Cornell University

Computer Science > Discrete Mathematics

Extended formulations for polygons

Samuel Fiorini, Thomas Rothvoß, Hans Raj Tiwary

(Submitted on 2 Jul 2011 (v1), last revised 25 Feb 2012 (this version, v2))

The extension complexity of a polytope $\$ P \$$ is the smallest integer $\$ k \$$ such that $\$ P \$$ is the projection of a polytope $\$ Q \$$ with $\$ k \$$ facets. We study the extension complexity of $\$ n \$$-gons in the plane. First, we give a new proof that the extension complexity of regular \$n\$-gons is $\$ \mathrm{O}(\backslash \log n) \$$, a result originating from work by Ben-Tal and Nemirovski (2001). Our proof easily generalizes to other permutahedra and simplifies proofs of recent results by Goemans (2009), and Kaibel and Pashkovich (2011). Second, we prove a lower bound of $\$ \backslash \operatorname{sqrt}\{2 n\} \$$ on the extension complexity of generic $\$ n \$$-gons. Finally, we prove that there exist $\$ n \$$-gons whose vertices lie on a $\$ \mathrm{O}(\mathrm{n})$ \times O $\left(n^{\wedge} 2\right) \$$ integer grid with extension complexity $\$ 10 m e g a(\backslash s q r t\{n\} /$ sqrt $\{\backslash \log n\}) \$$.

Comments: 10 pages, 2 figures; Revised version accepted for publication in Discrete \& Computational Geometry
Subjects: Discrete Mathematics (cs.DM); Computational Geometry (cs.CG); Combinatorics (math.CO)
Journal reference: Discrete \& Computational Geometry, Vol. 48, No. 3, 2012, pp 658-668
DOI:
Cite as: 10.1007/s00454-012-9421-9
arXiv:1107.0371 [cs.DM]
(or arXiv:1107.0371v2 [cs.DM] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse cont CS.DM
< prev | next >
new | recent | 1107
Change to browse b

```
CS
    cs.CG
math
    math.CO
```


References \& Citatic

- NASA ADS

DBLP - CS Bibliogra
listing | bibtex
Samuel Fiorini
Thomas Rothvoß
Hans Raj Tiwary
Bookmark(what is this?)

Submission history

From: Hans Raj Tiwary [view email]
[v1] Sat, 2 Jul 2011 11:19:04 GMT (44kb)
[v2] Sat, 25 Feb 2012 11:01:45 GMT (44kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

