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Strongly Regular Cayley Graphs, Skew Hadamard Difference

Sets, and Rationality of Relative Gauss Sums

Koji Momihara∗

Abstract

In this paper, we give constructions of strongly regular Cayley graphs and skew Hadamard
difference sets. Both constructions are based on choosing cyclotomic classes in finite fields,
and our results generalize ten of the eleven sporadic examples of cyclotomic strongly regular
graphs given by Schmidt and White [24] and several of subfield examples into infinite families.
These infinite families of strongly regular graphs have new parameters. The main tools that
we employed are relative Gauss sums instead of explicit evaluations of Gauss sums.
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1 Introduction

In this paper, we will assume that the reader is familiar with the theory of strongly regular graphs
and difference sets. For the theory of strongly regular graphs (srgs), our main reference is the
lecture note of Brouwer and Haemers [5]. For difference sets, we refer the reader to Chapter 6
of [4]. We remark that strongly regular graphs are closely related to other combinatorial objects,
such as two-weight codes, two-intersection sets in finite geometry, and partial difference sets. For
these connections, we refer the reader to [5, p. 132], [7, 20].

Let Γ be a simple and undirected graph and A be its adjacency matrix. A useful way to check
whether a graph is strongly regular is by using the eigenvalues of its adjacency matrix. For
convenience we call an eigenvalue restricted if it has an eigenvector perpendicular to the all-ones
vector 1. (For a k-regular connected graph, the restricted eigenvalues are the eigenvalues different
from k.)

Theorem 1.1. For a simple graph Γ of order v, not complete or edgeless, with adjacency matrix
A, the following are equivalent:

1. Γ is strongly regular with parameters (v, k, λ, µ) for certain integers k, λ, µ,

2. A2 = (λ− µ)A+ (k − µ)I + µJ for certain real numbers k, λ, µ, where I, J are the identity
matrix and the all-ones matrix, respectively,

3. A has precisely two distinct restricted eigenvalues.

One of the most effective methods for constructing srgs is by the Cayley graph construction.
For example, the Paley graph P(q) is one class of well known Cayley graphs, that is, the graph
with the finite field Fq as vertex set, where two vertices are adjacent when their difference is a
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nonzero quadratic. It has the parameters (v, k, λ, µ) = (4t+ 1, 2t, t− 1, t). In general, let G be an
additively written group of order v, and let D be a subset of G such that 0 6∈ D and −D = D,
where −D = {−d | d ∈ D}. The Cayley graph on G with connection set D, denoted Cay(G,D),
is the graph with the elements of G as vertices; two vertices are adjacent if and only if their
difference belongs to D. In the case when Cay(G,D) is strongly regular, the connection set D is
called a (regular) partial difference set. The survey of Ma [20] contains much of what is known
about partial difference sets and about connections with strongly regular Cayley graphs.

A difference set D in an (additively written) finite group G is called skew Hadamard if G is the
disjoint union of D, −D, and {0}. The primary example (and for many years, the only known
example in abelian groups) of skew Hadamard difference sets is the classical Paley difference set in
(Fq,+) consisting of the nonzero squares of Fq, where Fq is the finite field of order q, a prime power
congruent to 3 modulo 4. Skew Hadamard difference sets are currently under intensive study; see
the introduction of [10] for a short survey of known constructions of skew Hadamard difference
sets and related problems. As we see in the next section, in order to check that a candidate subset
D of Fq is a partial difference set or a skew Hadamard difference set in (Fq,+), it is sufficient to
compute certain character sums of Fq in common.

A classical method for constructing both connection sets of strongly regular graphs (i.e., partial
difference sets) and difference sets in the additive groups of finite fields is to use cyclotomic
classes of finite fields. Let p be a prime, f a positive integer, and let q = pf . Let k > 1 be an

integer such that k|(q − 1), and γ be a primitive element of Fq. Then the cosets C
(k,q)
i = γi〈γk〉,

0 ≤ i ≤ k − 1, are called the cyclotomic classes of order k of Fq. Many authors have studied the
problem of determining when a union D of some cyclotomic classes forms a (partial) difference
set. Especially, when D consists of only a subgroup of Fq, many authors have studied extensively
[1, 2, 6, 9, 10, 11, 13, 14, 17, 19, 22, 24, 25]. (Some of these authors used the language of cyclic
codes in their investigations instead of strongly regular Cayley graphs or partial difference sets.
We choose to use the language of srg.) We call a strongly regular Cayley graph Cay(Fq, D)
cyclotomic if D is such. The Paley graphs are primary examples of cyclotomic srgs. Also, if D is
the multiplicative group of a subfield of Fq, then it is clear that Cay(Fq, D) is strongly regular.
These cyclotomic srgs are usually called subfield examples. Next, if there exists a positive integer t
such that pt ≡ −1 (mod k), then Cay(Fq, D) is strongly regular. This case had already generalized
so that D is a union of some cyclotomic cosets based on the computation of “pure Gauss sums”,
see [6, 19]. These examples are usually called semi-primitive. Schmidt and White presented the
following conjecture on cyclotomic srgs.

Conjecture 1.2. ([24]) Let Fpf be the finite field, k | pf−1
p−1 with k > 1, and C0 := C

(k,pf )
0 with

−C0 = C0. If Cay(Fpf , C0) is strongly regular, then one of the following holds:

(1) (subfield case) C0 = F∗
pd where d | f ,

(2) (semi-primitive case) −1 ∈ 〈p〉 ≤ (Z/kZ)∗,

(3) (exceptional case) Cay(Fpf , C0) has one of the parameters given in Table 1.

Recently, the authors of [10, 11, 13] succeeded to generalize the examples of Table 1 except for
srgs of No. 1, 5, and 8 into infinite families using “index 2 and 4 Gauss sums”.

Theorem 1.3. (i) ([9]) Let q = pp
m−1
1 (p1−1)/2, k = pm1 , and D =

⋃pm−1
1 −1

i=0 C
(k,q)
i . Then,

Cay(Fq, D) is strongly regular for any m in the following cases:

(p, p1) = (2, 7), (3, 107), (5, 19), (5, 499), (17, 67), (41, 163).

(ii) ([13]) Let q = pp
m−1
1 (p1−1)/4, k = pm1 , and D =

⋃pm−1
1 −1

i=0 C
(k,q)
i . Then, Cay(Fq, D) is strongly

regular for any m in the following cases:

(p, p1) = (3, 13), (7, 37).
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Table 1: Eleven sporadic examples

No. k p f e := [(Z/kZ)∗ : 〈p〉]
1 11 3 5 2
2 19 5 9 2
3 35 3 12 2
4 37 7 9 4
5 43 11 7 6
6 67 17 33 2
7 107 3 53 2
8 133 5 18 6
9 163 41 81 2
10 323 3 144 2
11 499 5 249 2

(iii) ([11]) Let q = pp
m−1
1 (p1−1)pn−1

2 (p2−1)/2, k = pm1 p
n
2 , and D =

⋃pm−1
1 −1

i=0

⋃pn−1
2 −1

j=0 C
(k,q)
pn
2 i+pm

1 j.

