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Positive Solutions for Eigenvalue Problem with Time Scales 
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Abstract: By exploring the values of the eigenvalue λ , this paper deals with the existence and nonexistence 
of positive solution for the following three-point boundary value problem with time scales:  
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where T  is a time scale, , 0, 0, (0, ( )),0 /T Tβ γ β γ η ρ α η+ > ∈ < <≥ , and ( ) (1 ) 0d Tβ αη γ α= − + − > . 
Furthermore, two examples are presented for results verification purposes. 
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1 Introduction 

The theory of time scales and measure chains was 
introduced and developed by Hilger as a means of 
unifying and extending theories from differential and 
difference equations[1]. Recently, much attention is 
attracted by questions of existence of positive solutions 
to boundary value problems, see, e.g. [2-12]. We begin 
by presenting some basic definitions which can be found 
in Agarwal and Bohner[2], Atici and Guseinov[4] and 
Bohner and Peterson[6]. Another excellent source on 
dynamic systems on measure chains is the book[10]. 

A time scale T  is a nonempty closed subset of R .  
It follows that the jump operators , : , ( )tσ ρ σ→ =T T  
inf{ : }tτ τ∈ >T  and ( ) sup{ : }t tρ τ τ= ∈ >T  (suppleme- 
nted by inf 0 : sup= T  and sup 0 : inf= T ) are well-de- 
fined. The point t∈T  is left-dense, left-scattered, right- 
dense, right-scattered if ( ) , ( ) , ( ) , ( )t t t t t t t tρ ρ σ σ= < = < , 
respectively. If T  has a right-scattered minimum 1t , 
define 1{ }k t= −T T , otherwise, set k =T T . If T  has a 

left-scattered maximum 2t , define 2{ }k t= −T T , other- 
wise, set k =T T . 

For :f →T R  and kt∈T , the delta derivative of 
f at t, denoted ( )f tΔ , is the number (provide it exists) 
with the property that given any 0ε > , there is a 
neighborhood U ⊂ T  of t such that | ( ( )) ( )f t f sσ − −  

( )[ ( ) ] | | ( ) |f t t s t sσ ε σΔ − −≤ , for all s U∈ . For :f  
→T R  and kt∈T , the nabla derivative of f at t, 

denoted by ( )f tΔ , is the number (provide it existes) 
with the property that given any 0ε > , there is a 
neighborhood U ⊂ T  of t such that | ( ( )) ( )f t f sρ − −  

( )[ ( ) ] | | ( ) |f t t s t sρ ε ρΔ − −≤ , for all s U∈ . 
A function :f →T R  is ld-continuous (Cld) pro- 

vided it is continuous at left dense points in T  and its 
right-sided limit exits at light dense points in T . If 

=T R , then f is ld-continuous if and only if f is 
continuous. If =T Z , then function is ld-continuous. 

A function :F →T R  is called a Δ -antideriva- 
tive of :f →T R  provided ( ) ( )F t f tΔ =  holds for all 

kt∈T . Then the Cauchy Δ -integral from a to t of f is 
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defined by ( ) ( ) ( )t
a f s s F t F a∫ Δ = −  for all t∈T . A 

function :Φ →T R  we call a ∇ -antiderivative of 
:f →T R  provided ( ) ( )t f tΦ∇ =  for all kt∈T . We 

then define the Cauchy ∇ -integral from a to t of f by 
( ) ( ) ( )t

a f s s t aΦ Φ∫ ∇ = −  for all t∈T . 
The following formulas hold: 

( )
( ) ( ( )) ( ),

t

t
f s s t t f t

ρ
ρ∇ = −∫  (1) 

where :f →T R  is an arbitrary functional and t∈T ; 

( , ]
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t t f t a b

ρ

ρ

∈

∈

⎧ − <
⎪⎪∇ = =⎨
⎪− − <⎪⎩

∑
∫

∑
 (2) 

where [ , ]ldf C a b∈  and [ , ]a b  consists of only isolated 
points. Formulas (1) and (2) will be used in the follow- 
ing Example 1 and 2. 

In this paper, we are concerned with determining 
intervals of eigenvalues for the following three-point 
boundary value problem (BVP in short) on time scales: 

( ) ( ) ( , ( )) 0, (0, ) ,
(0) (0) 0, ( ) ( ).

u t h t f t u t t T
u u u u T

λ
β γ α η

Δ∇

Δ

⎧ + = ∈ ∩
⎨

− = =⎩

T  (I) 

Where T  is a time scale, (0, ( )),0 / ,T Tρ α η< <   
( ) (1 ) 0, ( ) [0, ]ldd T h t C Tβ αη γ α= − + − > ∈  and ( , )f t u ∈   

([0, ] [0, ),[0, )).C T × ∞ ∞  
In 2002, Anderson[3] considered the existence of 

one and three positives solution of the following dynamic 
equation on time scales: 

( ) ( ) ( ( )) 0, (0, ) ,
(0) 0, ( ) ( ),

u t a t f u t t T
u u u Tα η

Δ∇⎧ + = ∈ ∩
⎨

= =⎩

T  (3) 

where [0, ]lda C T∈  is nonnegative, :[0, ) [0, )f ∞ → ∞  
is continuous, (0, ( ))Tη ρ∈  and 0 /Tα η< < . 

