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Abstract—A variety of low-density parity-check (LDPC) en-
sembles have now been observed to approach capacity with
message-passing decoding. However, all of them use soft (i.e., non-
binary) messages and a posteriori probability (APP) decoding
of their component codes. In this paper, we analyze a class of
spatially-coupled generalized LDPC codes and observe that, in
the high-rate regime, they can approach capacity under iterative
hard-decision decoding. These codes can be seen as generalized
product codes and are closely related to braided block codes.

Index Terms—GLDPC codes, density evolution, product codes,
braided codes, syndrome decoding

I. I NTRODUCTION

In his groundbreaking 1948 paper, Shannon defined the
capacity of a noisy channel as the largest information rate
for which reliable communication is possible [1]. Since then,
researchers have spent countless hours looking for ways to
achieve this rate in practical systems. In the 1990s, the
problem was essentially solved by the introduction of iterative
soft decoding for turbo and low-density parity-check (LDPC)
codes [2], [3], [4]. Although their decoding complexity is
significant, these new codes were adopted quickly in wireless
communication systems where the data rates were not too
large [5], [6]. In contrast, complexity issues have slowed their
adoption in very high-speed systems, such as those used in
optical and wireline communication.

In this paper, we consider an ensemble of spatially-coupled
generalized LDPC (GLDPC) codes based ont-error correcting
block codes. For the binary symmetric channel (BSC), we
show that the redundancy-threshold tradeoff of this ensemble,
under iterativehard-decision decoding, scales optimally in the
high-rate regime. To the best of our knowledge, this is the
first example of an iterative hard-decision decoding (HDD)
system that can approach capacity. It is interesting to notethat
iterative HDD of product codes was first proposed well before
the recent revolution in iterative decoding but the performance
gains were limited [7]. Iterative decoding of product codes
became competitive only after the advent of iterative soft
decoding based on the turbo principle [8], [9].

Our choice of ensemble is motivated by the generalized
product codes now used in optical communications [10] and
their similarity to braided block codes [11], [12]. In particular,
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we consider iterative HDD of generalized product codes with
t-error correcting component codes. This is similar to other
recent work on coding system for optical communication
systems [13], [14], [15]. The main difference is that HDD
of our spatially-coupled GLDPC ensemble can be rigorously
analyzed via density evolution (DE) even when miscorrection
occurs. The DE analysis also allows us to show that iterative
HDD can approach capacity in the high-rate regime. In [16],
counting arguments are used to analyze the iterative HDD of
GLDPC codes (without spatial coupling) for adversarial error
patterns and therefore somewhat lower thresholds are reported.

II. BASIC ENSEMBLE

Let C be an (n, k, d) binary linear code that can correct
all error patterns of weight at mostt (i.e., d ≥ 2t + 1). For
example, one might chooseC to be a primitive BCH code with
parameters(2ν − 1, 2ν − νt − 1, 2t + 1). Now, we consider
a GLDPC ensemble where every bit node satisfies two code
constraints defined byC.

Definition 1. Each element of the(C,m) GLDPC ensemble
is defined by a Tanner graph, denoted byG = (I ∪ J , E),
with a setI of N = mn

2 degree-2 bit nodes and a setJ
of m degree-n code-constraint nodes defined byC. A random
element from the ensemble is constructed by using an uniform
random permutation for themn edges from the bit nodes to
the constraint nodes.

A. Decoder

It is well-known that GLDPC codes perform well under
iterative soft decoding [8], [9]. The main drawback is that
a posteriori probability (APP) decoding of the component
codes can require significant computation. For this reason,
we consider message-passing decoding based on bounded-
distance decoding (BDD) of the component codes. Let the
bit-level mapping implied by BDD,Di : {0, 1}n → {0, 1},
map the received vectorv ∈ {0, 1}n to the i-th decoded bit
according to the rule

Di(v) =

{

ci if c ∈ C satisfiesdH(c,v) ≤ t

vi if dH(c,v) > t for all c ∈ C,

wheredH(·, ·) be the Hamming distance. The same analysis
can be applied to symmetric decoders (e.g., all syndrome
decoders) where the mappingDi(·) satisfiesDi(v ⊕ c) =
Di(v)⊕ ci for all c ∈ C and i = 1, . . . , n.

