An Overpartition Analogue of Bressoud's Theorem of Rogers-Ramanujan-Gordon Type

William Y.C. Chen, Doris D. M. Sang, and Diane Y. H. Shi

Abstract: For $k \geqslant 2$ and $k \geqslant i \geqslant 1$, let $B_{k, i}(n)$ denote the number of partitions of n such that part l appears at most $i-1$ times, two consecutive integers l and $l+l$ appear at most $k-1$ times and if l and $l+l$ appear exactly $k-l$ times then the sum of the parts l and $l+1$ is congruent to $i-1$ modulo 2 . Let $A_{k, i}(n)$ denote the number of partitions with parts not congruent to $i, 2 k-i$ and $2 k$ modulo $2 k$. Bressoud's theorem states that $A_{k, i}(n)$ $=B_{k, i}(n)$. Corteel, Lovejoy, and Mallet found an overpartition analogue of Bressoud's theorem for $i=1$, that is, for partitions not containing non-overlined part 1 . We obtain an overpartition analogue of Bressoud's theorem in the general case. For $k \geqslant 2$ and k $\geqslant i \geqslant 1$, let $D_{k, i}(n)$ denote the number of overpartitions of n such that the nonoverlined part l appears at most $i-l$ times, for any integer l, l and non-overlined $l+1$ appear at most $k-1$ times and if the parts l and the non-overlined part $l+l$ together appear exactly $k-l$ times then the sum of the parts l and non-overlined part $l+l$ has the same parity as the number of overlined parts that are less than $l+1$ plus $i-1$. Let $C_{k, i}$ (n) denote the number of overpartitions of n with the non-overlined parts not congruent to $\pm i$ and $2 k-1$ modulo $2 k-1$. We show that $C_{k, i}(n)=D_{k, i}(n)$. Note that this relation can also be considered as a Rogers-Ramanujan-Gordon type theorem for overpartitions.

AMS Classification: 05A17, 11P84
Keywords: the Rogers-Ramanujan-Gordon theorem, overpartition, Bressoud's theorem

Download: PDF