Kaufmann[9] discussed the problem (3) and 
obtained the existence of at least two positive solutions. 

Recently, Sun and Li[12] consider the following 
three-point boundary value problem: 

( ) ( ) ( , ( )) 0, (0, ) ,
(0) (0) 0, ( ) ( ),

u t a t f t u t t T
u u u u Tβ γ α η

Δ∇

Δ

⎧ + = ∈ ∩
⎨

− = =⎩

T  (4) 

where , 0, 0, (0, ( )),0 /T Tβ γ β γ η ρ α η+ > ∈ < <≥  and 
( ) (1 ) 0d Tβ αη γ α= − + − ≠ ; ( )h ⋅  and ( , )f ⋅ ⋅  are given 

functions. They proved that the equation (4) has at least 
two positive solutions. 

In this paper, motivated by the results mentioned 

above, the fixed-point index theorem is applied to yield 
positive solutions of the BVP(I) for the eigenvalue λ  
to an open interval. The conditions of the function f can 
be relaxed since the function f may not be superlinear 
case ( 0 0f =  and f∞ = ∞ , see (C3) below) or sublinear 
case ( 0 0f =  and 0f ∞ = , see (C4) below). Furthermore, 
we will show that values of the function f and eigen- 
value λ  determine the nonexistence of positive solu- 
tion for the BVP(I). We organize the paper as follows. In 
section 2, we state some lemmas that will be required in 
order to show our main theorems. In section 3, we state 
and show four theorems for existence and noexistence 
of positive solution of (I). In section 4, we give two 
exampls to illustrate our main results. 

2 Preliminaries 

To discuss the main results in this paper, we will 
employ several lemmas. These lemmas are based on the 
linear boundary value problem: 

( ) ( ) 0, (0, ) ,
(0) (0) 0, ( ) ( ).

u t h t t T
u u u u T

λ
β γ α η

Δ∇

Δ

⎧ + = ∈ ∩
⎨

− = =⎩

T  (5) 

Lemma 1 If ( ) (1 ) 0d Tβ αη γ α= − + − ≠ . Then for 
[0, ]ldh C T∈ , the boundary value problem (5) has the 

unique solution, 

0
( ) ( ) ( )

t tu t t s h s s
d

β γλ +
= − − ∇ + ⋅∫  

0 0
[ ( ) ( ) ( ) ( ) ].

T
T s h s s s h s s

η
λ αλ η− ∇ − − ∇∫ ∫  (6) 

Proof  From ( ) ( ) 0u t h tλΔ∇ + = , we have 

0
( ) (0) (0) ( ) ( ) .

t
u t u u t t s h s sλΔ= + − − ∇∫  (7) 

Next we separate the process into two cases: (a) 
0β ≠  and (b) 0β = . 
Case (a): 0β ≠ . By using the first boundary 

condition of (5), we get (0) (0) /u uγ βΔ= , and so it 
follows from (7) that 

0
( ) (0) ( ) ( )

ttu t u t s h s sβ γ λ
β

Δ+
= − − ∇∫ , 

from the other boundary condition of (5), we find 

0
(0) (0) ( ) ( )u u s h s s

η
α αη αλ ηΔ+ − − ∇ =∫  

0
(0) (0) ( ) ( )

T
u u T T s h s sλΔ+ − − ∇∫ . 
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Thus, 

0 0
(0) [ ( ) ( ) ( ) ( ) ],

T
u T s h s s s h s s

d
ηβ λ αλ ηΔ = − ∇ − − ∇∫ ∫  

so that 

0
( ) : ( ) ( )

t tu t t s h s s
d

β γλ +
= − − ∇ + ⋅∫  

0 0
[ ( ) ( ) ( ) ( ) ].

T
T s h s s s h s s

η
λ αλ η− ∇ − − ∇∫ ∫  

Case (b): 0β = . Since ( ) (1 ) 0,d Tβ αη γ α= − + − ≠  
we have (1 ) 0γ α− ≠ . From the second boundary condi- 
tion of (5), it implies that  

0 0
(1 ) (0) ( ) ( ) ( ) ( ) .