Then, Cay(Fq, D) is strongly regular for any n and m in the following cases:

(p, p1, p2) = (2, 3, 5), (3, 5, 7), (3, 17, 19).

The srgs in the cases when (p, p1) = (2, 7) of (i), (p, p1) = (3, 13) of (ii), and (p, p1, p2) = (2, 3, 5)
of (iii) of Theorem 1.3 are generalizations of subfield examples. The others are generalizations of
sporadic examples of Table 1. Note that it is impossible to generalize the example of No. 1 of
Table 1 by a similar manner since 〈3〉 ≤ (Z/11mZ)∗ is not of index 2 for m > 1.

In [10, 11], the following two constructions of skew Hadamard difference sets and Paley type partial
difference sets were given. (A partial difference set D in a group G is said to be of Paley type if
the parameters of the corresponding strongly regular Cayley graph are (v, v−1

2 , v−5
4 , v−1

4 ).)

Theorem 1.4. (i) ([10]) Let p1 ≡ 7 (mod 8) be a prime, k = 2pm1 , and let p be a prime such
that f := ordk(p) = φ(k)/2, where φ is the Euler totient function. Let s be an odd integer, H

denotes any subset of Zk such that {i (mod pm1 ) | i ∈ H} = Zpm
1
, and let D =

⋃
i∈H C

(k,pfs)
i .

Then, D is a skew Hadamard difference set if p ≡ 3 (mod 4) and D is a Paley type partial
difference set if p ≡ 1 (mod 4).

(ii) ([11]) Let q = pp
m−1
1 (p1−1)/2, k = 2pm1 , and H = Q ∪ 2Q ∪ {0}, where Q is the subgroup

of index 2 of (Z/2p1Z)
∗. Set D =

⋃pm−1
1

j=0

⋃
i∈H C

(k,q)

2j+ipm−1
1

. Then, D is a skew Hadamard

difference set in the case when (p, p1) = (3, 107) and D is a Paley type partial difference set
in the cases when

(p, p1) = (5, 19), (17, 67), (41, 163), (5, 499).

The proofs of the above theorems are based on index 2 and 4 Gauss sums. In order to show that
the srgs of No. 5 and 8 in Table 1 lead to infinite families, we need to explicitly evaluate index
6 Gauss sums if we apply a similar technique of [9, 10, 11, 13]. However, it seems to be difficult
to compute index more than 4 Gauss sums, and this implies that it is hard to find new strongly
regular graphs or skew Hadamard difference sets on Fq from index more than 4 cases. In this paper,
we will show that explicit evaluations of Gauss sums are not needed if some initial examples of
strongly regular Cayley graphs or skew Hadamard difference sets satisfying certain conditions are
found. Instead, we will investigate the rationality of “relative Gauss sums”. As consequences, we
generalize the srgs of No. 5 and 8 in Table 1 into infinite families and find further infinite families
of cyclotomic srgs with new parameters as generalizations of subfield examples (see Tables 2 and
3 in Section 3.2). Furthermore, we obtain two infinite families of skew Hadamard difference sets

in (Fq,+), where q = 33·13
m−1

and 77·29
m−1

.
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2 Rationality of relative Gauss sums

2.1 Preliminary

Let p be a prime, f a positive integer, and q = pf . The canonical additive character ψ of Fq is
defined by

ψ : Fq → C∗, ψ(x) = ζ
Trq/p(x)
p ,

where ζp = exp(2πip ) and Trq/p is the trace from Fq to Fp. For a multiplicative character χ of Fq,
we define the Gauss sum

Gf (χ) =
∑

x∈F∗
q

χ(x)ψ(x),

which belongs to Z[ζkp] of integers in the cyclotomic field Q(ζkp), where m is the order of χ. Let
σa,b be the automorphism of Q(ζkp) determined by

σa,b(ζk) = ζak , σa,b(ζp) = ζbp

for gcd (a, k) = gcd (b, p) = 1. Below are several basic properties of Gauss sums [18]:

(i) Gf (χ)Gf (χ) = q if χ is nontrivial;

(ii) Gf (χ
p) = Gf (χ), where p is the characteristic of Fq;

(iii) Gf (χ
−1) = χ(−1)Gf (χ);

(iv) Gf (χ) = −1 if χ is trivial;

(v) σa,b(Gf (χ)) = χ−a(b)Gf (χ
a);

In general, the explicit evaluation of Gauss sums is a very difficult problem. There are only a few
cases where the Gauss sums have been evaluated. The most well known case is quadratic case, in
other words, the order of χ is two.

Lemma 2.1. ([18]) Let η be the quadratic character of Fq = Fpf . Then, it holds that

Gf (η) = (−1)f−1

(√
(−1)

p−1
2 p

)f

.

The next simple case is the so-called semi-primitive case (also referred to as uniform cyclotomy or
pure Gauss sum), where there exists an integer j such that pj ≡ −1 (mod k), where k is the order
of the multiplicative character χ involved.

Theorem 2.2. ([3]) Suppose that k > 2 and p is semi-primitive modulo k, i.e., there exists an s
s.t. ps ≡ −1 (mod k). Choose s minimal and write f = 2st. Let χ be a multiplicative character of
order k. Then,

p−f/2Gf (χ) =

{
(−1)t−1 if p = 2;

(−1)t−1+(ps+1)t/k if p > 2.

This theorem was used to find strongly regular graphs and difference sets on Fq, e.g., see [2, 6].

The next interesting case is the index 2 case where the subgroup 〈p〉 generated by p ∈ (Z/kZ)∗ has
index 2 in (Z/kZ)∗ and −1 6∈ 〈p〉. In this case, it is known that k can have at most two odd prime
divisors. Many authors have investigated this case, see e.g., [1, 16, 21, 23, 30, 31]. In particular,
complete solution to the problem of evaluating Gauss sums in this case was recently given in
[30]. Also, the index 4 case was treated in [8, 29]. Recently, these index 2 and 4 Gauss sums
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were applied to show the existence of infinite families of new strongly regular graphs and skew
Hadamard difference sets on Fq in [9, 10, 11, 13]. However, it is quite difficult to explicitly evaluate
Gauss sums of general index. This implies that it is difficult to find new strongly regular graphs
on Fq from index more than 4 cases if we apply a similar technique of [9, 10, 11, 13]. However, we
will show in Section 3 of this paper that explicit evaluations of Gauss sums are not needed if some
initial examples of strongly regular graphs or skew Hadamard difference sets satisfying certain
conditions are found. Instead, we will use rationality of relative Gauss sums. For two nontrivial
multiplicative characters χ of Fpf and χ′ of Fpf′ with f | f ′, the relative Gauss sum associated with
χ and χ′ is defined as

ϑp(χ
′, χ) :=

Gf ′(χ′)

p
f′−f

2 Gf (χ)
.

In particular, we investigate when ϑp(χ
′, χ) = 1 or −1 holds in the case where both of Gf ′(χ′)

and Gf (χ) are of index e case. Note that the concept of relative Gauss sums was introduced in
[28] as the fractional Gf ′(χ′)/Gf (χ), where χ is the restriction of χ′ to Fpf . Hence, our definition
generalize his definition and normalize so that the absolute value is equal to 1 when χ and χ′ are
nontrivial.

