Trace formula for the Sturm-Liouville eigenvalue problem with its applications to
n-body problem

Xijun Hu
Department of Mathematics
Shandong University, P.R.C.
Based on works
with Yuwei Ou and Penghui Wang

Outline

- Krein-type Trace formula
- Applications to Estimate non-degenerate and Relative Morse index
- Estimate the stability of Lagrangian orbits in planar three body problems
- Hill-type formula

Krein-type Trace formula

- M.G.Krein 1950's, Krein considers the following system

$$
\begin{align*}
\dot{z}(t) & =\lambda J D(t) z(t) \tag{1}\\
z(0) & =-z(T), \tag{2}
\end{align*}
$$

where $D \geq 0$ and $\int_{0}^{T} D(t) d t>0, J=\left(\begin{array}{cc}0_{n} & -I_{n} \\ I_{n} & 0_{n}\end{array}\right)$.

- Let λ_{j} are the eigenvalues for the system (1-2), and $\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right)=\frac{1}{T} \int_{0}^{T} D(t) d t$

Krein's Trace formula

- Krein

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sum_{\left|\lambda_{j}\right|<r} \frac{1}{\lambda_{j}}=0 \tag{3}
\end{equation*}
$$

- Krein

$$
\begin{equation*}
\sum \frac{1}{\lambda_{j}^{2}}=\frac{T^{2}}{2} \operatorname{Tr}\left(A_{11} A_{22}-A_{12}^{2}\right) \tag{4}
\end{equation*}
$$

Krein's Trace formula

$$
\begin{equation*}
y^{\prime \prime}+\lambda R(t) y=0, \quad y(0)+y(T)=y^{\prime}(0)+y^{\prime}(T)=0, \tag{5}
\end{equation*}
$$

where $R(t)$ is continuous path of real symmetric matrices on \mathbb{R}^{n}.

- set $R_{\text {ave }}=\frac{1}{T} \int_{0}^{T} R(t) d t$ and

$$
\begin{equation*}
X(t)=\int_{0}^{t}\left(R(s)-R_{\text {ave }}\right) d s+C \tag{6}
\end{equation*}
$$

where C is a constant matrix which is chosen such that $X_{\text {ave }}=0$.

Krein's Trace formula

- Krein

$$
\begin{equation*}
\sum \frac{1}{\lambda_{j}}=\frac{T}{4} \int_{0}^{T} \operatorname{Tr}(R(t)) d t \tag{7}
\end{equation*}
$$

- Krein

$$
\begin{equation*}
\sum \frac{1}{\lambda_{j}^{2}}=\frac{T}{2} \int_{0}^{T} \operatorname{Tr}\left(X^{2}(t)\right) d t+\frac{T^{2}}{48} \operatorname{Tr}\left[\left(\int_{0}^{T} R(t) d t\right)^{2}\right] . \tag{8}
\end{equation*}
$$

Krein's Stability criteria

- Let $\gamma(t)$ be the fundamental solution.
- The system is called stable if $\sigma(\gamma(T)) \in \mathbb{U}$, hyperbolic if $\sigma(\gamma(T)) \cap \mathbb{U}=\emptyset$
- Krein gives an interesting stability criteria under the condition $D \geq 0$ and $\int_{0}^{T} D(t) d t>0$,

$$
\frac{T^{2}}{2} \operatorname{Tr}\left(A_{11} A_{22}-A_{12}^{2}\right)<1
$$

Notation for Trace formula

$$
\begin{align*}
\dot{z}(t) & =J(B(t)+\lambda D(t)) z(t) \tag{9}\\
z(0) & =S z(T) . \tag{10}
\end{align*}
$$

S is symplectic orthogonal matrix.

- Let $\gamma_{0}(t)$ be the fundamental solution $\dot{\gamma}_{0}(t)=J B(t) \gamma_{0}(t)$ with $\gamma_{0}(0)=I_{2 n}$.
- $M=S \gamma_{0}(T) . \hat{D}(t)=\gamma_{0}^{T}(t) D(t) \gamma_{0}(t)$.
- For $k \in \mathbb{N}$,

$$
\begin{gathered}
M_{k}= \\
\int_{0}^{T} J \hat{D}\left(t_{1}\right) \cdots \int_{0}^{t_{k-1}} J \hat{D}\left(t_{k}\right) d t_{k} \cdots d t_{2} d t_{1} \\
G_{k}=\left(M-e^{\nu T} I_{2 n}\right)^{-1} M M_{k}
\end{gathered}
$$