T
u T s h s s s h s s

η
α λ αλ η− = − ∇ − − ∇∫ ∫  

Therefore, we deduce from (7) that 

0
( ) : ( ) ( )

t tu t t s h s s
d

β γλ +
= − − ∇ + ⋅∫  

0 0
[ ( ) ( ) ( ) ( ) ],

T
T s h s s s h s s

η
λ αλ η− ∇ − − ∇∫ ∫  

both cases follow that u given in (6) is a solution of (5). 
It is easy to verify that boundary value problem 

( ) 0, (0) (0) 0, ( ) ( )u t u u u u Tβ γ α ηΔ∇ Δ= − = =  has only the 
trivial solution if 0d ≠ . Thus u in (6) is the unique 
solution of (5). 

Lemma 2[3,12] Let 0 Tαη< <  and 0d > . If h∈  
[0, ]ldC T  and 0hλ ≥ , then the unique solution u of (5) 

satisfies ( ) 0u t ≥ , for [0, ]t T∈ ∩T . 
Lemma 3[3] Let Tαη > . If [0, ]ldh C T∈  and hλ ≥  

0 , then the unique solution u of (5) has no positive 
solution. 

In view of Lemma 3, we will assume that Tαη <  
for the rest of the paper. 

Lemma 4[3] Let 0 Tαη< <  and 0d > . If [0,ldh C∈  
]T  and 0hλ ≥ , then the unique solution u of (5) 

satisfies [ , ]inf ( ) || ||t T u t r uη∈ ≥ , where min{ ( ) /r Tα η= −  
( ), / , / }T T Tαη αη η−  and 

[0, ]
|| || sup | ( ) | .

t T
u u t

∈
=  

Remark 1 Since Tαη <  and Tη < , it follows 
that 0 1r< < . Therefore, we assume that r of the 
remainder of the paper is the constant in Lemma 4. 

Throughout this paper, our Banach space is E =  
( , )ldC T R  with 

[0, ]
|| || sup | ( ) |

t T
u u t

∈ ∩
=

T
. Define the operator 

:A E Eλ → . 

0
( ) ( ) ( ) ( , ( ))

t
A u t t s h s f s u s sλ λ= − − ∇ +∫  

0
[ ( ) ( ) ( , ( ))

Tt T s h s f s u s s
d

β γ λ+
− ∇ −∫  

0
( ) ( ) ( , ( )) ].s h s f s u s s

η
αλ η − ∇∫  (8) 

The function u is a solution of the boundary value 
problem (I) if and only if u is a fixed point of the 
operator Aλ . 

As in paper [3], we define the cone {P u= ∈  

[ , ]
: ( ) 0, inf ( ) || ||}

t T
B u t u t r u

η∈
≥ ≥ , where r is the constant in 

Lemma 4. From Lemma 4, we have :A P Pλ → . Stand- 
ard arguments show that the operator Aλ  is completely 
continous. 

The following three inequalities play important 
role in our arguments. Since ,hλ  and f are nonnegative, 
then, for all u E∈ , 

0
( ) ( ) ( ) ( , ( )) .

TtA u t T s h s f s u s s
dλ

β γλ +
− ∇∫≤  (9) 

furthermore, 

0
( ) ( ) ( ) ( , ( ))A u s h s f s u s s

η

λ η λ η= − − ∇ +∫  

0
( ) ( ) ( , ( ))

T
T s h s f s u s s

d
βη γλ +

− ∇ −∫  

0
( ) ( ) ( , ( ))s h s f s u s s

d
ηβη γαλ η+

− ∇∫ ≥  

( ) ( ) ( , ( )) .
T

T s h s f s u s s
d η

βη γλ +
− ∇∫  (10) 

Likewise, 

0
( ) ( ) ( ) ( , ( ))

T
A u T T s h s f s u s sλ λ= − − ∇ +∫  

0
( ) ( ) ( , ( ))

TT T s h s f s u s s
d

β γλ +
− ∇ −∫  

0
( ) ( ) ( , ( ))T s h s f s u s s

d
ηβ γαλ η+

− ∇∫ ≥  

( ) ( ) ( ) ( , ( )) .
T

T s h s f s u s s
d η

α βη γλ +
− ∇∫  (11) 

We will also need the following two fixed-pointed 
index theorems in the sequel. 

Lemma 5[13] Let P be a cone in Banach space ,E  
EΩ ⊂  a bounded set, and :A P PΩ ∩ →  a complete- 

ly continuous operator. If Au uδ≠ , for any u PΩ∈∂ ∩  
and 0δ≥ , then the fixed point index ( , , ) 1.i A P PΩ ∩ =  

Lemma 6[14] Let P be a cone in Banach space ,E  
EΩ ⊂ a bounded set, and :A P PΩ ∩ →  a completely 

continuous operator. If there exists and operator :F  
P PΩ∂ ∩ → , such that inf || || 0

u P
Fu

Ω∈∂ ∩
> , and u Au− ≠  

Fuδ , for any , 0.u PΩ δ∈∂ ∩ ≥ Then the fixed point 
index ( , , ) 0.i A P PΩ ∩ =  
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3 Main Results 

In order to abbreviate our discussion, we list some 
assumptions to be used in this paper as follows: 

(C1) ( ) :[0, ] [0, )h t T → ∞  is ld-continuous such that 

0
0 ( ) ( ) , ( ) ( ) .