Below, we give important formulae on Gauss sums. The following is known as the Davenport-Hasse
lifting formula.

Theorem 2.3. ([3, 18]) Let χ be a nontrivial character on Fq = Fpf and let χ′ be the lifted
character of χ to Fq′ = Fpfs , i.e., χ′(α) := χ(NormFq′/Fq

(α)) for α ∈ Fq′ . Then, it holds that

Gfs(χ
′) = (−1)s−1(Gf (χ))

s.

The following is called the Davenport-Hasse product formula.

Theorem 2.4. ([3]) Let η be a character on Fq = Fpr of order ℓ > 1. For every nontrivial
character χ on Fq,

Gr(χ) =
Gr(χ

ℓ)

χℓ(ℓ)

ℓ−1∏

i=1

Gr(χη
i)

Gr(ηi)
.

We close this subsection providing the following lemma [28].

Lemma 2.5. ([28]) Let χ′ be a character of order k′ of Fpf′ and χ be the restriction of χ′ to Fpf ,
where f | f ′. If χ is nontrivial on Fpf , it holds that

p
f−f′

2 ϑp(χ
′, χ) =

∑

x∈L;Tr
pf

′
/pf

(x)=1

χ′(x),

where L is a set of representatives for F∗
pf′ /F∗

pf .

2.2 Relative Gauss sums

In this section, fix an integer k > 1, and let p be a prime such that gcd (p, k) = 1. Let f be the
order of p in (Z/kZ)∗ and set q = pf . Write ζk = e2πi/k and ζp = e2πi/p. Define

K = Q(ζk), M = K(ζp) = Q(ζk, ζp),

and let Ok and OM denote their respective rings of integers. For j ∈ (Z/kZ)∗, define σj ∈
Gal(M/Q(ζp)) by σj(ζk) = ζjk. Let P be a prime ideal of OK lying over p. Then, for some prime
ideal p of OM such that POM = pp−1 and p ∩ OK = P . Write Pj = σj(P ) and pj = σj(p), and
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then PjOM = p
p−1
j . Let T be a set of representatives of (Z/kZ)∗/〈p〉. Then, pOK =

∏
j∈T Pj

follows, where Pj are all distinct, and hence pOM =
∏

j∈T p
p−1
j holds.

Define the character χP of order k on the finite field OK/P by letting χP (α+P ) denote the unique
power of ζk such that

χP (α+ P ) ≡ α(q−1)/k (mod P ),

when α ∈ OK \ P . When α ∈ P , set χP (α + P ) = 0. We call χP the Teichmüller character
associated to P . Now we identify χP with a character of Fq.

Define

θ(k, p) =
∑

t∈(Z/kZ)∗

〈
t

k

〉
σ−1
t ,

called the Stickelberger element, where 〈x〉 is the fractional part of the rational x. Every integer a
can be written uniquely in the form

∑n
i=0 aip

i, where 0 ≤ ai < p. We denote by sp(a) the sum of
all ai. The following are given in [3, 15].

Lemma 2.6. For any integer a, 0 ≤ a < q − 1, we have

sp(a) = (p− 1)

f−1∑

i=0

〈
pia

q − 1

〉
.

Theorem 2.7. Let k be a positive integer. Let p be a prime such that gcd (p, k) = 1 and f be the
order of p in (Z/kZ)∗. For a prime ideal p of OM lying over P , it holds

Gf (χ
−1
P )OM = p

∑
t∈T sp(t(q−1)/k)σ−1

t = p(p−1)
∑

t∈T

∑f−1
i=0 〈tpi/k〉σ−1

t ⊆ OM .

This theorem is known as the Stickelberger relation. By the relation Gf (χ
a)Gf (χ

−a) = ±pf , we
also have

Gf (χP )OM = p(p−1)(f
∑

t∈T σt−
∑

t∈T

∑f−1
i=0 〈tpi/k〉σ−1

t ).

In the rest of this paper, we will assume the following. Let h = 2tp1p2 · · · pℓ be a positive integer
with distinct odd primes pi and p be a prime satisfying the following: For any divisor d =
2spi1 · · · pim of h, if 〈p〉 is of index u modulo d, then so does 〈p〉 modulo d′ = 2spx1

i1
· · · pxm

im
for any xi ≥ 1. Let e denotes the index of 〈p〉 modulo h. Let p1 be an odd prime factor of
k = 2tpe11 p

e2
2 · · · peℓℓ and set k′ = kp1. Then, by the assumption, 〈p〉 is again of index e in both of

(Z/kZ)∗ and (Z/k′Z)∗. Set q = pf and q′ = pf
′

, where f = φ(k)/e and f ′ = φ(k′)/e.

Let OK , OK′ , OM , OM ′ , OL, OL′ denote the respective rings of integers of Q(ζk), Q(ζk′ ), Q(ζk, ζp),
Q(ζk′ , ζp), Q(ζpf−1), Q(ζpf′−1). Let P ⊆ OK be a prime ideal lying over p and p ⊆ OM be a
prime ideal lying over P . Also, let p′ ⊆ OM ′ be a prime ideal lying over p and let P ′ = p′ ∩OK′ ,
so that p′ ∩OM = p and P ′ ∩OK = P . Let T ′ be a set of representatives for (Z/k′Z)∗/〈p〉. Then,
there is a one to one correspondence between {σj(P )(=: Pj) | j ∈ T } and {σ′

j(P )(=: P ′
j) | j ∈ T ′}

such that Pj = P ′
j ∩OK , where σ′

j ∈ Gal(Q(ζk′p)/Q(ζp)) satisfying σ
′
j(ζk′ ) = ζjk′ . By multiplying

OK′ to both side of pOK =
∏

j∈T Pj , together with pOK′ =
∏

j∈T ′ P ′
j , we have PjOK′ = P ′

j .

Furthermore, by multiplying OM ′ to both side of PjOK′ = P ′
j , we have PjOM ′ = P ′

jOM ′ = p′p−1
j ,

where p′j ⊆ OM ′ is a prime ideal lying over P ′
j . On the other hand, since PjOM ′ = p

p−1
j OM ′ , we

obtain pjOM ′ = p′j .