Trace formula

- Theorem. Let $\nu \in \mathbb{C}$ satisfying $-J \frac{d}{d t}-B-\nu J$ is invertible. $\forall m$,

$$
\begin{array}{r}
\operatorname{Tr}\left(\left[D\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right]^{m}\right) \\
=m \sum_{k=1}^{m} \frac{(-1)^{m+k}}{k}\left[\sum_{j_{1}+\cdots+j_{k}=m} \operatorname{Tr}\left(G_{j_{1}} \cdots G_{j_{k}}\right)\right] .
\end{array}
$$

- Krein's work on $B=0, \nu=0, S=-I_{2 n}, D>0, m=1,2$, motivation for our stability criteria
- for large m, the right hand side of trace formula is a little complicated, we can compute clear if we needed.

Conditional Trace for $m=1$

- For $N \in \mathbb{N}$, let

$$
W_{N}=\bigoplus_{\nu \in \sigma\left(-J \frac{d}{d t}\right),|\nu| \leq N} \operatorname{ker}\left(-J \frac{d}{d t}-\nu\right),
$$

and denote by P_{N} the orthogonal projection onto W_{N}.

- Let

$$
\begin{array}{r}
\operatorname{Tr}\left(D\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right) \\
=\lim _{N \rightarrow \infty} \operatorname{Tr}\left(P_{N} D\left(-J \frac{d}{d t}-B-\nu J\right)^{-1} P_{N}\right)
\end{array}
$$

Trace formula

$m=1$

$$
\begin{array}{r}
\operatorname{Tr}\left[D\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right] \\
=\operatorname{Tr}\left(J \int_{0}^{T} \gamma_{0}^{T}(t) D(t) \gamma_{0}(t) d t \cdot M\left(M-e^{\nu T} I_{2 n}\right)^{-1}\right)
\end{array}
$$

- $m=2$

$$
\begin{gathered}
\operatorname{Tr}\left(\left[D\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right]^{2}\right) \\
=\quad 2 \operatorname{Tr}\left(J \int_{0}^{T} \gamma_{0}^{T}(t) D(t) \gamma_{0}(t) J \int_{0}^{s} \gamma_{0}^{T}(s) D(s) \gamma_{0}(s) d s d t\right) \\
\left.\cdot M\left(M-\lambda I_{2 n}\right)^{-1}\right) \\
\\
-\operatorname{Tr}\left(\left[J \int_{0}^{T} \gamma_{0}^{T}(t) D(t) \gamma_{0}(t) d t \cdot M\left(M-e^{\nu T} I_{2 n}\right)^{-1}\right]^{2}\right) .
\end{gathered}
$$

Trace formula

- If $M J=J M, M^{T}=M$ then

$$
\begin{aligned}
\operatorname{Tr}\left(\left(D(A-\nu J-B)^{-1}\right)^{2}\right)= & \operatorname{Tr}\left(\left[J \int_{0}^{T} \hat{D}(s) d s \cdot M\left(M-\omega I_{2 n}\right)^{-1}\right]^{2}\right) \\
& -\operatorname{Tr}\left(\left[J \int_{0}^{T} \hat{D}(s) d s\right]^{2} M\left(M-\omega I_{2 n}\right)^{-1}\right) .
\end{aligned}
$$

- In the case that $M= \pm I_{2 n}$, set $\omega=e^{\nu T}$, then

$$
\begin{array}{r}
\operatorname{Tr}\left(\left(D\left(-J \frac{d}{d t}-\nu J-B\right)^{-1}\right)^{2}\right) \\
=\frac{ \pm \omega}{(1 \mp \omega)^{2}} \operatorname{Tr}\left(\left(J \int_{0}^{T} \gamma_{0}^{T}(s) D(s) \gamma_{0}(s) d s\right)^{2}\right) .
\end{array}
$$

Trace formula

$$
\operatorname{Tr}\left(\left(D\left(-J \frac{d}{d t}-\nu J-B\right)^{-1}\right)^{m}\right)=\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}^{m}}, \quad m \geq 2
$$

λ_{j} is general eigenvalue of $-J \frac{d}{d t}-\nu J-B-\lambda D$, that is

$$
\operatorname{ker}\left(-J \frac{d}{d t}-\nu J-B-\lambda_{j} D\right) \neq 0
$$

$$
\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}^{m}}=m \sum_{k=1}^{m} \frac{(-1)^{m+k}}{k}\left[\sum_{j_{1}+\cdots+j_{k}=m} \operatorname{Tr}\left(G_{j_{1}} \cdots G_{j_{k}}\right)\right], \quad m \geq 2 .
$$