T T
T s h s s T s h s s

η
< − ∇ − ∇ < ∞∫ ∫  

(C2) ([0, ] [0, ),[0, )).f C T∈ × ∞ ∞  

(C3) 0

[0, ]0

( , )0 : limsup max ,
t Tu

f t uf M
u+ ∈→

< = <  

[ , ]

( , ): liminf min .
u t T

f t um f
uη∞ →∞ ∈

< = ∞≤  

(C4) 
[0, ]

( , )0 : limsup max ,
t Tu

f t uf M
u

∞

∈→∞
= <≤  

0 [ , ]0

( , ): liminf min ,
t Tu

f t um f
uη+ ∈→

< = ∞≤  

where 
1

0
: ( ( ) ( ) ) ,

TTM T s h s s
d

β γ −+
= − ∇∫  

1: (min(1, ) ( ) ( ) ) .
T

m T s h s s
d η

βη γα −+
= − ∇∫  

Theorem 1 Suppose that (C1)~(C3) hold. Then, 
for each λ  satisfying  

0( / , / )m f M fλ ∞∈ , (12) 
there exists at least one positive solution of the BVP(I).  

Proof  Since λ  satisfies (12), we have 
0 00 /mf f f Mλ∞ <≤ ≤ , 

0/m f Mf fλ ∞ ∞< ∞≤ ≤ . (13) 
According to the first inequality of (13), we see 

that there exist 1 0r >  and 1 0ε > such that 
[0, ]

max ( ,
t T

f tλ
∈

 

1 1) ( ) ,0u M u u rε−≤ ≤ ≤ . Consequently, ( , ) (f t u Mλ −≤  

1 1) ,0 ,0 ,u u r t Tε ≤ ≤ ≤ ≤  Let 1 { :|| || }u E u rΩ = ∈ < . We 
find that, for any 1u PΩ∈∂ ∩ , 

[0, ]
|| || max | ( ) |

t T
A u A u tλ λ∈

= ≤  

0[0, ]
max ( ) ( ) ( , ( ))

T

t T

t T s h s f s u s s
d

β γλ
∈

+
− ∇∫ ≤ 

1 1 0
( ) ( ) ( )

TT M r T s h s s
d

β γ ε+
− − ∇ =∫  

1 0
( ) ( )

TTr M T s h s s
d

β γ+
− ∇ −∫  

1 1 0
( ) ( )

TTr T s h s s r
d

β γε +
− ∇ <∫ . (14) 

We now claim that 

1 1, , 1.A u u u Pλ δ Ω δ≠ ∀ ∈∂ ∩ ≥  (15) 
In deed, if not, then there exist 1u PΩ∈∂ ∩  and 

1 1δ ≥  such that 1 1 1A u uλ δ= . Clearly, 1 1 1|| || || ||A u uλ δ= ≥  

1 1|| ||u r=  is a contradict to (14). Hence (15) holds. 
Employing (15) and lemma 5, we get 

1( , , ) 1.i A P Pλ Ω ∩ =  (16) 
Next we consider the second inequality of (13). 

From the definition of f∞ , we may choose 1 0rζ > >  
and 2 0ε >  such that 2[ , ]

min ( , ) ( ) , .
t T

f t u m u u
η

λ ε ζ
∈

+≥ ≥  
That is 

2( , ) ( ) , , [ , ].f t u m u u t Tλ ε ζ η+ ∈≥ ≥  (17) 
Denote 2 1 2/ , { :|| || },r r r u E u rζ ζ Ω> > > = ∈ <  and 

define and operator F by 
( ) 1, .Fu t u E≡ ∈  (18) 

It is easy to verify that 2:F P PΩ∂ ∩ →  is com- 
pletely continuous. We see that 

2
inf || || 0u P FuΩ∈∂ ∩ > . So, 

condition (i) of Lemma 6 holds. Next we prove further 
condition (ii) of Lemma 6. 

2, , 0.u A u Fu u Pλ δ Ω δ− ≠ ∀ ∈∂ ∩ ∀ ≥  (19) 
Suppose that (19) is not true, then there exist 2u ∈  

2 PΩ∂ ∩  and 2 0δ ≥  such that 2 2 2 2.u A u Fuλ δ− =  By 
Lemma 4, we find 2 2min{ ( ), [ , ]} || || .u t t T r uη ζ∈ >≥  
Therefore, we have by (17) that  

2 2 2( , ( )) ( ) ( ),( , ) [ , ] [ , ],f t u s m u s t s T Tλ ε η η+ ∈ ×≥  (20) 
let 

1 2min{ ( ), [ , ]}K u t t Tη= ∈ . (21) 
Then, by lemma 4, 1 2 2|| || .K r u rr ζ= >≥  By (10), 