Let P ⊆ OL and P′ ⊆ OL′ be prime ideals lying over P and P ′, respectively. It is known that
OL/P = {α+P |α ∈ OK/P} and that

χ
pf−1

k

P (α+P) = χP (α+ P )

6



for α ∈ OK , so that

Gf (χ
a pf−1

k

P ) = Gf (χ
a
P ).

See Exercise 11-1 of [3]. Now, we can take the set {0}∪ {ζipf−1 | 0 ≤ i ≤ pf − 1} as representatives

for OL/P and then
χP(ζipf−1 +P) = ζipf−1.

By the definition of Teichmüller characters, for α ∈ (ζpf−1+P)∩OK and β ∈ (ζpf′−1+P′)∩OK′

it holds

χP (α
i + P ) = χP(ζ

pf−1
k i

pf−1
+P) = χ

pf−1
k

P′ (ζ
pf

′
−1

pf−1
i

pf′−1
+P′)

= χp1

P′(ζ
pf

′
−1

kp1
i

pf′−1
+P′) = χp1

P ′(β
i + P ′), (2.1)

where α+ P and β + P ′ are primitive root of the finite fields OK/P and OK′/P ′.

First, we show the following lemma.

Lemma 2.8. Let χP ′ and χP be the Teichmüller characters associated to P ′ and P , respectively.
Then,

(ϑp(χP ′ , χP ) :=)
Gf ′(χP ′)

p
φ(k)(p1−1)

2e Gf (χP )

is a 2k′th or k′th root of unity according as k′ is odd or not.

Proof: First of all, we see ϑp(χP ′ , χP ) ∈ Q(ζk′ ). Note that χP is the restriction of χP ′ to Fpf

since

χ
pf

′
−1

k′

P′ (ζpf−1 +P′) = χ
pf−1

k

P (ζpf−1 +P)

by (pf
′ − 1)/k′ ≡ (pf − 1)/k (mod pf − 1). (Thus, in this case, our definition of relative Gauss

sums is just the normalization of Yamamoto’s relative Gauss sums.) By Lemma 2.5, ϑp(χP ′ , χP ) ∈
Q(ζk′) follows.

Put f = φ(k)
e and f ′ = φ(k)p1

e , and set h = 2t
∏ℓ

i=1 pi, where p1, p2, . . . , pℓ be all distinct prime
factors of k and t is the highest power of 2 dividing k. It is clear that

k

f−1∑

i=0

〈
tpi

k

〉
=

f−1∑

i=0

[tpi]k,

where [a]k means the reduction of a modulo k. In other words, it is equal to

∑

x∈〈p〉≤(Z/kZ)∗

[tx]k =

k
h−1∑

y=0

∑

z∈〈p〉≤(Z/hZ)∗

hy + [tz]h

= k(
k

h
− 1)φ(h)/2e+

k

h

∑

z∈〈p〉≤(Z/hZ)∗

[tz]h

where note that t’s modulo h again forms a set of representatives of (Z/hZ)∗/〈p〉. Thus, we have

f−1∑

i=0

〈
tpi

k

〉
=
φ(k) − φ(h)

2e
+

1

h

∑

z∈〈p〉≤(Z/hZ)∗

[tz]h.

7



Similarly, we obtain

f ′−1∑

i=0

〈
tpi

k′

〉
=
φ(k′)− φ(h)

2e
+

1

h

∑

z∈〈p〉≤(Z/hZ)∗

[tz]h.

Hence, by the Stickelberger relation, we obtain

Gf ′(χP ′)OM ′ = p′
(p−1)((f ′−φ(k′)−φ(h)

2e )
∑

t∈T ′ σt−
∑

t∈T ′( 1
h

∑
z∈〈p〉≤(Z/hZ)∗ [tz]h)σ

−1
t )

.

Furthermore, by noting that pOM ′ = p′, we have

Gf (χP )OM ′ = p′
(p−1)((f−φ(k)−φ(h)

2e )
∑

t∈T ′ σt−
∑

t∈T ′( 1
h

∑
z∈〈p〉≤(Z/hZ)∗ [tz]h)σ

−1
t )

.

Since pOM ′ = p′(p−1)
∑

i∈T ′ σt , it follows that p
φ(k′)−φ(k)

2e Gf (χP )OM ′ = Gf ′(χP ′)OM ′ , i.e., ϑp(χP ′ , χP )
is a unit of OM ′ . But, ϑp(χP ′ , χP ) ∈ Q(ζk′ ), and hence it is a unit of OK′ . Furthermore, all the
conjugates of ϑp(χP ′ , χP ) in OK′ have absolute value 1. Therefore, ϑp(χP ′ , χP ) is a root of unity
in OK′ , which completes the proof. �

Lemma 2.9. Let d = 2 gcd (k′, p− 1) or gcd (k′, p− 1) according as k′ is odd or even. Then, it
holds that

ϑp(χP ′ , χP )
d = 1.

Proof: Define σ ∈ Gal(Q(ζp, ζk′)/Q(ζp)) by σ(ζpk′ ) = ζk
′ℓ+p

pk′ , where ℓ is the inverse of k′ modulo
p. Let ψ′ and ψ be the respective canonical additive characters of Fq′ and Fq. Then,

σ

(
Gf ′(χP ′)

Gf (χP )

)
= σ

(∑
α∈Fq′

ψ′(α)χP ′ (α)
∑

β∈Fq
ψ(β)χP (β)

)

=

∑
α∈Fq′

ψ′((k′ℓ+ p)α)χk′ℓ+p
P ′ (α)

∑
β∈Fq

ψ((k′ℓ+ p)β)χk′ℓ+p
P (β)

=

∑
α∈Fq′

ψ′(α)χp
P ′ (α)

∑
β∈Fq

ψ(β)χp
P (β)

=
Gf ′(χp

P ′)

Gf (χ
p
P )

=
Gf ′(χP ′)

Gf (χP )
.

Hence, σ(ϑp(χP ′ , χP )) = ϑp(χP ′ , χP ). On the other hand, in the case when k′ is odd, since

ϑp(χP ′ , χP )
2 = ζsk′ for some s by Lemma 2.8, it follows that σ(ϑp(χP ′ , χP )

2) = ϑp(χP ′ , χP )
2(k′ℓ+p) =

ϑp(χP ′ , χP )
2p, so ϑp(χP ′ , χP )

2(p−1) = 1. Together with ϑp(χP ′ , χP )
2k′

= 1, we obtain ϑp(χP ′ , χP )
2 gcd (k′,p−1) =

1. In the case when k′ is even, since ϑp(χP ′ , χP ) = ζsk′ for some s by Lemma 2.8, it follows

that σ(ϑp(χP ′ , χP )) = ϑp(χP ′ , χP )
k′ℓ+p = ϑp(χP ′ , χP )

p, so ϑp(χP ′ , χP )
p−1 = 1. Together with

ϑp(χP ′ , χP )
k′

= 1, we obtain ϑp(χP ′ , χP )
gcd (k′,p−1) = 1. �

The following is our main theorem of this section.