http://arxiv.org/abs/1202.6095v2


Decoding proceeds by passing binary messages along the
edges connecting the variable and constraint nodes and is
best understood from the implied computation graph. Let
ri ∈ {0, 1} denote the received channel value for variable node
i andµ(ℓ)

i→j be the binary message from thei-th variable node
to thej-th constraint node in theℓ-th iteration. For simplicity,
we assume no bit appears twice in a constraint and letσj(k)
be the index of the variable node connected to thek-th socket
of the j-th constraint. Letj′ be the other neighbor of thei-th
variable node and letσj(k) = i. Then, the iterative decoder is
defined by the recursion

µ
(ℓ+1)
i→j′ , Di

(

v
(ℓ)
j→i

)

, (1)

where, for the i-th variable node and thej-th con-
straint node, the candidate decoding vector isv(ℓ)

j→i =

(µ
(ℓ)
σj(1)→j , µ

(ℓ)
σj(2)→j , . . . , µ

(ℓ)
σj(n)→j) except that thek-th entry

is replaced byri. It is very important to note that the above
decoder passes extrinsic messages andis not the sameas
simply iterating between row and column decoders. This
allows one to rigorously apply DE.

B. Density Evolution

The iterative decoding performance of GLDPC codes can be
analyzed via density evolution (DE) because, for a randomly
chosen bit node, any fixed-depth neighborhood in the Tanner
graph is a tree with high probability asm → ∞. For HDD
of the component codes, this DE can be written as a one-
dimensional recursion.

If we assume that the component decoders are symmet-
ric, then it suffices to consider the case where the all-zero
codeword is transmitted over a BSC with error probabilityp
[17, pp. 188–191]. Letx(ℓ) be the error probability of the
hard-decision messages passed from the variable nodes to the
constraint nodes afterℓ iterations. For an arbitrary symmetric
decoder, letPn(i) be the probability that a randomly chosen bit
is decoded incorrectly when it is initially incorrect and there
are i random errors in the othern − 1 positions. Likewise,
let Qn(i) be the probability that a randomly chosen bit is
decoded incorrectly when it is initially correct and there are i
random errors in the othern−1 positions. Then, for the(C,m)
GLDPC ensemble, the DE recursion implied by (1) is defined
by x(0) = p, x(ℓ+1) = fn

(

x(ℓ); p
)

, and (withp , 1− p)

fn(x; p),

n−1
∑

i=0

(

n−1
i

)

xi
(

1− x
)n−i−1

(pPn(i)+pQn(i)) . (2)

For the iterative BDD described above, the quantitiesP (i)
andQ(i) can be written in terms of the number of codewords,
Al, of weightl in C [18]. Let us definel(i, δ, j) = i−δ+2j+1

andV (n, i, δ, j) =
( l(i,δ,j)
l(i,δ,j)−j

)(

n−l(i,δ,j)−1
δ−1−j

)(

n−1
i

)−1
. Since all

decoding regions are disjoint, one can compute

Pn(i) = 1−

t
∑

δ=1

δ−1
∑

j=0

n− l(i, δ, j)

n
Al(i,δ,j)V (n, i, δ, j) (3)

for t≤ i≤n−t−2 andPn(i)=0 for 0≤ i≤ t−1. Similarly,

Qn(i) =

t
∑

δ=1

δ−1
∑

j=0

l(i, δ, j) + 1

n
Al(i,δ,j)+1V (n, i, δ, j) (4)

for t+ 1 ≤ i ≤ n− t− 1, andQn(i) = 0 for 0 ≤ i ≤ t. Note
that, when the code contains the all-one codeword,Pn(i) = 1
for n−t−1 ≤ i ≤ n−1, andQn(i) = 1 for n−t ≤ i ≤ n−1.

Similar to DE for LDPC codes on the BEC [17, pp. 95–
96], there is a compact characterization of the hard-decision
decoding thresholdp∗. The successful decoding condition
fn(x; p) < x provides a natural lower bound on the noise
threshold and it can be rewritten asp [fn(x; 1)− fn(x; 0)] +
fn(x; 0) < x to show that

p∗ = inf
x∈(0,1)

x− fn(x; 0)

fn(x; 1)− fn(x; 0)
.

It is also worth noting that essentially the same recursion can
be used for a BEC with erasure probabilityp. In this case,
Qn(i) = 0 and one redefinesPn(i) to be the probability that
a randomly chosen bit is not recovered when it is initially
erased and there arei random erasures in the othern − 1
positions.

III. SPATIALLY -COUPLED ENSEMBLE

Now, we consider a spatially-coupled GLDPC ensemble
where every bit node satisfies two code constraints defined by
C. Similar to the definition introduced in [19], the spatially-
coupled GLDPC ensemble(C,m, L,w) is defined as follows.