(18) and (20), we have 

2 2 2 2( ) ( ) ( )u A u Fuλη η δ η= + ≥  

2 2( ) ( ) ( , ( ))
T

T s h s f s u s s
d η

βη γλ δ+
− ∇ +∫ ≥  

2 2[ , ]
min ( ) ( ) ( )( )

T

t T
u t T s h s m s

d ηη

βη γ ε
∈

+
− + ∇ =∫  

1 ( ) ( )
T

K m T s h s s
d η

βη γ+
− ∇ +∫  

1 2 ( ) ( ) .
T

K T s h s s
d η

βη γε +
− ∇∫  

Similarly, we can get  

2 2 2 2( ) ( ) ( )u T A u T Fu Tλ δ= + ≥  

2 2
( ) ( ) ( ) ( , ( ))

T
T s h s f s u s s

d η

α βη γλ δ+
− ∇ +∫ ≥  

1
( ) ( ) ( )

T
K m T s h s s

d η

α βη γ+
− ∇ +∫  

1 2
( ) ( ) ( ) .

T
K T s h s s

d η

α βη γε +
− ∇∫  
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Furthermore, from the process of the proof of 
paper [3], we obtain 

2 2 2 2[ , ] [ , ]
min ( ) min [ ( ) ( )]

t T t T
u t A u t Fu tλη η

δ
∈ ∈

= + ≥  

2 2 2min{ ( ), ( )}A u A u Tλ λη δ+ ≥  

1
1 1 2( )min{1, }K K m

d
βη γε α− +

+ ⋅  

1
1 1 2( ) ( ) ,

T
T s h s s K K m

η
ε −− ∇ = +∫  

and so it implies from the second inequality (C1) that 

2 1( ) , [ , ].u t K t Tη> ∀ ∈  (22) 
But, (22) is incompatible in light of (21). Thus the 

assertion (19) holds. Now utilizing lemma 2.6, we get 

2( , , ) 0.i A P Pλ Ω ∩ =  (23) 
Owing to (9), (23) and the fact that 1 2Ω Ω⊂ , we 

have 12 2 1( ,( \ ) , ) ( , , ) ( ,i A P P i A P P i Aλ λ λΩ Ω Ω Ω∩ = ∩ − ∩  
, ) 0 1 1.P P = − = −  In view of of paper [14], we conclude 

that the operator Aλ  has a fixed point *
12( \ )u Ω Ω∈ ∩  

P  such that *
1 20 || ||r u r< < < . It follows that *u  is a 

positive solution of the BVP(I). 
Theorem 2 Assume that (C1, (C2) and (C4) hold. 

Then, for each λ  satisfying 

0( / , / ),m f M fλ ∞∈  (24) 
There exists at least one positive solution of BVP(I). 

Proof  For any λ  satisfying (24), we have 

00 / ,mf f f Mλ∞ ∞= <≤  

0 0 / .m f Mf fλ ∞< ∞≤ ≤  (25) 
From the first inequality of (25), we know there 

exist 3 0r >  and 3 0ε >  such that 
[0, ]

max ( , ) (
t T

f t u Mλ
∈

−≤  

3 3) , .u u rε ≥  Thus, 

3 3( , ) ( ) , , [0, ].f t u M u u r t Tλ ε− ∈≤ ≥  

Set 
3( , ) [0, ] [0, ]

: max ( , )
t u T r

f t uζ λ
∈ ×

= . Hence 

3( , ) ( ) ,( , ) [0, ] [0, ).f t u M u t u Tλ ζ ε+ − ∈ × ∞≤  (26) 
Let 3 3/r ζ ε>  and 3 3{ :|| || }u E u rΩ = ∈ < . Then, by 

(9) and (26), we obtain for any 3 ,u PΩ∈∂ ∩  

[0, ]
|| || max | ( ) |

t T
A u A u tλ λ∈

= ≤  

0[0, ]
max ( ) ( ) ( , ( ))

T

t T

t T s h s f s u s s
d

β γλ
∈

+
− ∇∫ ≤ 

30
( ) ( )[ ( ) ( )]

TT T s h s M u s s
d

β γ ζ ε+
− + − ∇∫ ≤ 

3 3 30
( ) ( ) ( )

TTr M T s h s s r
d

β γ ε ζ+
− ∇ − − ⋅∫  

30
( ) ( ) .