Theorem 2.10. If k′ is odd and gcd (k′, p− 1) = 1, it holds that ϑp(χP ′ , χP ) = 1.

Proof: By Lemma 2.9, we have ϑp(χP ′ , χP ) = −1 or 1. We consider the reduction of p
φ(k′)−φ(k)

2e Gf (χP )ϑp(χP ′ , χP )

modulo λ := 1− ζpt+1
1

, where t is the highest power of p1 dividing k. It is clear that p
φ(k)(p1−1)

2e ≡
1 (mod λ). Let h := k′/pt+1

1 . Since χP and χP ′ can be written as χxh
P χ

ypt+1
1

P and χxh
P ′χ

ypt+1
1

P ′ for

some x and y such that xh+ ypt+1
1 ≡ 1 (mod k′). Then, we have Gf ′(χP ′) ≡ Gf ′(χ

ypt+1
1

P ′ ) (mod λ)

and Gf (χP ) ≡ Gf (χ
ypt+1

1

P ) (mod λ), where both of χ
ypt+1

1

P ′ and χ
ypt+1

1

P are of order h. Now, note
that

χ
ypt

1
pf−1

k

P (ζ
i pfp1−1

pf−1

pfp1−1
+P) = χ

ypt
1

pf−1

k

P′ (ζ
i pfp1−1

pf−1

pfp1−1
+P′) = χ

ypt+1
1

pfp1−1
kp1

P′ (ζipfp1−1 +P′).

8



By the Davenport-Hasse lifting formula, we have

Gf ′(χ
ypt+1

1

P ′ ) = Gf ′(χ
ypt+1

1
pfp1−1

kp1

P′ ) ≡ (−1)p1−1(Gf (χ
ypt

1
pf−1

k

P ))p1 (mod λ)

= (Gf (χ
ypt

1

P ))p1 ≡ χ
−ypt

1

P (p1)Gf (χ
ypt+1

1

P ) (mod λ).

Therefore, by noting that χ
−ypt

1

P (p1) = 1, we obtain

Gf (χ
ypt+1

1

P )(ϑp(χP ′ , χP )− 1) ≡ 0 (mod λ).

If ϑp(χP ′ , χP ) = −1, then λ | 2Gf (χ
ypt+1

1

P ). Here, by Lemma 2.5, note that

Gf (χ
ypt+1

1

P ) =
∑

x∈L;Tr
pf/p

(x)=1

χ
ypt+1

1

P (x) ∈ Q(ζk),

where L is a set of representatives for F∗
pf /F

∗
p. By taking norms of λ and 2Gf(χ

ypt+1
1

P ) in Q(ζk′ ),
we obtain the contradiction that p1 divides 2p. �

Next, we treat the case when 2 || k′ and gcd (k′/2, p− 1) = 1.

Corollary 2.11. Assume that 2 || k′, k and gcd (k′/2, p− 1) = gcd (k/2, p− 1) = 1. Then,

ϑp(χP ′ , χP ) = (−1)
(p−1)(p1−1)φ(h)

4e ,

where h is the product of all distinct odd prime factors of k′.

Proof: Let U = Q(ζ2k), U
′ = Q(ζ2k′), P̃ = P ∩OU , and P̃ ′ = P ′ ∩OU ′ . Then, ϑp(χP̃ ′ , χP̃ ) = 1 by

Theorem 2.4. Noting that

Gf (χ
2
P ) = Gf (χ

2 pf−1
k

P ) = Gf (χP̃ )

and

Gf ′(χ2
P ′) = Gf ′(χ

2 pf
′
−1

k′

P′ ) = Gf ′(χP̃ ′),

we have

ϑp(χP ′ , χP ) =
Gf ′(χP ′)

p
φ(k′)−φ(k)

2e Gf (χP )

=
χ2
P (2)Gf ′(χ2

P ′)Gf ′(χP ′η′)Gf (η)

p
φ(k′)−φ(k)

2e χ2
P ′(2)Gf (χ2

P )Gf (χP η)Gf ′(η′)

=
χ2
P (2)Gf ′(χP̃ ′)Gf ′(χ

(1+k′/2)/2

P̃ ′
)Gf (η)

p
φ(k′)−φ(k)

2e χ2
P ′(2)Gf (χP̃ )Gf (χ

(1+k/2)/2

P̃
)Gf ′(η′)

where η′ and η are the respective quadratic characters of Fq′ and Fq. Since the restrictions of χ2
P

and χ2
P ′ to F∗

p are trivial, we have χ2
P (2) = χ2

P ′(2) = 1. Furthermore, since ϑp(χP̃ ′ , χP̃ ) = 1, we

have Gf ′(χP̃ ′)/Gf (χP̃ ) = p(φ(k
′)−φ(k))/2e. Now, note that (1 + k/2)/2 = h(s − (p1 − 1)k/4h) +

[gpm]h ∈ (Z/k
2Z)

∗ if (1 + k′/2)/2 = hs + [gpm]h ∈ (Z/k′

2 Z)
∗ for some g in a set of representa-

tives of (Z/hZ)∗/〈p〉 and 0 ≤ s ≤ k′/2h − 1. Hence, by Theorem 2.10 and our assumption, we

have Gf ′(χ
(1+k′/2)/2

P̃ ′
)/Gf (χ

(1+k/2)/2

P̃
) = p(φ(k

′)−φ(k))/2e. Finally, by the Davenport-Hasse lifting
formula and Lemma 2.1, we have

Gf ′(η′)

Gf (η)
= (−1)p1−1(Gf (η))

p1−1 = (−1)
(p−1)(p1−1)φ(h)

4e p
φ(k′)−φ(k)

2e ,

which shows the assertion. �
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Remark 2.12. Let ǫ denote (−1)
(p−1)(p1−1)φ(h)

4e or 1 according as 2||k and gcd (k′/2, p− 1) = 1 or
2 6 |k and gcd (k′, p− 1) = 1. By Theorem 2.4 and Corollary 2.11, for any a s.t. gcd (a, k′) = 1 it
is clear that

ϑp(χ
a
P ′ , χa

P ) = ǫ

since σ(ϑp(χP ′ , χP )) = ϑp(χ
a
P ′ , χa

P ) and σ(ǫ) = ǫ for σ ∈ Gal(Q(ζk′p)/Q(ζp)) satisfying σ(ζk′ ) =
ζak′ .

Corollary 2.13. Assume that k′ is odd and gcd (k′, p− 1) = 1. Then, it holds that ϑp(χ
t
P ′ , χt

P ) =
1 for any t such that ps 6 |t, where s is the highest power of p1 dividing k.