Trace formula for Sturm-liouville system

- Consider the eigenvalue problems of Sturm-Liouville systems $-(P \dot{y}+Q y)^{\cdot}+Q^{T} \dot{y}+\left(R+\lambda R_{1}\right) y=0, y(T)=\bar{S} y(0), \dot{y}(T)=\bar{S} \dot{y}(0)$, where $P(t)=P(t)^{T}$ is invertible, $\bar{S} \in O(n), \bar{S} P(t+T)=P(t) \bar{S}$ and $\bar{S} Q(t+T)=Q(t) \bar{S} . S=\left(\begin{array}{cc}\bar{S} & 0_{n} \\ 0_{n} & \bar{S}\end{array}\right)$.
- Corresponds to the linear Hamiltonian system,

$$
\begin{equation*}
\dot{z}=J B_{\lambda}(t) z, \quad z \in \mathbb{R}^{2 n} \tag{11}
\end{equation*}
$$

with

$$
B(t)=\left(\begin{array}{cc}
P^{-1}(t) & -P^{-1} Q(t) \\
-Q(t)^{T} P^{-1}(t) & Q(t)^{T} P^{-1}(t) Q(t)-R(t)+\lambda R_{1}(t)
\end{array}\right)
$$

Trace formula for Sturm-liouville system

- Let $\tilde{\gamma}_{\lambda}(T)$ be the fundamental solution of (11) and $\tilde{M}=$ $S \widetilde{\gamma}_{0}(T)$.
- Theorem. For $m \in \mathbb{N}$

$$
\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}^{m}}=(-1)^{m} m \sum_{k=1}^{m} \frac{(-1)^{m+k}}{k}\left[\sum_{j_{1}+\cdots+j_{k}=m} \operatorname{Tr}\left(\widetilde{G}_{j_{1}} \cdots \widetilde{G}_{j_{k}}\right)\right], \forall m \in \mathbb{N},
$$ especially for $m=1$,

$$
\sum_{j=1}^{\infty} \frac{1}{\lambda_{j}}=-\operatorname{Tr}\left(\int_{0}^{T} \tilde{\gamma}^{-1}(t) D_{1}(t) \tilde{\gamma}(t) d t \cdot \tilde{M}\left(\tilde{M}-I_{2 n}\right)^{-1}\right)
$$

Applications: Bound of non-degenerate

- For a Hamiltonian system, the property of non-degeneration is invariant under the small perturbation. A natural question will be arisen: can we give an upper bound for the perturbation, such that, under the smaller perturbation, the systems preserve the non-degenerate property?
- Theorem. Suppose $-J \frac{d}{d t}-B-\nu J$ is non-degenerate and for D, D_{1}, D_{2} such that $D_{1} \leq D \leq D_{2}$, and $D_{1}<0, D_{2}>0$, if there exists $k \in 2 \mathbb{N}$, such that

$$
\operatorname{Tr}\left(\left(D_{j}\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right)^{k}\right) \leq 1
$$

for $j=1,2$, then $A-B-D-\nu J$ is non-degenerate.

Applications: Estimate the relative Morse index

- Relative Morse index $I\left(-J \frac{d}{d t}-B-\nu J,-J \frac{d}{d t}-B-D-\nu J\right)$ is well defined, Maslov-type index
- Theorem. Suppose $-J \frac{d}{d t}-B-\nu J$ is non-degenerate and $D_{1} \leq D \leq D_{2}$, where $D_{1}<0, D_{2}>0$. Let

$$
\begin{aligned}
& m^{-}=\inf \left\{\left[\operatorname{Tr}\left(\left(D_{1}\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right)^{k}\right)\right], k \in 2 \mathbb{N}\right\} \\
& m^{+}=\inf \left\{\left[\operatorname{Tr}\left(\left(D_{2}\left(-J \frac{d}{d t}-B-\nu J\right)^{-1}\right)^{k}\right)\right], k \in 2 \mathbb{N}\right\},
\end{aligned}
$$

then

$$
-m^{-}<I\left(-J \frac{d}{d t}-B-\nu J,-J \frac{d}{d t}-B-D-\nu J\right)<m^{+} .
$$