TT T s h s s r
d

β γ+
− ∇ <∫  (27) 

We claim that  

3 3 3, , 1.A u u u Pλ δ Ω δ≠ ∀ ∈ ∩ ≥  (28) 
In fact, if (28) is false, there exist 3 3u PΩ∈ ∩  and 

3 1δ ≥  such that 3 3 3A u uλ δ= . It implies that 3| ||A uλ =  

3 3 3 3|| || || ||u u rδ =≥  is in contradiction with (27). Hence 
(28) holds. Applying (28) and Lemma 5, we have 

3( , , ) 1i A P Pλ Ω ∩ = . (29) 
Now we consider the second inequality of (25). We 

first note that there exist 3 0r ς> >  and 4 0ε >  such 
that 4[ , ]

min ( , ) ( ) ,0 ,
t T

f t u m u u
η

λ ε ς
∈

+≥ ≤ ≤  i.e., 

4( , ) ( ) ,0 , [ , ].f t u m u u t Tλ ε ς η+ ∈≥ ≤ ≤  
Let 4 3r r rς= <  and 4 4{ :|| || }.u E u rΩ = ∈ <  Define 

an operator F as in (18). Then 4:F P PΩ∂ ∩ →  is 
completely continuous and 

4

inf || || 0.
u P

Fu
Ω∈∂ ∩

>  Therefore, 
the condition (i) of Lemma 6 holds. Next we will show 
that condition (ii) of Lemma 6. 

4 4 4, , 0,u A u Fu u Pλ δ Ω δ− ≠ ∀ ∈∂ ∩ ∀ ≥  (30) 
is valid. If not, there exist 4 4 4 4(|| || )u P u rΩ ς∈∂ ∩ = <  
and 4 0δ ≥  such that 4 4 4 4.u A u Fuλ δ− =  

2 4min{ ( ) : [ , ]}.K u t t Tη= ∈  (31) 
Then, from Lemma 4, 2 4|| || 0K r u >≥ . As in the 

proof of Theorem 1, we have 

4 4 4 4( ) ( ) ( )u A u Fuλη η δ η= + ≥  

4 4( ) ( ) ( , ( ))
T

T s h s f s u s s
d η

βη γλ δ+
− ∇ +∫ ≥  

2 ( ) ( )
T

K m T s h s s
d η

βη γ+
− ∇ +∫  

2 4 ( ) ( ) ,
T

K T s h s s
d η

βη γε +
− ∇∫  

and 

4 4 4 4( ) ( ) ( )u T A u T Fu Tλ δ= + ≥  

4 4
( ) ( ) ( ) ( , ( ))

T
T s h s f s u s s

d η

α βη γλ δ+
− ∇ +∫ ≥  

2
( ) ( ) ( )

T
K m T s h s s

d η

α βη γ+
− ∇ +∫  

2 4
( ) ( ) ( ) .

T
K T s h s s

d η

α βη γε +
− ∇∫  

Likewise, from the process of the proof of paper 
[3], we have 

4 4 4 4[ , ] [ , ]
min ( ) min [ ( ) ( )]

t T t T
u t A u t Fu tλη η

δ
∈ ∈

= + ≥  
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4 4 4 2min{ ( ), ( )} (A u A u T Kλ λη δ+ +≥  

1
2 4 ) min{1, }K m m

d
βη γε α− +

⋅  

1
2 2 4( ) ( ) ,

T
T s h s s K K m

η
ε −− ∇ = +∫  

and so it follows from the second inequality (C1) that 

4 2( ) , [ , ].u t K t Tη> ∀ ∈  (32) 
Obviously, (32) contradicts (31). It implies that (30) 

is valid. 
Now utilizing Lemma 6, we obtain 

4( , , ) 0.i A P Pλ Ω ∩ =  (33) 
According to (29), (33) and the fact that 4 3Ω Ω⊂ , 

we have 44 2 3( ) , [ , ]. ( , ( \ ) , )u t K t T i A P Pλη Ω Ω> ∀ ∈ ∩ =  

3 4( , , ) ( , , ) 1 0 1.i A P P i A P Pλ λΩ Ω∩ − ∩ = − = Owing to [15],  
we obtain that the operator Aλ  has a fixed point *u ∈ 

43( \ ) PΩ Ω ∩  such that 4 * 30 || || .r u r< < <  It follows that 

*u  is a positive solution of the BVP(I). 
If we take the eigenvalue 1λ =  in Theorem 1 and 

Theorem 2, then we obtain: 
Corollary 1 Assume that (C1), (C2) and (C3) (or 

(C4)) hold. Then the three-point boundary value 
problem (4) has at least one positive solution. 

Remark 2 In Corollary 1, the function f may not 
be superlinear case ( 0 0,f f∞= = ∞ ) or sublinear case 
( 0f = , 0f ∞∞ = ). 

Next, we are concerned with the case of no 
positive solution for the three-point boundary value 
problem (I): 

Theorem 3 Let (C1) and (C2) hold. In addition let 
0f < ∞  and f ∞ < ∞  be satisfied. Then there exists 1λ >  

0  such that for all 10 λ λ< < , the BVP(I) has no 
positive solution. 