Definition 2. The Tanner graph of an element of the
(C,m, L,w) spatially-coupled GLDPC containsL positions,
[1, L], of bit nodes andL + w − 1 positions,[1, L + w − 1],
of code-constraint nodes defined byC. Let m be chosen such
thatmn is divisible by both2 andw. At each position, there
are mn

2 degree-2 bit nodes andm degree-n code-constraint
nodes. A random element of the(C,m, L,w) spatially-coupled
GLDPC ensemble is constructed as follows. At each bit
position and code-constraint position, themn sockets are
partitioned intow groups ofmn

w sockets via a uniform random

permutation. LetS(b)
i,j andS(c)

i,j be, respectively, thej-th group
at thei-th bit position and thej-th group ati-th code-constraint
position, wherej ∈ [0, w−1]. The Tanner graph is constructed
by using a uniform random permutation to connectS

(b)
i,j to

S
(c)
i+j,w−j−1 by mapping themn

w edges between the two groups.

A. Density Evolution

To derive the DE update equation of the(C,m, L,w)
spatially-coupled GLDPC ensemble, we letx

(ℓ)
i be the average

error probability of hard-decision messages emitted by bit
nodes at positioni after the ℓ-th iteration. According to
Definition 2, the average error probability of all inputs to a
code-constraint node at positioni is x

(ℓ)
i = 1

w

∑w−1
j=0 x

(ℓ)
i−j .

Also, it follows that x(ℓ)i = 1
w

∑w−1
k=0 fn

(

x
(ℓ−1)
i+k ; p

)

, where

fn(x; p) is defined in (2) andx(ℓ)i = 0 for i /∈ [1, L]. Therefore,
the DE update for this ensemble is given by



x
(ℓ+1)
i =

1

w

w−1
∑

k=0

fn





1

w

w−1
∑

j=0

x
(ℓ)
i−j+k ; p



 . (5)

IV. BCH COMPONENT CODES

In the remainder of this paper, an(n, k, 2t + 1) binary
primitive BCH code (or its(n, k − 1, 2t + 2) even-weight
subcode) will be used as the component code for both the
(C,m) GLDPC and (C,m, L,w) spatially-coupled GLDPC
ensembles. When the exact weight spectrum is known, one
can computePn(i) andQn(i) using (3) and (4), respectively.
Otherwise, one can use the asymptotically-tight binomial
approximation

Al =











2−νt
(

n
l

)

(1 + o(1)) if d ≤ l ≤ n− d,

1, if l = 0, l = n,

0, otherwise,

(6)

whered = 2t+ 1 andn = 2ν − 1 [20][21].
For the (n, k − 1, 2t + 2) even-weight subcode of an

(n, k, 2t + 1) primitive BCH code, the approximate number
of codewords is denoted bỹAl where Ãl = Al when l is
even andÃl = 0 when l is odd. LetP̃n(i) and Q̃n(i) be the
miscorrection probabilities implied bỹAl for the even-weight
subcode. Similar toPn(i) and Qn(i) in the (n, k, 2t + 1)
primitive BCH code, it can be shown that̃Pn(i) = 0 for
0 ≤ i ≤ t − 1 and Q̃n(i) = 0 for 0 ≤ i ≤ t + 1.
Then, the DE recursions for the(C,m) GLDPC ensemble and
the (C,m, L,w) spatially-coupled GLDPC ensemble can be
obtained from (2) and (5), respectively.

A. High-Rate Scaling

In [14], Justesen analyzes the asymptotic performance of
long product codes under the assumption that the component
decoders have no miscorrection. Using the random graph
argument, a recursion for the “Poisson parameter” is obtained.
That recursion leads to a threshold, for successful decoding,
on the average number of error bits attached to a code-
constraint node. In this section, we obtain a similar recursion
as the scaled limit, asn → ∞, of our DE analysis. The
main contribution is that our approach rigorously accountsfor
miscorrection.

We first introduce some notation and a few lemmas that
simplify the development. Consider the Poisson distribution
with meanλ. Letφ(λ; k), ψ(λ; k) andϕ(λ; k) be, respectively,
the tail probability, the tail probability for the even terms, and
the tail probability for the odd terms. Then, we have

φ(λ; k) ,
∑∞

i=k+1
λi

i! e
−λ = 1− Γ(k+1,λ)

Γ(k+1)

ψ(λ; k) , 1+e−2λ

2 −
∑⌊k/2⌋

i=0
λ2i

(2i)!e
−λ

ϕ(λ; k) , 1−e−2λ

2 −
∑⌊k/2⌋

i=0
λ(2i+1)

(2i+1)!e
−λ.