Applications: stability criteria

- For $\omega \in \mathbb{U}$ s.t. $\omega=e^{i \theta_{0}}$ with $\theta_{0} \in[0, \pi]$, let $\mathbb{U}_{\omega}=\left\{e^{i \theta}, \theta \in\right.$ [$-\theta_{0}, \theta_{0}$]\}, denote $e_{\omega}(M)$ by the total algebraic multiplicities of all eigenvalues of M on \mathbb{U}_{ω}.
- Denote by $e(M)$ the total algebraic multiplicities of all eigenvalues of M on \mathbb{U}. Obviously

$$
e(M) \geq e_{\omega}(M), \quad \forall \omega \in \mathbb{U} .
$$

- For simplification, we consider the case $S=I_{2 n}$, and the general case is similar.
- We denote $\widetilde{\gamma}$ be the fundamental solution with respect to $B+D$, and $\widetilde{M}=\widetilde{\gamma}(T)$.
- The next theorem is motivated by Krein's work.

Theorem. Suppose $M=I_{2 n}, \frac{\omega}{(1-\omega)^{2}} \operatorname{Tr}\left(\left(J \int_{0}^{T} \hat{D}(s) d s\right)^{2}\right) \leq 1$ and $D>0$. Then

$$
\begin{equation*}
e_{\omega}(\widetilde{M}) / 2=n \tag{12}
\end{equation*}
$$

- Generation of Krein's stability Criteria
- The proof is based on the Maslov-type index theory (Y.Long's book) and the Trace formula.

Identity related to the zeta function

- For a self-adjoint and elliptic operators \mathcal{A}, Atiyah, Patodi, Singer defined the zeta function by

$$
\eta_{\mathcal{A}}(s)=\sum_{\lambda \neq 0}(\operatorname{sign} \lambda)|\lambda|^{-s}
$$

for $\operatorname{Re}(s)$ large, where $\lambda \in \sigma(\mathcal{A})$. It can be extends meromorphically to the whole s-plane. In our paper, let $\mathcal{A}=$ $-J \frac{d}{d t}-B-\nu J$, then $\eta_{\mathcal{A}}(s)$ is well defined. Our trace formula could compute $\eta_{\mathcal{A}}(2 k+1)$ for $k \in \mathbb{N}$.

- The most simple case $B=0$

$$
\sum_{k \in \mathbb{Z}} \frac{1}{(2 k \pi+\nu)^{2}}=\frac{1+\cos \nu}{2 \sin ^{2} \nu}
$$

Applications to Lagrangian orbits in planar three body problem

- (1772 Lagrange) three bodies form an equilateral triangle, each body travels along a specific Keplerian orbit
- Sun-Jupiter-Trojan asteroids system
- The stability had studied by many authors: Gascheau, Routh, Danby, Roberts, Meyer, Schmidt, Martínez, Samà,
- linear stability depend on $\beta=\frac{27\left(m_{1} m_{2}+m_{1} m_{3}+m_{2} m_{3}\right)}{\left(m_{1}+m_{2}+m_{3}\right)^{2}}$ and eccentricity $e \in[0,1)$

Stability analysis for Lagrangian orbits

- Linear stable if $\beta<1$, eccentricity $e=0$. Numerical for general
- Recently, Long, Sun and Hu introduced Maslov-type index and operator theory in studying the stability in n-body problem, give analytic proof for stability bifurcation diagram of Lagrangian orbits.
- not estimate the stability and hyperbolic region

Stability analysis for Lagrangian orbits via Trace formula

- We estimate the stability region and hyperbolic region.
- $\beta>\beta_{1}=9-\left(\frac{27-12 \sqrt{2}}{7}\right)^{2} \approx 6.9472$ is hyperbolic
- The elliptic relative equilibrium of square central configurations is hyperbolic with any eccentricity.
- The Trace formula is from Hill-type formula.

History of Hill-type formula

- In study of the motion of lunar perigee, Hill (1877) consider

$$
\begin{equation*}
\ddot{x}(t)+\theta(t) x(t)=0 \tag{13}
\end{equation*}
$$

where $\theta(t)=\sum_{j \in \mathbb{Z}} \theta_{j} e^{2 j \sqrt{-1} t}$ with $\theta_{0} \neq 0$ is a real π-periodic function.