Proof Since 0f <∞  and f ∞<∞ , there exit 1 0,τ >  

2 10, 0hτ > >  and 2 0h >  such that 1 2h h<  and for t∈  

1[0, ],0T u h≤ ≤ , we have 1( , )f t u uτ≤ , and for [0,t∈  

2],T u h≥ , we get 2( , )f t u uτ≤ . Let 
*

1 2max{ , ,max{ ( , ) / , [0, ],f t u u t Tτ τ τ= ∀ ∈  

1 2}} .h u h < ∞≤ ≤  (34) 
Thus, for [0, ], ,t T u +∈ ∈R we have *( , )f t u uτ≤ . 

Assume that u is a positive solution BVP(I), we will 
show that this leads to a contradiction for  

* 1
1 0

0 ( ( ) ( ) ) .
T

T s h s s
d

βη γλ λ τ −+
< < = − ∇∫  

In fact, if for 10 , [0, ], ( ) ( ),t T A u t u tλλ λ< < ∈ =  we 
have 

[0, ]
|| || || ( ) || max | ( ) |

t T
u A u t A u tλ λ∈
= = ≤ 

0
( ) ( ) ( , ( ))

TT T s h s f s u s s
d

β γ λ+
− ∇∫ ≤  

*

0[0, ]
max ( ) ( ) ( )

T

t T

T u t T s h s s
d

β γ λτ
∈

+
− ∇∫ ≤  

*

0
( ) ( ) || || || ||,

TT T s h s s u u
d

β γ λτ+
− ∇ <∫  

which is a contradiction. 
Theorem 4 Let (C1) and (C2) hold. Assume that 

( , ) [ , ] [0, )
inf ( , ) / 0

t u T
f t u u

η∈ × ∞
> , 

is satisfied. Then there exist 2 0λ > , the BVP(I) has no 
positive solution. 

Proof Since 
[ , ]
inf ( , ) / 0

t T
f t u u

η∈
> , for all ,u +∈R  

we have 

* inf{ ( , ) / , [0, ], } 0f t u u t T uτ += ∀ ∈ ∈ >R  (35) 
Thus, for [0, ], ,t T u +∈ ∈R we deduce ( , )f t u ≥  

* .uτ  Suppose u is a positive solution of the BVP(I), we 
will verify that this lead to a contradiction for  

1
*(min{1, ) ( ) ( ) )

TTr T s h s s
d η

β γα τ −+
− ∇∫ , 

indeed, for 2, [ , ],t Tλ λ η> ∈  if ( ) ( )A u t u tλ = , we have 

[ , ]
|| || || ( ) || min | ( ) |

t T
u A u t A u tλ λη∈
= =≥  

min{ ( ), ( )}A u A u Tλ λη ≥  

min{1, } ( ) ( ) ( , ( ))
T

T s h s f s u s s
d η

βη γα λ +
− ∇∫ ≥  

[ , ]
min{1, } min ( )

t T
u t

dη

βη γα λ
∈

+
⋅  

0

( , ( )) )( ) ( ) min{1, }
( )

T f s u s sT s h s s
u s

α λ∇
− ∇ ⋅∫ ≥  

* 0
|| || ( ) ( ) || ||,

T
r u T s h s s u

d
βη γτ +

− ∇ >∫  

which is a contradiction. 

4 Two Examples 

Example 1 Set {0} { / 4 : }i i= ∪ ⊂T N . We consi- 
der the following BVP: 

1 100( ) 0,[0,3] ,
200 1

(0) (0) 0, (1) (3).

t uu t
u

u u u u

λΔ∇

Δ

+⎧ + = ∩⎪
+⎨

⎪ − = =⎩

T
 (II) 
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From the BVP(II), we have 1, 1, 1, 1,β γ α η= = = =  

3.T =  Then ( ) (1 ) 2, 4,d T Tβ αη γ α β γ βη= − + − = + = +  

2.γ =  Denote 
1 100( , ) ( ) : , ( ) : ,

1 200
u tf t u f u h t

u
+

= = =
+

 

consequently, ( , )f t u  is continuous in respect with 

( , ) [0, ] [0, )t u T∈ × ∞  and ( )h t  is continuous. Applying 

the formula (1) and (2), we have 
3

0 0

283( ) ( ) (3 ) ,
200 12 800

T sT s h s s s s− ∇ = − ∇ =∫ ∫  

3

1

193( ) ( ) (3 ) ,
200 12 800

T sT s h s s s s
η

− ∇ = − ∇ =∫ ∫  

Therefore, condition (C1) of Theorem 1 is satisfied. 

Furthermore, we compute  
1

0

6 400( ( ) ( ) ) 22.61,
283

TTM T s h s s
d

β γ −+
= − ∇ = ≈∫  

1(min{1, } ( ) ( ) )
T

m T s h s s
d η

βη γα −+
= − ∇ =∫  

12 800 66.32,
193

≈  

0

[0, ]0

( , )limsup max 1 ,
t Tu

f t uf M
u+ ∈→

= = <  

[0, ]

( , )liminf min 100.
u t T

f t um f
u∞ →∞ ∈

< = =  

So, condition (C3) of Theorem 1 is met. Clearly, /m   
00.663, / 22.61.f M f∞ ≈ ≈  Taking (0.663 2,22.612)λ∈ ⊂  

0( / , / )m f M f∞ , then, by Theorem 3 and Theorem 4, the 
BVP(II) has no positive solution. 