Proof: Put t = a · gcd (t, k) with gcd (a, k) = 1. Let r′ and r be the order of p mod-
ulo k′/ gcd (t, k′)(=: u′) and modulo k/ gcd (t, k)(=: u). Then, by our assumption, r′ = rp1
and u′ = up1 follow. Write J = Q(ζu), J

′ = Q(ζu′), H = Q(ζpr−1), H
′ = Q(ζpr′−1) and

R = P ∩OJ , R
′ = P ′ ∩OJ′ ,R = P ∩OH ,R

′ = P′ ∩OH′ . Then, we have

χ
a pr−1

u

R (ζ
i pf−1
pr−1

pf−1
+R) = χ

a pf−1
u

P (ζipf−1 +P) = χ
pf−1

k t

P (ζipf−1 +P)

and hence χ
pf−1

k t

P is the lift of χ
a pr−1

u

R to Fpf . Similarly, χ
pf

′
−1

k′ t

P′ is the lift of χ
a pr

′
−1

u′

R′ to Fpf′ . Now,
by the Davenport-Hasse lifting formula, we have

ϑp(χ
t
P ′ , χt

P ) =
Gf ′(χt

P ′)

p
φ(k′)−φ(k)

2e Gf (χt
P )

=
Gf ′(χ

pf
′
−1

k′ t

P′ )

p
φ(k′)−φ(k)

2e Gf (χ
pf−1

k t

P )

=
(−1)f

′/r′−1(Gr′(χ
a pr

′
−1

u′

R′ ))f
′/r′

(−1)f/r−1p
φ(k′)−φ(k)

2e (Gr(χ
a pr−1

u

R ))f/r

=
1

p
φ(k′)−φ(k)

2e

·
(
Gr′(χ

a
R′)

Gr(χa
R)

)f/r

.

Applying Theorem 2.10, the above is equal to

1

p
φ(k′)−φ(k)

2e

·
(
p

r′−r
2 ϑp(χR′ , χR)

)f/r
= 1,

which completes the proof. �

3 Constructions of strongly regular graphs and skew Hadamard

difference sets

3.1 General construction

We first recall the following well-known lemma in the theory of difference sets (see e.g., [20, 26]).

Lemma 3.1. Let (G,+) be an abelian group of odd order v, D a subset of G of size v−1
2 . Assume

that D ∩ −D = ∅ and 0 6∈ D. Then, D is a skew Hadamard difference set in G if and only if

χ(D) =
−1±√−v

2

for all nontrivial characters χ of G. On the other hand, assume that 0 6∈ D and −D = D. Then
D is a Paley type partial difference set in G if and only if

χ(D) =
−1±√

v

2

for all nontrivial characters χ of G.
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Let q be a prime power and let C
(k,q)
i = γi〈γk〉, 0 ≤ i ≤ k − 1, be the cyclotomic classes of

order k of Fq, where γ is a fixed primitive element of Fq. From now on, we will assume that D
is a union of cyclotomic classes of order k of Fq. In order to check whether a candidate subset,

D =
⋃

i∈I C
(k,q)
i , is a connection set of a strongly regular Cayley graph (i.e., a regular partial

difference set), we will compute the sums ψ(aD) :=
∑

x∈D ψ(ax) for all a ∈ F∗
q , where ψ is the

canonical additive character of Fq, since the restricted eigenvalues of Cayley graph Cay(Fq, D), as
explained in [5, p. 134], are ψ(γaD), where a = 0, 1, . . . , q − 2. Similarly, to check whether D is a
skew Hadamard difference set in (Fq,+), we will compute the sums ψ(aD) for all a ∈ F∗

q because
of Lemma 3.1. Thus, by Theorem 1.1 and Lemma 3.1, in both cases we need to show that the
set {ψ(γaD) | a = 0, 1, . . . , q − 2} has precisely two elements. Note that the sum ψ(aD) can be
expressed as a linear combination of Gauss sums using the orthogonality of characters:

ψ(aD) =
1

k

∑

i∈I

∑

x∈F∗
q

ψ(aγixk)

=
1

k

∑

i∈I

∑

x∈F∗
q

1

q − 1

∑

y∈F∗
q

ψ(y)
∑

χ∈F̂∗
q

χ(aγixk)χ(y)

=
1

(q − 1)k

∑

i∈I

∑

x∈F∗
q

∑

χ∈F̂∗
q

G(χ−1)χ(aγixk)

=
1

(q − 1)k

∑

i∈I

∑

χ∈F̂∗
q

G(χ−1)χ(aγi)
∑

x∈F∗
q

χ(xk)

=
1

k

∑

χ∈C⊥
0

G(χ−1)
∑

i∈I

χ(aγi),

where F̂∗
q is the group of multiplicative characters of F∗

q and C⊥
0 is the subgroup of F̂∗

q consisting

of all χ which are trivial on C
(k,q)
0 .

In this section, similar to Section 2, we will assume the following. Let h = 2tp1p2 · · · pℓ be a positive
integer with distinct odd primes pi and let p be a prime satisfying the following: For any divisor
d = 2spi1 · · · pim of h, if 〈p〉 is of index u modulo d, then so does 〈p〉 modulo d′ = 2spx1

i1
· · · pxm

im
for

any xi ≥ 1. Let e denotes the index of 〈p〉 modulo h. We write k =
∏ℓ

i=1 2
tpeii and k′ = kp1.

Theorem 3.2. Let q = pf and q′ = pf
′

, where f = φ(k)/e and f ′ = φ(k′)/e, and let

J = {x |x divides k and x is not divisible by pe11 } ⊆ N.

Let J1 and J2 be a partition of J into two parts and let I be a subset of {0, 1, . . . , k− 1} satisfying
the following conditions:

(i)
∑

i∈I ζ
ij
k = 0 for all j ∈ J1.

(ii) θp(χ
j
P ′ , χ

j
P ) = ǫ for all j ∈ J2, where ǫ = 1 or −1 not depending on j.

(iii) If ℓ ≥ 2 or t ≥ 1,

Gf ′(χ
−p

e1+1
1 v

P ′ ) = ǫp
φ(k′)−φ(k)

2e Gf (χ
−p

e1
1 v

P )

for all 1 ≤ v ≤ k/pe11 − 1.

Let

D =
⋃

i∈I

C
(k,q)
i and D′ =

⋃

i∈I

p1−1⋃

j=0

C
(kp1,q

′)

ip1+jk/p
e1
1

.
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Assume that the size of the set {ψ(γaD) | a = 0, 1, . . . , q− 2} is exactly two, where γ is a primitive
root of Fq and ψ is the canonical additive character of Fq. Then, the size of the set {ψ′(ωaD′) | a =
0, 1, . . . , q′ − 2} is exactly two, where ω is a primitive root of Fq′ and ψ

′ is the canonical additive
character of Fq′ .

Proof: In this proof, without loss of generality, we assume that the primitive roots γ and ω
have the forms γ = α + P ∈ OK/P and ω = β + P ′ ∈ OK′/P ′ for α and β of (2.1). Then,
χu
P ′(ωp1) = χu

P (γ) follows.

