Mixed Statistics on 01-Fillings of Moon Polyominoes

William Y. C. Chen, Andrew Y. Z. Wang, Catherine H. Yan, and Alina F. Y. Zhao

Abstract: We establish a stronger symmetry between the numbers of northeast and southeast chains in the context of 01 -fillings of moon polyominoes. Let M be a moon polyomino with n rows and m columns. Consider all the 01 -fillings of M in which every row has at most one 1 . We introduce four mixed statistics with respect to a bipartition of rows or columns of M. More precisely, let $S \subseteq\{1,2, \ldots, n\}$ and $R(S)$ be the union of rows whose indices are in S. For any filling M, the top-mixed (resp. bottom-mixed) statistic $\alpha(S ; M)$ (resp. $\beta(S ; M)$) is the sum of the number of northeast chains whose top (resp. bottom) cell is in $R(S)$, together with the number of southeast chains whose top (resp. bottom) cell is in the complement of $R(S)$. Similarly, we define the left-mixed and right-mixed statistics $\gamma(T ; M)$ and $\delta(T ; M)$, where T is a subset of the column index set $\{1,2, \ldots, m\}$. Let $\lambda(A ; M)$ be any of these four statistics $\alpha(S ; M), \beta(S ; M), \gamma(T ; M)$ and $\delta(T ; M)$, we show that the joint distribution of the pair $(\lambda(A ; M), \lambda(\bar{A} ; M))$ is symmetric and independent of the subsets S, T. In particular, the pair of statistics $(\lambda(A ; M), \lambda(\bar{A} ; M))$ is equidistributed with ($\operatorname{se}(M)$; ne (M)), where se (M) and ne (M) are the numbers of southeast chains and northeast chains of M, respectively.

AMS Classification: 05A18, 05A05, 05A15
Keywords: mixed statistic, polyomino, symmetric distribution.
Download: PDF

Returf