Lemma 3. For the codes described above andt ≤ i ≤ n− 1,

lim
n→∞

Pn(i) = lim
n→∞

P̃n(i) = 1.

Lemma 4. For the codes described above andt + 1 ≤ i ≤
n− t− 1, we haveQn(i) =

1
(t−1)!n (1 + o(1)) . Similarly,

Q̃n(i) =

{

1
(t−2)!n2 (1 + o(1)) if i+ t is odd,

1
(t−1)!n (1 + o(1)) if i+ t is even,

for t+ 2 ≤ i ≤ n− t− 2.

Consider the DE recursion (2) for the(C,m) GLDPC
ensemble. For fixedρ, let p = ρ

n−1 scale with n and

λ
(ℓ)
n = (n− 1)x(ℓ). From (2), the recursion forλ(ℓ)n equals

λ(ℓ+1)
n = (n− 1)fn

(

λ
(ℓ)
n

n− 1
;

ρ

n− 1

)

=
n−1
∑

i=t

(

n− 1

i

)

(

λ
(ℓ)
n

n− 1

)i(

1−
λ
(ℓ)
n

n− 1

)n−1−i

× (ρ (Pn(i)−Qn(i))+(n− 1)Qn(i)) , (7)

with initial valueλ(0)n = ρ for all n.
Using Lemma 3 and Lemma 4, we can find a simpler

recursion forλ(ℓ) , limn→∞ λ
(ℓ)
n .

Lemma 5. Since the limit of the RHS of (7) exists for all
λ
(ℓ)
n ≥ 0, the recursion forλ(ℓ) is given byλ(0) = ρ and

λ(ℓ+1)=f
(

λ(ℓ); ρ
)

,ρφ
(

λ(ℓ); t−1
)

+
1

(t− 1)!
φ
(

λ(ℓ); t
)

. (8)

Remark6. For anyn <∞, n
n−1ρ can be seen as the average

number of initial error bits attached to a code-constraint
node, and n

n−1λ
(ℓ)
n can be viewed as the average number

of error messages passed to a code-constraint node after the
ℓ-th iteration. Since n

n−1λ
(ℓ)
n → λ(ℓ), it follows that the

recursion (8) tracks the evolution of the average number of
error messages passed to a code-constraint node.

The DE recursion of the GLDPC ensemble with the even-
weight BCH subcode can be obtained by modifying (8).

Lemma 7. For the GLDPC ensemble based on the even-
weight BCH subcode, ift is even, the recursion forλ(ℓ) is
λ(ℓ+1) = f̃e

(

λ(ℓ); ρ
)

with

f̃e

(

λ(ℓ); ρ
)

, ρφ
(

λ(ℓ); t− 1
)

+
1

(t− 1)!
ψ
(

λ(ℓ); t
)

.

If t is odd, the recursion isλ(ℓ+1) = f̃o
(

λ(ℓ); ρ
)

with

f̃o

(

λ(ℓ); ρ
)

, ρφ
(

λ(ℓ); t− 1
)

+
1

(t− 1)!
ϕ
(

λ(ℓ); t
)

.

For the spatially-coupled GLDPC ensemble, letλ
(ℓ)
i with

i ∈ [1, L] be the average number of error messages passed to
code-constraint nodes averaged over all code-constraint nodes
at positionsj ∈ [i, i + w − 1] after theℓ-th iteration. We set
λ
(0)
i = ρ for all i ∈ [1, L], and setλ(ℓ)i = 0 for all i /∈ [1, L]

and ℓ ≥ 0. Similar to (5), the recursion for spatially-coupled
ensemble is

λ
(ℓ+1)
i =

1

w

w−1
∑

k=0

f





1

w

w−1
∑

j=0

λ
(ℓ)
i−j+k; ρ



 (9)



for i ∈ [1, L]. When the even-weight BCH subcode is used as
a component code in the spatially-coupled GLDPC ensemble,
the recursion becomes

λ
(ℓ+1)
i =







1
w

∑w−1
k=0 f̃e

(

1
w

∑w−1
j=0 λ

(ℓ)
i−j+k; ρ

)

if t is even,

1
w

∑w−1
k=0 f̃o

(

1
w

∑w−1
j=0 λ

(ℓ)
i−j+k; ρ

)

if t is odd.

