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Abstract: Expansion of Painlevé is one of most effictive methods for solving non-linear partial differential

equations. In this paper, using the Painlevé standard and non-standard cut-expansion as well as Maple

softwar, the revised pricise solution of Camassa-Holm (mCH) is obtained.
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The investigation of integrability and the exact
solutions of nonlinear equations is an important aspect
in the study of nonlinear physical phenomena. One of
the most powerful method to prove the integrability of a
model is the so-called Painlevé analysis developed by
WTC (Weiss-Tabor-Canvela)!!. More methods have
been proposed in succession through the efforts of
researchers, such as the Conte's invariant method'”, the
Pickering method™, the extended Painlevé analysis
method*?, and the W-K algorithm'®”, With the help of
these methods, some interesting results are obtained™.
Though the precise equivalence of Painlevé property
and Painlevé integrability remains to be determined, a
connection between integrability and the Painlevé
property has been noted since the work of
Kowalevskayal”. Therefore, the integrability, the Lax
pairs and Béacklund transformations of equations can be
studied. The rest of this paper is organized as followed,
In section 2, we review the Painlevé integrability of the
modified Camassa-Holm equation simply. In section 3,
we use the standard truncated Painlevé expansion to
obtain some exact solutions of the model. The section 4 ,

we use the nostandard truncated Painlevé expansion to
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obtain some exact solutions of the model. The section 5

is a short conclusion.

1 Painlevé integrability of the
modified Camassa-Holm equation

In this paper, we consider the modified Camassa-

Holm equation shallow water equation'”.

Many
powerful methods such as the inverse scattering
transform, GRE method!""), discrete variational
derivative method!'?, the homotopy analysis method'"*,
tanh-sech method, sine-cosine method"” and exp-
function method"” were used to investigate this
equation. The study of its integrability and exact

solutions plays an important role in the research of

nonlinear physical phenomena!'®'®. That is the
equation:
u, —u, +3u’u,-2uu, —uu =0, )

where U can be written as
+30
U=D"UE " E = £, =u (X1,
=0

o is a negative integer. Substituting U=u,£“ into

equation (1), one can easily find that & =-2, by using

JOURNAL OF NINGBO UNIVERSITY ( NSEE ): http://3xb.nbu.edu.cn

Foundation items: Supported by the National Natural Science Foundation of China (10875078); Zhejiang Provincial Natural Science Foundation (Y7080455); .

Wong K C Magna Fund in Ningbo University.

Author’s biography: LEI Ya (1987-), female, Xinyang Henan, post of graduate student, research domain: mathematical physics. E-mail: ren_hi@126.com



26

2012

the leading order analysis, the recursion relation of the
expansion coefficient U; are given by,

(J+D(-6)(j-8)u; =

Fj(§x7§t7“.9u07u1"”’uj—l)7 (2)

where F; is a function of U,,U,,---,U;, and the
derivatives of &, from equation (2), we know that the
resonances are located at j=-1,6,8, the resonance at
j=—1 represents the arbitrariness of the expansion
function. So, we only have to prove that j=6,8
should be satisfied identically. From'"”), we know that by
using the Kruskal’s method®”, the resonance at
j=6,8 is satisfied identically.

So, from the above simple analysis, we can review the
conclusion that the modified Camassa-Holm equation

possesses the Painleve property. It is Painlevé integrable.
2 Standard truncated expansion

In oeder to obtain the exact soliton solutions of
equation (1), we truncate the Painlevé expansion at the

constant level term™!

. i
ULt =706 DU (X DE (D). 3)

On balancing the highest-order contribution from
the linear term with the highest-order contributions from
the nonlinear term, we have j =2 . namely, equation (3)
can expressed as

u(x,t):%+%+uz. 4)

Substituting equation (4) into equation (1), and
letting the coefficient of the power of & vanish, through
a complicated calculation, the following results can be

obtained directly.
Uy = 8§x2’u1 =—8C»
_6§><2x + 8§x§xxx + ;5

— X
u, = ,

3¢
§a(8) = 868w —0(£0)’ +88 0 —
20600 S
12(£,) Sunone = 60(£,)" S + 90(E)" =

1808, (&) Sy +40(&,) S =
3650 = (&) (6"
144(&£,) =24& (2& +12E, +3E)-
(G0)” = 48(5,)" (£ S = 328(E,)"
(26, +3&, + 4080 +8(8,) S
(28 +38, + 450,
216&, o =36& (25 +12&, +3EN(EL)' -
1448, ()7 (,)" +12(5)" +
(B =88 — 128,800 + & —8(80)")
(Eo)” +24(E,) G (28, +38, + 48,060 —
2(&)’ (&8, +8(5x)" ()
(28 +36, 480 ©)
In order to simplify the solutions, we may let
u,=0 . Firstly, we take &(X,t)=1+€*""% into
consideration. Substituting it into equation (5), we get
o==-2k, k==%1, £=1+e"7"% 50, the modified

Camassa-Holm equation have the following exact solution:

—4
, (6)
1+cosh(x-2t+¢&))
—4
1+cosh(-x+2t+&,)’

u,(x,t)=

u,(x,t)=

(N

where &, is an arbitrary constant (Fig. 1). It is noted
that solutions (6) and (7) are the same by using the
extended tanh method in [22].

