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The investigation of integrability and the exact 
solutions of nonlinear equations is an important aspect 
in the study of nonlinear physical phenomena. One of 
the most powerful method to prove the integrability of a 
model is the so-called Painlevé analysis developed by 
WTC (Weiss-Tabor-Canvela)[1]. More methods have 
been proposed in succession through the efforts of 
researchers, such as the Conte's invariant method[2], the 
Pickering method[3], the extended Painlevé analysis 
method[4-5], and the W-K algorithm[6-7]. With the help of 
these methods, some interesting results are obtained[8]. 
Though the precise equivalence of Painlevé property 
and Painlevé integrability remains to be determined, a 
connection between integrability and the Painlevé 
property has been noted since the work of 
Kowalevskaya[9]. Therefore, the integrability, the Lax 
pairs and Bäcklund transformations of equations can be 
studied. The rest of this paper is organized as followed, 
In section 2, we review the Painlevé integrability of the 
modified Camassa-Holm equation simply. In section 3, 
we use the standard truncated Painlevé expansion to 
obtain some exact solutions of the model. The section 4 , 
we use the nostandard truncated Painlevé expansion to 

obtain some exact solutions of the model. The section 5 
is a short conclusion. 

1 Painlevé integrability of the 
modified Camassa-Holm equation 

In this paper, we consider the modified Camassa- 
Holm equation shallow water equation[10]. Many 
powerful methods such as the inverse scattering 
transform, GRE method[11], discrete variational 
derivative method[12], the homotopy analysis method[13], 
tanh-sech method, sine-cosine method[14] and exp- 
function method[15] were used to investigate this 
equation. The study of its integrability and exact 
solutions plays an important role in the research of 
nonlinear physical phenomena[16-18]. That is the 
equation: 

23 2 0,t xxt x x xx xxxu u u u u u uu− + − − =  (1)  
where u  can be written as 
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α  is a negative integer. Substituting 0u u αξ=  into 
equation (1), one can easily find that 2α = − , by using 
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the leading order analysis, the recursion relation of the 
expansion coefficient ju  are given by, 

( 1)( 6)( 8) jj j j u+ − − =  

0 1 1( , , , , , , ),j x t jF u u uξ ξ −  (2) 
where jF  is a function of 0 1 1, , , ju u u −  and the 
derivatives of ξ , from equation (2), we know that the 
resonances are located at 1,6,8j = − , the resonance at 

1j = −  represents the arbitrariness of the expansion 
function. So, we only have to prove that 6, 8j =  
should be satisfied identically. From[19], we know that by 
using the Kruskal’s method[20], the resonance at 

6, 8j =  is satisfied identically. 
So, from the above simple analysis, we can review the 

conclusion that the modified Camassa-Holm equation 
possesses the Painleve property. It is Painlevé integrable. 

2 Standard truncated expansion 

In oeder to obtain the exact soliton solutions of 
equation (1), we truncate the Painlevé expansion at the 
constant level term[21] 

0
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On balancing the highest-order contribution from 
the linear term with the highest-order contributions from 
the nonlinear term, we have 2j = . namely, equation (3) 
can expressed as 

0 1
22( , ) .u uu x t u

ξ ξ
= + +  (4) 

Substituting equation (4) into equation (1), and 
letting the coefficient of the power of ξ vanish, through 
a complicated calculation, the following results can be 
obtained directly. 
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(2 3 4 ).t x xxxξ ξ ξ+ +  (5) 

In order to simplify the solutions, we may let 

2 0u = . Firstly, we take 0( , ) 1 kx tx t e ω ξξ + += +  into 
consideration. Substituting it into equation (5), we get 

0( 2 )32 , 1, 1 x tk k e ξω ξ ± − += − = ± = + , so, the modified 
Camassa-Holm equation have the following exact solution: 

1
0

4( , ) ,
1 cosh( 2 )

u x t
x t ξ
−

=
+ − +

 (6) 

2
0

4( , ) ,
1 cosh( 2 )

u x t
x t ξ
−

=
+ − + +

 (7) 

where 0ξ  is an arbitrary constant (Fig. 1). It is noted 
that solutions (6) and (7) are the same by using the 
extended tanh method in [22]. 

 
Fig. 1  Plots of 1( , )u x t  at 0 = 0ξ  

Meanwhile, we introduce the the mobious 
transformation: 

,a b
c d

ξξ
ξ

+
→

+
 ad bc≠ , (7) 

where , ,a b c  are arbitrary constant and ,c d  can not 
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to be zero at the same time, with the mobious 
transformation, we can get another 1ξ , and  

0

0

( 2 )

1 ( 2 )
(1 )
(1 )

x t

x t
a b e
c d e

ξ

ξξ
± − +

± − +

+ +
=

+ +
. (8) 

Substituting equation (9) into equation (5), we get 
d c= −  or 0d = , when 0d = , we just get 1( , )u x t , 
when d c= − , exact solutions of the mCH equation 
obtained: 

0
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where ,a b  and 0ξ  are arbitrary constants and can not 
to be zero at the same time. When 0a = , solution (10) 
reduced to be solution (6). 