- Let $\gamma(t)$ be the fundamental solution, that is,

$$
\begin{aligned}
\dot{\gamma}(t) & =\left(\begin{array}{cc}
0 & -\theta(t) \\
1 & 0
\end{array}\right) \gamma(t) \\
\gamma(0) & =I_{2}
\end{aligned}
$$

Hill's formula

- Suppose $\rho=e^{c \sqrt{-1} \pi}, \rho^{-1}=e^{-c \sqrt{-1} \pi}$ are the eigenvalues of the monodromy matrix $\gamma(\pi)$
- In order to compute c, Hill obtain

$$
\begin{equation*}
\frac{\sin ^{2}\left(\frac{\pi}{2} c\right)}{\sin ^{2}\left(\frac{\pi}{2} \theta_{0}\right)}=\operatorname{det}\left(\left(-\frac{d^{2}}{d t^{2}}-\theta_{0}\right)^{-1}\left(-\frac{d^{2}}{d t^{2}}-\theta\right)\right), \tag{14}
\end{equation*}
$$

where the right hand side of (14) is the Fredholm determinant.

Hill-type formula

- The right hand side of the original formula of Hill is a determinant of an infinite matrix. Hill did not prove the convergence of the infinite determinant, and the convergence was proved by Poincaré.
- Hill formula for a periodic solution of an arbitrary Lagrangian system on manifold was given by Bolotin 1988
- Periodic orbits for ODE by Denk 1998

Hill-type formula for Hamiltonian systems

- consider the operator

$$
\left(-J \frac{d}{d t}-B\right)\left(-J \frac{d}{d t}+P_{0}\right)^{-1}=i d-\left(B+P_{0}\right)\left(-J \frac{d}{d t}+P_{0}\right)^{-1}
$$

where P_{0} is the orthogonal projection onto ker $-J \frac{d}{d t}$

- Let

$$
\begin{array}{r}
\operatorname{det}\left(\left(-J \frac{d}{d t}-B\right)\left(-J \frac{d}{d t}+P_{0}\right)^{-1}\right) \\
=\lim _{N \rightarrow \infty} \operatorname{det}\left(P_{N}\left(-J \frac{d}{d t}-B\right) P_{N}\left(-J \frac{d}{d t}+P_{0}\right)^{-1} P_{N}\right)
\end{array}
$$

Hill-type formula for Hamiltonian systems

- HU and Wang

$$
\begin{array}{r}
\operatorname{det}\left(\left(-J \frac{d}{d t}-B-\nu J\right)\left(-J \frac{d}{d t}+P_{0}\right)^{-1}\right) \\
=C(S) e^{-\frac{1}{2} \int_{0}^{T} T r(J B(t)) d t} \lambda^{-n} \operatorname{det}\left(S \gamma(T)-\lambda I_{2 n}\right),
\end{array}
$$

where $\lambda=e^{\nu T}$ and $C(S)>0$ is constant depending on S.

- For periodic boundary condition, $C\left(I_{2 n}\right)=\frac{1}{T^{2 n}}$.

$$
\operatorname{det}\left(\left(-J \frac{d}{d t}-B\right)\left(-J \frac{d}{d t}+P_{0}\right)^{-1}\right)=\frac{1}{T^{2 n}} \operatorname{det}\left(\gamma(T)-I_{2 n}\right) .
$$

Hill-type formula for indefinite Lagrangian systems

- consider the eigenvalue problem of the Sturm-Liouville systems:

$$
\begin{equation*}
-(P \dot{y}+Q y)^{\cdot}+Q^{T} \dot{y}+\left(R+\lambda R_{1}\right) y=0 \tag{15}
\end{equation*}
$$

$P(t)$ is invertible, \bar{S} boundary condition

- Trace formula

$$
\prod_{\lambda_{j}}\left(1-\frac{1}{\lambda_{j}}\right)=\operatorname{det}\left(S \gamma_{1}(T)-I_{2 n}\right) \cdot \operatorname{det}\left(S \gamma_{0}(T)-I_{2 n}\right)^{-1}
$$

Where $\tilde{\gamma}_{\lambda}(T)$ be the fundamental solution of (11).

Applications of Hill-type formula

- numerical computation of monodromy matrix, Hill, Denk
- Relation with relative Morse index, Maslov-type index theory
- We get Trace formula based on it

Reference

- X.Hu and P. Wang, J.F.A., (2011)
- X.Hu, Y.Long and S.Sun, Archive for Rational Mechanics and Analysis, (2014)
- X.Hu, Y.Ou and P.Wang, arXiv:math/1308.4745 (2013)
- X.Hu and Y.Ou, Regular and Chaotic Dynamics, (2013)

Thank you