Fig.1 Plotsof u,(x,t) at & =0

Meanwhile, we introduce the the mobious

transformation:

a+hé
&— Tae’

where a,b,c are arbitrary constant and c,d can not

ad #=bc, @)
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to be zero at the same time, with the mobious
transformation, we can get another &, and
a+b(1+e V)
C+d(l+e 20y’

S (8)

Substituting equation (9) into equation (5), we get
d=—C or d=0, when d=0, we just get u,(X,t),
when d =-c, exact solutions of the mCH equation
obtained:
8b(a +b)e Ve
(@+b+bg )2’

u(x,t)= )]

where a,b and &, are arbitrary constants and can not
to be zero at the same time. When a =0, solution (10)

reduced to be solution (6).
3 Nostandard truncated expansion

Applying the extended truncated expansion and
obtaining the partial derivatives of variable & with

respectto X and t respectively as

g=1+5,

§=-C+CE-2(C,+CE, (10)
where

st 36 o_ 4 (11)

¢X 2 (¢X)2 ’ ¢X

the solutions of the system can be expressed as
M .
uet = u; (08, (12)
i=0

when M =2, the results are equivalent to the soliton
solutions of the standard truncated expansion,and can be
verified easily.
4
Now, let M =4, then u(x,t)=Y u,(x,H)¢'?,
=0
substituting it into equation (1), and take the negative
power of & as zero, we obtain the following

equations:

u, =8,u, =0,u, =§s —%C,

u, = —%Cz +2LOC —éCXX —%Sz +%SXX,
9C,+90C,S +40CS, +40S, +30C,,, +

4S,,, —6CC, —28SS, =0,
10S,, +9C,, +30SC,, +10CS,, +

40C,S, +4S,,, —6CC, —28SS, —

6(C,)* —28(S,)” =0. (13)
In order to simplify the soliton solution, we may

set U, =0,uU, =0, and we have following results:

Case 1

following form:

Firstly, we assume that ¢ have the

¢ = tan(kX + ot +C). (14)

Substituting equation (15) into equation (12), then
to equation (14), with the help of maple software, we
can get that

3 N9-128k*
o=(-=t——), 15
=3 ) (15)
firstly, when we take
4
a):(—g+ 9—-128k .
2 2

_ 4
¢:tan(kx+(—%+%28k)kt+c), (16)

here, we introduce the Mobious transformation:

PN a+bg
c+dg

,ad =bc, a7

where a,b,c,d are arbitrary constant and ¢,d can not
to be zero at the same time, so we can get another ¢
that satisfied equation (12) and equation (14) through

the mobious transformation, namely,

9-128k"

a+btan(kx+(—%+ )kt +c)

¢:
3 N9-128k*
2

c+d tan(kx + (—5 +

. (18)
)kt +c)

Substitute equation (19) into equation (12), the
value of C and S obtained

3 ~9-128k*
2 2

C ,S=2k*, (19)

then substituting equation (20) into equation (14),

after a complex calculation, we get
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V9-128k*
—t+
2

tan(kx + (—gt + c)k)

&= 2 ” . (0)
16k> 1 +/9-128k*

u,= 3 —§+ S , (21

another solution of the mCH equation is also obtained:

2 fo_ 2
u3(X,'£)=16k —l+ 9128k +8k” cot(kx +
3 2 6
_ 4
(—%t + —“9;28kt +o)k), (22)

where K, C are arbitrary constants (Fig. 2).

u
O—=NWrRA UL

Fig.2 Plotsof Uy,(X,t) at k=1/2,c=1
When take @ =(=3/2—+/9—128k*/2)k, another

solution is obtained, namely,

2 / _ 4
u,(x,t) = 1ok —%—%zgk+ 8k* cot(kx +
4
(—%t——“g_?gkuc)k)% (23)

where K, C are arbitrary constant.
Case 2 In this case, take ¢ =tanh(kx+ ot +cC),
similar to case 1, we get
e’ +1
ke"-1)"
where 77 =—2Kkx +(3—~/9—128k* )kt —ck .

Some exact solutions of the mCH equation are

£=- (24)

obtained:
2 fo_ 4
us(x,t)=—l6k LI £ 128k + 8k tanh(Kkx +
3 2 6
_ 4
(—%t __ﬂ;ZSkt +ok), (25)

U, (X,t)=—16k>/3—-1/2-~/9—128k* / 6+8k> -
V9 —128Kk*
2

tanh(kx + (—%t - t+c)k)’, (26)

where k,C are arbitrary constants.
Case 3 We also can take ¢ =coth(kx+wt+cC),
in this case, the value of & is equal tothe & in case 2.

The solutions of the mCH equation are getted:

16k’ 1 9-128k*

u,(x,t)= 3 5 + 8k coth(kx+
4
(<31 O128KT e, 27)
2 2
2 fo_ 2
ug(X,t)z—16k 1_vo-128k +8k*coth(kx +
3 2 6
_ 4
(—%t——V9 ;zgk t+o)k)?, (28)

where K, C are arbitrary constants.

4 Conclusions

In this paper, we have reintroduced the Painlevé
property of the modified CH equation simply, then
drawn the conclusion that it is Painlevé integrable.

Applying the standard truncated expansion and

nonstandard truncated expansion methods, we obtained
two types of exact soliton solutions, respectively. We
can use these methods to derive more solutions of other

nonlinear equations.
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