Cornell University

Mathematics > Combinatorics

## A new approach to the results of Kövari, Sós, and Turán concerning rectangle-free subsets of the grid

Jeremy F. Alm, Jacob Manske

(Submitted on 6 Jun 2012 (v1), last revised 21 Oct 2012 (this version, v2))

For positive integers $\$ m$ \$ and $\$ n \$$, define $\$ f(m, n) \$$ to be the smallest integer such that any subset $\$ A \$$ of the $\$ m$ ltimes $n \$$ integer grid with $\$|A| \operatorname{lgeq} f(m, n) \$$ contains a rectangle; that is, there are $\$ x \operatorname{lin}[m] \$$ and $\$ y$ lin $[n] \$$ and $\$ d \_\{1\}, d \_\{2\} \backslash$ in $\backslash m a t h b b\{Z\}^{\wedge}\{+\} \$$ such that all four points $\$(x, y) \$$, $\$\left(x+d \_\{1\}, y\right) \$, \$\left(x, y+d \_\{2\}\right) \$$, and $\$\left(x+d \_\{1\}, y+d \_\{2\}\right) \$$ are contained in \$A\$. In \cite\{kovarisosturan\},
 showed that whenever $\$ p \$$ is a prime number, $\$ f\left(p^{\wedge}\{2\}, p^{\wedge}\{2\}+p\right)=p^{\wedge}\{2\}(p+1)+1 \$$. We recover their asymptotic result and strengthen the second, providing cleaner proofs which exploit a connection to projective planes, first noticed by Mendelsohn in \cite\{mendelsohn87\}. We also provide an explicit lower bound for $\$ f(k, k) \$$ which holds for all $\$ \mathrm{k} \$$.

Comments: 9 pages
Subjects: Combinatorics (math.CO)
Cite as: arXiv:1206.1107 [math.CO]
(or arXiv:1206.1107v2 [math.CO] for this version)

## Submission history

From: Jacob Manske [view email]
[v1] Wed, 6 Jun 2012 02:17:23 GMT (8kb)
[v2] Sun, 21 Oct 2012 12:29:34 GMT (8kb)
Which authors of this paper are endorsers?