V. BOUNDS ON THENOISE THRESHOLD

Suppose that one ignores the effect of miscorrection and
considers the natural hard-decision peeling decoder for the
(C,m) ensemble based on BCH codes, then it is easy to see
that at mostmt errors can be corrected using BDD. To achieve
this upper bound, it must happen that each code corrects
exactlyt errors. If some codes decode with fewer thant errors,
then there is an irreversible loss of error-correcting potential.
Since there arenm2 code bits per code constraint, normalizing
this number shows that the noise threshold is upper bounded
by 2t

n . In terms of the average number of errors in each code
constraint, the threshold is upper bounded by2t because each
code involvesn bits.

Consider the iterative HDD without miscorrection and let
f̂n(x; p) denote (2) withQn(i) = 0. To find the noise threshold
of the spatially-coupled system, one can apply the results of
[22] by observing that the DE update for the(C,m) GLDPC
ensemble defines an scalar admissible system wheref, g in
[22] are defined byf(x; ǫ) = f̂n(x; p)

∣

∣

p=ǫ
andg(x) = x. In

this case, the associated potential function is given by

Un(x; p) =

∫ x

0

(

z − f̂n(z; p)
)

dz

and the potential threshold of iterative HDD without miscor-
rection is given by

p̂∗∗n = sup
{

p ∈ [0, 1] | minx∈[0,1]Un(x; p) ≥ 0
}

. (10)

This threshold for iterative HDD without miscorrection is
achieved by(C,m, L,w) spatially-coupled GLDPC ensembles
in the limit wherem≫ L≫ w asw → ∞.

When miscorrection is ignored, the recursionx(ℓ+1) =
f̂n(x

(ℓ); p) is equivalent to the DE recursion for the erasure
channel with component codes that correctt erasures. Using
this setup, one can derive rigorous upper bounds on the
maximum a posteriori (MAP) threshold by the theory of
extrinsic information transfer (EXIT) functions [17], [23].
Since the component decoder is suboptimal and fails to recover
correctable erasure patterns with more thant erasures, the
thresholdp̂∗∗n in (10) is not equal to the aforementioned upper
bound on the MAP threshold of the scalar admissible system.

Using (8), the high-rate scaling limit of the potential func-
tion can be written as

U(λ; ρ)= lim
n→∞

(n−1)2Un

(

λ
n−1 ;

ρ
n−1

)

=

∫ λ

0

(z−ρφ(λ; ρ)) dz.

For GLDPC ensembles based on primitivet-error correcting
BCH codes, the high-rate limit of the potential threshold,ρ̂∗∗t ,
for iterative HDD without miscorrection is given by

ρ̂∗∗t = sup {ρ ∈ [0,∞) | minλ≥0U(λ; ρ) ≥ 0} . (11)

Lemma 8. For the high-rate scaling limit without miscorrec-
tion, the noise threshold in terms of the average number of
errors in a code constraint satisfieŝρ∗∗t ≥ 2t−2 for all t ≥ 2.

From the threshold of iterative HDD without miscorrection,
ρ̂∗∗t , one can bound the threshold of the iterative HDDwith
miscorrectionusing the following lemma.

Lemma 9. In the high-rate scaling limit, the noise thresh-
old of iterative HDD with miscorrection,ρ∗∗t , satisfies
ρ̂∗∗t − 1

(t−1)! ≤ ρ∗∗t ≤ ρ̂∗∗t for t ≥ 2.

Now, we introduce the notion ofǫ-redundancy.

Definition 10. Let C(p) be the capacity of a BSC(p). For an
ǫ > 0, a code ensemble with rateR and thresholdp∗ is called
ǫ-redundancy achievingif

1− C (p∗)

1−R
≥ 1− ǫ.

Let nν , 2ν − 1. The following lemma shows that, for
any ǫ > 0, a sequence of ensembles with rateRν = 1 − 2νt

nν

and thresholdp∗ν = 2t
nν

is ǫ-redundancy achieving over BSC
channels whenν ∈ Z+ is large. That is, for anyǫ > 0, there
exists aV ∈ Z+ such that, for allν ≥ V , one has

1− C(2tn−1
ν )

2tνn−1
ν

≥ 1− ǫ.