To prove the theorem, it is sufficient to evaluate the sum

kp1 · ψ′(ωaD′) =
kp1−1∑

u=0

Gf ′(χ−u
P ′ )

∑

i∈I

p1−1∑

j=0

χu
P ′(ωa+ip1+jk/p

e1
1 ),

where a = 0, 1, . . . , k′ − 1 and ψ′ is the canonical additive character of Fq′ .

For u = 0, we have

Gf ′(χ0
P ′)
∑

i∈I

p1−1∑

j=0

χ0
P ′(ωa+ip1+jk/p

e1
1 ) = −p1|I|.

For u = pe11 v with v 6≡ 0 (mod p1), we have

Gf ′(χ
−p

e1
1 v

P ′ )
∑

i∈I

p1−1∑

j=0

χ
p
e1
1 v

P ′ (ωa+ip1+jk/p
e1
1 ) = 0. (3.1)

If ℓ ≥ 2 or t ≥ 1, for u = pe1+1
1 v with v 6= 0, we have

Gf ′(χ
−p

e1+1
1 v

P ′ )
∑

i∈I

p1−1∑

j=0

χ
p
e1+1
1 v

P ′ (ωa+ip1+jk/p
e1
1 ) = p1Gf ′(χ

−p
e1+1
1 v

P ′ )
∑

i∈I

χ
p
e1+1
1 v

P ′ (ωa+ip1+jk/p
e1
1 )

for any j. Note that for each a ∈ {0, 1, . . . , k′ − 1}, there is a unique j ∈ {0, 1, . . . , p1 − 1} such
that p1 | a+ jk/pe11 ; we write a+ jk/pe11 = p1ja. Then, the above is equal to

p1Gf ′(χ
−p

e1+1
1 v

P ′ )
∑

i∈I

χ
p
e1+1
1 v

P ′ (ωp1(ja+i)). (3.2)

Furthermore, since χu
P ′(ωp1(ja+i)) = χu

P (γ
ja+i), by the assumption (iii), eq. (3.2) is rewritten as

ǫp1p
φ(k′)−φ(k)

2e Gf (χ
−p

e1
1 v

P )
∑

i∈I

χ
p
e1
1 v

P (γja+i). (3.3)

For the remaining cases, we can assume that pe11 6 |u, and write u = kv1+v2 for some 0 ≤ v1 ≤ p1−1

and 0 ≤ v2 ≤ k − 1. Then, since Gf ′(χkv1+v2
P ′ ) = Gf ′(χ

kv′
1+v2

P ′ ) for 0 ≤ v1, v
′
1 ≤ p1 − 1, we have

p1−1∑

v1=0

k−1∑

v2=1

Gf ′(χ−kv1−v2
P ′ )

∑

i∈I

p1−1∑

j=0

χkv1+v2
P ′ (ωa+ip1+jk/p

e1
1 )

= p1

k−1∑

v2=1

Gf ′(χ−v2
P ′ )

∑

i∈I

χv2
P ′(ω

p1(ja+i))

= p1

k−1∑

v2=1;gcd (v2,k)∈J2

Gf ′(χ−v2
P ′ )

∑

i∈I

χv2
P ′(ω

p1(ja+i)).
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By our assumption that Gf ′(χ−v2
P ′ ) = ǫp

φ(k′)−φ(k)
2e Gf (χ

−v2
P ) and by χv2

P ′(ωp1(ja+i)) = χv2
P (γja+i),

the above is equal to

ǫp1p
φ(k′)−φ(k)

2e

k−1∑

v2=1;gcd (v2,k)∈J2

Gf (χ
−v2
P )

∑

i∈I

χv2
P (γja+i).

Finally, together with eq. (3.1) and (3.3), we obtain

kp1 · ψ′(ωaD′) + p1|I| = ǫp1p
φ(k′)−φ(k)

2e

k−1∑

v2=1

Gf (χ
−ℓ2
P )

∑

i∈I

χℓ2
P (γja+i).

Now, by the assumption that the size of the set

{ψ(γaD) | a = 0, 1, . . . , k − 1}

is exactly two, we obtain the assertion. In particular, the two values in {ψ′(ωaD′) | a = 0, 1, . . . , q′−
2} are given as

1

kp1
(ǫp1p

φ(k)(p1−1)
2e (ks+ |I|)− p1|I|) = ǫp

φ(k)(p1−1)
2e s+

|I|(ǫpφ(k)(p1−1)
2e − 1)

k
, (3.4)

where s = ψ(γaD) for some a. �

3.2 Strongly regular graphs

In this subsection, we write k =
∏ℓ

i=1 p
ei
i , where pi are distinct odd primes and assume that p is

a prime such that ordk(p) = φ(k)/e. Furthermore, assume that 〈p〉 is again of index e modulo
k′(:= kp1) and gcd (k′, p− 1) = 1.

Theorem 3.3. Let h = p1 · · · pmpm+1 · · · pℓ with all distinct odd primes pi and [(Z/hZ)∗ : 〈p〉] = e.
Furthermore, Let k = pe11 · · · pemm p

em+1

m+1 · · · peℓℓ , where ei ≥ 1 for 1 ≤ i ≤ m and ei = 1 for
m+ 1 ≤ i ≤ ℓ, and assume that 〈p〉 is again of index e modulo k. Let q1 = pd and q = pf , where
d = φ(h)/e and f = φ(k)/e. Put hj =

∏
i6=j pi for 1 ≤ j ≤ m. Assume that there exists an integer

sj s.t. psj ≡ −1 (mod hj) for 1 ≤ j ≤ m. Let

D :=

p
e1−1
1 −1⋃

i1=0

· · ·
pem−1
m −1⋃

im=0

C
(k,q)
i1n1+···+imnm

,

where nj =
∏

i6=j p
ei
i . If Cay(Fq1 , C

(h,q1)
0 ) is an srg, then so does Cay(Fq, D).

Proof: We will show by induction. Write

D =

p
e1−1
1 −1⋃

i1=0

· · ·
pem−1
m −1⋃

im=0

C
(k,q)
i1n1+···+imnm

and assume the size of the set {ψ(γaD) | a = 0, 1, . . . , q − 2} is exactly two. We put

I =

p
e1−1
1 −1⋃

i1=0

· · ·
pem−1
m −1⋃

im=0

{i1n1 + · · ·+ imnm}

in Theorem 3.2. Let J be the set of positive divisors of k not divisible by pe11 ,

J1 = {x | ∃i, 1 ≤ i ≤ m, s.t. pri ||x, where 1 ≤ r ≤ ei − 1} ⊆ J,
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and J2 = J \ J1. Then, by the definition of I, it is clear that
∑

i∈I ζ
ij
k = 0 for all j ∈ J1.

Furthermore, since the assumption ps1 ≡ −1 (mod h1) implies that p is semi-primitive modulo n1,
by Theorems 2.2, for u = pe1+1

1 v we have

Gf ′(χ
p
e1+1
1 v

P ′ ) = p
φ(k′)−φ(k)

2e Gf (χ
p
e1
1 v

P ).

