoder can err).

Our analysis o™ uses Cover's simplification of Fano’s inequality similarttee proof of
the converse to the coding theorem for Gaussian channéfs @h. 9.2]. Since we are interested
in PY, we do not absorb it inte, as done in (9.37) of [7]. Rather, we explicitly use:

HW|W) < 1+ (log, [U])P¥ (17)

where H(W|W) denotes the entropy of messaijé conditioned on Bob’s decoding’ of V.

Noting that the size of the sét from which the messages are drawnyi®'® and that, since
each message is equiprobable, the entropy of a meddadem U/ is H(W) = log, |U| =
log, v + nR, we utilize [17) and carry out steps (9.38)—(9.53)[ih [7] tatain:

B By/20% +1/n

Pg/{) Z 1 logs, v R
T T

(18)
Since Alice transmitsu(y/n) bits in n channel uses, her rate 18 = w(1/y/n) bits/symbol.

However, P, = O(1/4/n), and, asn — oo, PY is bounded away from zero. Singe> 0, P,
is bounded away from zero if Alice tries to beat Willie’s silagypothesis test. [ |

Goodput of Alice’s Communication

Define the goodpu&(n) of Alice’s communication as the average number of bits thalb B
can receive from Alice oven channel uses with non-zero probability of a message being
undetected as — oo. Since onlyl/ contains such messages, yl(18), the probability of her

message being successfully decoded by BB =1-P¥W =0 (ﬁ) and the goodput is

G(n) = yPgu)Rn = O(y/n). Thus, Alice cannot break the square root law using an ariitr
high transmission rate and retransmissions while keeguegpower below Willie’s detection
threshold.

V. DISCUSSION
A. Mapping to Continuous-time Channel

We employ a discrete-time model throughout the paper. Hewavhereas this is a common
assumption made without loss of generality in standard comecation theory, it is important to
consider whether some aspect of the LPD problem has beeedrtigsstarting in discrete-time.
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Consider the standard communication system model, whem'al(baseband) continuous-
time waveform would be given in terms of her discrete-timengmitted sequence by:

(t) = Z fi p(t —iTy)

where T} is the symbol period angd(-) is the pulse shaping waveform. Consider a (baseband)
system bandwidth constraint & Hz. Now, if Alice choose9(-) ideally assinc(2WWt), where
sinc(z) = % then the natural choice d&f, = 1/2W results in no intersymbol interference
(ISl). From the Nyquist sampling criterion, both Willie @Bob) can extract all of the infor-
mation from the signaling band by sampling at a rat@df samples/second, which then leads
directly to the discrete-time model of Sectioh Il and suits demonstration of the fundamental
limits to Alice’s covert channel capabilities. However, evip(-) is chosen in a more practical
fashion, for example, as a raised cosine pulse with somessxXzandwidth, then sampling at a
rate higher thar21¥ has utility for signal detection even if the Nyquist ISI eribn is satisfied.

In particular, techniques involving cyclostationary deiten are now applicable, and we consider

such a scenario a promising area for future work.

B. Relationship to Previous Work

The relationship of our work to steganography has alreadyn ltbscussed in the remark at
the end of Sectioh Ill. Here we relate our problem to otherkniarcommunication.

The LPD communication problem is related to that of estabiig a cognitive radio (CR)
network [21]. An aspect of the CR problem is limiting the miéggence from the secondary
users’ radios to the primary users of the network. The LPblera with a passive warden can
be cast within this framework by having primary users ondgen [22]. However, the properties
of the secondary signal that allow smooth operation of thmgmy network are very different
from those of an undetectable signal. While there is a lot ofknon the former topic, we are
not aware of work by the CR community on the latter issue.

Analytical evaluation of LPD communication has been spatezo studies LPI/LPD channels
[1] in a multiple-input multiple-output (MIMO) setting. Heever, he focuses on the constraints
(s.t. power, fourth moment, etc.) that the LPD communicativer a MIMO channel should
enforce given the kind of information the adversary possessid on the signaling methods that
maximize the throughput of the channel given those comgraWhile he recognizes that an
LPD communication system is constrained by average powedoles not analyze the constraint
asymptotically and, thus, does not obtain the square reotltas notable that the LPI portion
of his work has drawn significant attention, while the LPDtmor has been largely overlooked.

VI. CONCLUSION

Practitioners have always known that LPD communicatiomireg one to use low power in
order to blend in with the noise on the eavesdropping wasdehnannel. However, the specific
requirements for achieving LPD communication and resglénhievable performance have not
been analyzed prior to this work. We quantified the cond#ifor existence and maintenance
of an LPD channel by proving that the LPD communication isjectbto a square root law in
that the number of bits that can be covertly transmitted ichannel uses i©(y/n).

There are a number of avenues for future research. The kejeaffy and, specifically, LPD
communication with a key linear in message length is an opeoretical research problem.
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Practical network settings and the implications of the sguaot law on the covert transmission
of packets under additional constraints such as delay dhoeilanalyzed. The impact of dy-
namism in the network should also be examined, as well as mealistic scenarios that include
channel artifacts such as fading and interference fromratbdes. One may be able to improve
LPD communication by employing nodes that perform friendijnming. Eventually, we would
like to answer this fundamental question: is it possible stalelish and maintain a “shadow”
wireless network in the presence of both active and passardems?
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