3 Nostandard truncated expansion 

Applying the extended truncated expansion and 
obtaining the partial derivatives of variable ξ  with 
respect to x  and t  respectively as 

2

1 ,
2x

Sξξ = +  

21 ( ) ,
2t x xxC C C CSξ ξ ξ= − + − +  (10) 

where 
2

2
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S Cφ φ φ
φ φ φ

= − = − , (11) 

the solutions of the system can be expressed as 
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=
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when 2M = , the results are equivalent to the soliton 
solutions of the standard truncated expansion,and can be 
verified easily. 

Now, let 4M = , then 
4

2

0
( , ) ( , ) j

j
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u x t u x t ξ −

=

=∑ , 

substituting it into equation (1), and take the negative 
power of ξ  as zero, we obtain the following 
equations: 

0 1 2
8 18, 0, ,
3 3

u u u S C= = = −  

3
1 2 ,
3 3x xu C S= −  

2 2
4

1 1 1 2 2 ,
60 20 6 15 15xx xxu C C C S S= − + − − +  

9 90 40 40 30x x x t xxxC C S CS S C+ + + + +  

4 6 28 0,xxx x xS CC SS− − =  

10 9 30 10xt xx xx xxS C SC CS+ + + +  

40 4 6 28x x xxxx xx xxC S S CC SS+ − − −  
2 26( ) 28( ) 0.x xC S− =  (13) 

In order to simplify the soliton solution, we may 
set 3 40, 0u u= = , and we have following results: 

Case 1  Firstly, we assume that φ  have the 
following form: 

tan( ).kx t cφ ω= + +  (14) 

Substituting equation (15) into equation (12), then 
to equation (14), with the help of maple software, we 
can get that 

43 9 128( )
2 2

k kω −
= − ± , (15) 

firstly, when we take  
43 9 128( )

2 2
k kω −

= − + , 

43 9 128tan( ( ) )
2 2

kkx kt cφ −
= + − + + ,  (16) 

here, we introduce the Mobious transformation: 
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c d

φφ
φ

+
→ ≠

+
,  (17) 

where , , ,a b c d are arbitrary constant and ,c d  can not 
to be zero at the same time, so we can get another φ  
that satisfied equation (12) and equation (14) through 
the mobious transformation, namely, 

4

4

3 9 128tan( ( ) )
2 2 .
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−
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−
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 (18) 

Substitute equation (19) into equation (12), the 
value of C  and S  obtained 

4
23 9 128 , 2

2 2
kC S k−

= − = , (19) 

then substituting equation (20) into equation (14), 
after a complex calculation, we get 



 
28 宁波大学学报（理工版） 2012  

 

43 9 128tan( ( ) )
2 2

kkx t t c k

k
ξ

−
+ − + +

= , (20) 

2 4

2
16 1 9 128

3 2 6
k ku −

= − + , (21) 

another solution of the mCH equation is also obtained: 
2 4

2
3

16 1 9 128( , ) 8 cot(
3 2 6
k ku x t k kx−

= − + + +  

4
23 9 128( ) ) ,

2 2
kt t c k−

− + +  (22) 

where ,k c  are arbitrary constants (Fig. 2). 

 
Fig. 2  Plots of 3 ( , )u x t  at ,= 1 / 2 = 1k c  

When take 4( 3/2 9 128 /2) ,k kω = − − −  another 
solution is obtained, namely, 

2 4
2

4
16 1 9 128( , ) 8 cot(

3 2 6
k ku x t k kx−

= − − + +  

4
23 9 128( ) )

2 2
kt t c k−

− − + , (23) 

where ,k c  are arbitrary constant. 
Case 2  In this case, take tanh( )kx t cφ ω= + + , 

similar to case 1, we get  

1
( 1)
e

k e

η

ηξ +
= −

−
, (24) 

where 42 (3 9 128 )kx k kt ckη = − + − − − . 

Some exact solutions of the mCH equation are 
obtained: 
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= − − + + +
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2 4 2
6 ( , ) 16 / 3 1/ 2 9 128 / 6 8u x t k k k= − − − − + ⋅  
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where ,k c  are arbitrary constants. 
Case 3  We also can take coth( )kx t cφ ω= + + , 

in this case, the value of ξ  is equal to the ξ  in case 2. 
The solutions of the mCH equation are getted: 
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2 4
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4
23 9 128( ) ) ,

2 2
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where ,k c  are arbitrary constants. 

4 Conclusions 

In this paper, we have reintroduced the Painlevé 
property of the modified CH equation simply, then 
drawn the conclusion that it is Painlevé integrable. 
Applying the standard truncated expansion and 
nonstandard truncated expansion methods, we obtained 
two types of exact soliton solutions, respectively. We 
can use these methods to derive more solutions of other 
nonlinear equations. 
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修正的 Camassa-Holm方程的 Painlevé性质及其精确解 

雷  娅 

（宁波大学 理学院, 浙江 宁波 315211） 

摘要: Painlevé展开法是求解非线性偏微分方程的最有效的方法之一, 主要利用 Painlevé标准截断展开和
非标准截断展开法及Maple软件来求得修正的 Camassa-Holm (mCH)方程的精确解. 
关键词: 修正的 Camassa-Holm方程; 标准截断展开; 非标准截断展开; 精确解 
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