On the other hand, we consider that BVP has the 

case of no positive solution. Now, we know, by Lemma 

4, (34) and (35), 
( ) 1min{ , , } ,

3
Tr

T T T
α η αη η

αη
−

= =
−

 

* * 1
1 0

100, ( ( ) ( ) ) 0.226 2,
TT T s h s s

d
β γτ λ τ −+

= = − ∇ ≈∫  

* 2 *1, (min{1, }r
d

βη γτ λ α τ +
= = ⋅  

1( ) ( ) ) 198.97.
T

T s h s s
η

−− ∇ ≈∫  

therefore, if (0,0.226 2)λ∈  or (198.97, ),λ∈ ∞  then, by 

Theorem 3 and Theorem 4, the BVP(II) has no positive 

solution. 
Example 2 Set {0,1} {1 / 4 : }i i= ∪ + ⊂T N . We 

consider the following BVP: 

1 100( ) 0,[0,3] ,
200 1

(0) (0) 0, (1) (3).

t uu t
u

u u u u

λΔ∇

Δ

+⎧ + = ∩⎪
+⎨

⎪ − = =⎩

T
 (III) 

Clearly, from the BVP(III), we know 1, 1,β γ= =  
1, 1, 3, 2, 4, 2.T d Tα η β γ βη γ= = = = + = + =  Denote 

1 100( , ) ( ) : , ( ) : ,
1 200

u tf t u f u h t
u

+
= = =

+
 

Consequently, ( , )f t u  is continuous in respect 
with ( , ) [0, ] [0, )t u T∈ × ∞  and ( )h t  is continuous. Em- 
ploying (1) and (2), we have 

1

0 0
( ) ( ) (3 )

200
T sT s h s s s s− ∇ = − ∇ +∫ ∫  

3

1

803(3 ) ,
200 38 400
ss s− ∇ =∫  

3

1

193( ) ( ) (3 ) .
200 12 800

T sT s h s s s s
η

− ∇ = − ∇ =∫ ∫  

Therefore, condition (C1) of Theorem 2 is satisfied. 
Moreover, we compute 

1

0

19 200( ( ) ( ) ) 23.911,
803

TTM T s h s s
d

β γ −+
= − ∇ = ≈∫  

1(min{1, } ( ) ( ) )
T

m T s h s s
d η

βη γα −+
= − ∇ =∫  

12 800 66.32,
193

≈  

[0, ]

( , )limsup max 1 ,
t Tu

f t uf M
u

∞

∈→∞
= = <  

0 [0, ]0

( , )liminf min 100.
t Tu

f t um f
u+ ∈→

< = =  

So, condition (C3) of Theorem 2 is fulfilled. 
Clearly, 0/ 0.663, / 23.91.m f M f ∞≈ ≈ Taking (0.663 2,λ∈  

023.912) ( / , / )m f M f ∞⊂ . Then conditions of Theorem 
3.2 are met. So the BVP (III) has at least one positive 
solution. 

On the other hand, as in the computation of 
Example 1, we have 

( ) 1min{ , , } ,
3

Tr
T T T
α η αη η

αη
−

= =
−

 

* * 1
1 0

100, ( ( ) ( ) ) 0.2391,
TT T s h s s

d
β γτ λ τ −+

= = − ∇ ≈∫  

* 2 *1, (min{1, } Tr
d

β γτ λ α τ +
= = ⋅  

1( ) ( ) ) 198.96.
T

T s h s s
η

−− ∇ ≈∫  

Therefore, if (0,0.239 2)λ∈  or (198.967, ),λ∈ ∞  
then, by Theorem 3 and Theorem 4, the BVP(III) has no 
positive solution. 
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时间尺标上本征值问题的正解 

胡良根 
（宁波大学 理学院，浙江 宁波 315211） 

摘要: 通过讨论本征值 λ , 考虑了时间尺度上三点边值问题正解的存在性与非存在性: 
( ) ( ) ( , ( )) 0, (0, ) ,
(0) (0) 0, ( ) ( ),

u t h t f t u t t T
u u u u T

λ

β γ α η

Δ∇

Δ

+ = ∈ ∩

− = =

T
 

其中, T是时间尺度, , 0, 0, (0, ( )),0 /T Tβ γ β γ η ρ α η+ > ∈ < <≥ 和 ( ) (1 ) 0d Tβ αη γ α= − + − > . 此外, 使用 2 个

例子说明其结果. 

关键词: 时间尺度; 正解; 本征值; 不动点 

中图分类号: O175.8  文献标识码: A 
（责任编辑  章践立） 