Lemma 11. Consider a sequence of BSCs with error proba-
bility 2tn−1

ν for fixed t and increasingν. Then, the ratio of
1− C

(

2tn−1
ν

)

to 2tνn−1
ν goes to1 as ν → ∞. That is

lim
ν→∞

1− C
(

2tn−1
ν

)

2tνn−1
ν

= 1. (12)

Proof: Recall that the capacity of the BSC(p) is 1−H (p),
whereH(p) = −p log2(p)− (1− p) log2(1− p) is the binary
entropy function. The numerator of the LHS of (12) can be
written as

H

(

2t

nν

)

=
2t log2 nν

nν

(

1−
log2

(

2t
e

)

log2 nν
−O

(

n−1
ν

)

)

. (13)

By substituting (13) into the LHS of (12), we have

1− C
(

2tn−1
ν

)

2tνn−1
ν

=
2tn−1

ν log2 (nν)

2tνn−1
ν

(

1−O
(

ν−1
))

.

Then, the equality (12) follows sincelog2(nν) =ν+o(1).
Thus, the following Theorem shows that iterative HDD of

the spatially-coupled GLDPC ensemble can approach capacity
in high-rate regime.

Theorem 12. For any ǫ > 0, there exist a tuple(t, n, L, w)
such that iterative HDD of the(C,∞, L, w) GLDPC spatially-
coupled ensemble isǫ-redundancy achieving whenC is a t-
error correcting BCH code of lengthn .



Sketch of proof : The proof follows from combining
Lemmas 8, 9, and 11 with standard construction arguments
for sparse graph codes.

VI. N UMERICAL RESULTS AND COMPARISON

In the following numerical results, the iterative HDD thresh-
old of (C,m, L,w) spatially-coupled GLDPC ensemble with
L = 1025, and w = 16 are considered. In Table I, the
thresholds of the ensembles are shown in terms of the average
number of error bits attached to a code-constraint node. Let
p∗n,t be the iterative HDD threshold of the spatially-coupled
GLDPC ensemble based on a(n, k, 2t + 1) binary primitive
BCH component code, and̃p∗n,t be the iterative HDD threshold
of the spatially-coupled GLDPC ensemble based on the(n, k−
1, 2t+2) even-weight subcode. Then, we definea∗n,t , np∗n,t
and ã∗n,t , np̃∗n,t to be the thresholds in terms of the average
number of error bits attached to a component code. In the
high-rate scaling limit, we letρ∗t and ρ̃∗t denote the iterative
HDD thresholds of the ensembles based on primitive BCH
component codes and their even-weight subcodes, respectively.
Moreover, the threshold of HDD without miscorrection,ρ̂∗t , is
shown in Table I along with the potential threshold,ρ̂∗∗t , of
iterative HDD without miscorrection from (11).

From Table I, one can observe that the thresholds (ρ∗t , ρ̃∗t
and ρ̂∗t ) of the spatially-coupled ensemble with primitive
BCH component codes or the even-weight subcodes approach
to 2t as t increases. This verifies the results predicted by
Lemma 8 and the vanishing impact of miscorrection predicted
by Lemma 11.

VII. C ONCLUSION

The iterative HDD of GLDPC ensembles, based on ont-
error correcting block codes, is analyzed with and without
spatial coupling. Using DE analysis, noise thresholds are
computed for a variety of component codes and decoding
assumptions. In particular, the case of binary primitive BCH
component-codes is considered along with their even-weight
subcodes. For these codes, the miscorrection probability is
characterized and included in the DE analysis. Scaled DE
recursions are also computed for the high-rate limit. When
miscorrection is neglected, the resulting recursion for the basic
ensemble matches the results of [13], [14]. It is also proven
that iterative HDD threshold of the spatially-coupled GLDPC
ensemble can approach capacity in high-rate regime. Finally,

Table I
ITERATIVE HDD THRESHOLDS OF(C,∞, 1025, 16) SPATIALLY-COUPLED

GLDPCENSEMBLE WITH BINARY PRIMITIVE BCH CODES

t 3 4 5 6 7
a∗
255,t

5.432 7.701 9.818 11.86 13.87
a∗
511,t 5.417 7.665 9.811 11.86 13.85

a∗
1023,t

5.401 7.693 9.821 11.87 13.88
ρ∗t 5.390 7.688 9.822 11.91 13.93

ã∗
255,t 5.610 7.752 9.843 11.88 13.87

ã∗
511,t

5.570 7.767 9.811 11.86 13.85
ã∗
1023,t

5.606 7.765 9.841 11.88 13.88
ρ̃∗t 5.605 7.761 9.840 11.91 13.93
ρ̂∗t 5.735 7.813 9.855 11.91 13.93
ρ̂∗∗t 5.754 7.843 9.896 11.93 13.95

numerical results are presented that both verify the theoretical
results and demonstrate the effectiveness of these codes for
high-speed communication systems.
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