Moreover, by Corollary 2.13, we have for any a ∈ J2

Gf ′(χa
P ′) = p

φ(k′)−φ(k)
2e Gf (χ

a
P ).

Thus, the assumptions (i), (ii), and (iii) of Theorem 3.2 are satisfied. Now, by applying Theo-
rem 3.2, the size of the set {ψ′(γaD′) | a = 0, 1, . . . , q′ − 2} is exactly two, where

D′ =

p1−1⋃

j=0

p
e1−1
1 −1⋃

i1=0

· · ·
pem−1
m −1⋃

im=0

C
(kp1,q

′)
p1(i1n1+···+imnm)+jn1

=

p
e1
1 −1⋃

i=0

p
e2−1
2 −1⋃

i2=0

· · ·
pem−1
m −1⋃

im=0

C
(kp1,q

′)
in1+i2n′

2+···+imn′
m

with n′
i = nip1. �

Example 3.4. (i) If ℓ = 1 in Theorem 3.3, we do not need the condition that there exists an
integer sj s.t. psj ≡ −1 (mod hj). Hence, assuming that

[(Z/p1Z)
∗ : 〈p〉] = [(Z/pe11 Z)∗ : 〈p〉] = e,

if Cay(Fpφ(p1)/e , C
(p1,p

φ(p1)/e)
0 ) forms an srg, then so does Cay(F

pφ(p
e1
1

)/e , D), where

D =

p
e1−1
1 −1⋃

i=0

C
(p

e1
1 ,pφ(p

e1
1 )/e)

i .

It is easy to see by induction that ordpe1
1
(p) = φ(pe11 )/e for general e and for all pairs

(k = p1, p) of No. 1, 2, 4, 5, 6, 7, 9, and 11 in Table 1. Thus, all these srgs can be
generalized into infinite families. Note that there are a lot of examples in subfield case

satisfying [(Z/p1Z)
∗ : 〈p〉] = e and p1 = pφ(p1)/e−1

pt−1 for some t |φ(p1)/e. For example, we
list ten examples satisfying these conditions in Table 2. These examples can be similarly
generalized into nontrivial infinite families.

(ii) If ℓ = 2, in Theorem 3.3, we need the condition that there exists an integer si s.t. psi ≡
−1 (mod pi) for either of i = 1, 2. Hence, assuming that p is semi-primitive modulo both of
p1 and p2, and

[(Z/p1p2Z)
∗ : 〈p〉] = [(Z/pe11 p

e2
2 Z)∗ : 〈p〉] = e,

if Cay(Fpφ(p1p2)/e , C
(p1p2,p

φ(p1p2)/e)
0 ) forms an srg, then so does Cay(F

pφ(p
e1
1

p
e2
2

)/e , D), where

D =

p
e1−1
1 −1⋃

i=0

p
e2−1
2 −1⋃

j=0

C
(p

e1
1 p

e2
2 ,pφ(p

e1
1

p
e2
2

)/e)

i1p
e2
2 +i2p

e1
1

.

It is easy to see by induction that ordpe1
1 p

e2
2
(p) = φ(pe11 p

e2
2 )/e for any e1, e2 and for pairs

(k = p1p2, p) of No. 3 and 10 in Table 1. Thus, these srgs can be generalized into infinite
families. On the other hand, if p is semi-primitive modulo either one of p1 or p2, say p2,
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Table 2: Subfield examples of ℓ = 1 led to infinite families

p1 p f e := [(Z/kZ)∗ : 〈p〉]
7 2 2 2
13 3 3 4
31 2 5 6
31 5 3 10
73 2 9 8
127 2 7 18
307 17 3 102
757 3 9 84
1093 3 7 156
1723 41 3 574

then Cay(F
pφ(p

e1
1

p2)/e , D) forms an srg under the assumption that [(Z/pe11 p2Z)
∗ : 〈p〉] = e,

where

D =

p
e1−1
1 −1⋃

i=0

C
(p

e1
1 p2,p

φ(p
e1
1 p2)/e)

i1p2
.

It is easy to see by induction that ordpe1
1 p2

(p) = φ(pe11 p2)/e for any e1 and p is semi-primitive

modulo p2 for the triple (p1, p2, p) = (19, 7, 5) of No. 8 in Table 1. Thus, this srg can
be generalized into infinite families. Moreover, we can find some examples in subfield case

satisfying [(Z/p1p2Z)
∗ : 〈p〉] = e and p1p2 = pφ(p1p2)/e−1

pt−1 for some t |φ(p1p2)/e. For example,
we list four examples satisfying these conditions in Table 3. In the sixth column “sp” of the

Table 3: Subfield examples of ℓ = 2 led to infinite families

p1 p2 p f e := [(Z/kZ)∗ : 〈p〉] sp
3 5 2 4 2 b
5 17 2 8 8 b
31 11 2 10 30 o
127 43 2 14 378 o

table, “b” indicates that p is semi-primitive modulo both of p1 and p2, and “o” indicates
that p is semi-primitive modulo p2 only. These examples can be generalized into nontrivial
infinite families.

3.3 Skew Hadamard difference sets

In this subsection, we write k = 2pe11 , where p1 is an odd prime and assume that p is a prime such
that ordk(p) = φ(k)/e. Furthermore, assume that p is again of index e modulo k′(:= kp1) and
gcd (k′/2, p− 1) = 1.

Theorem 3.5. Let h = 2p1 with an odd prime p1 and let p be a prime such that 〈p〉 is of index
e modulo h. Furthermore, let k = 2pe11 and assume that 〈p〉 is again of index e modulo k. Put
q1 = pd and q = pf , where d = φ(h)/e and f = φ(k)/e. Define H as any subset of {0, 1, . . . , h−1}
such that

∑
i∈H ζip1

= 0. Let

D =
⋃

i∈H

C
(h,q1)
i and D′ =

p
e1−1
1⋃

i1=0

⋃

i∈H

C
(k,q)
2i1+ik/h.
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If D is a skew Hadamard difference set or a Paley type regular partial difference set on Fq1 , then
so does D′ on Fq.

Proof: We will show by induction. Write

D =

p
e1−1
1⋃

i1=0

⋃

i∈H

C
(k,q)
2i1+ik/h

and assume that the size of the set {ψ(γaD) | a = 0, 1, . . . , q−2} is exactly two, which are
−1±√

τq

2 ,
where τ = 1 or −1 according asD is a Paley type regular partial difference set or a skew Hadamard
difference set. Now, we put

I =

p
e1−1
1 −1⋃

i1=0

⋃

i∈H

{2i1 + ik/h}

in Theorem 3.2. Let

J2 = {1} ⊆ J = {1, p1, . . . , pe−1
1 } ∪ 2{1, p1, . . . , pe−1

1 }

and J1 = J \ J2. Then, by the definition of I, it is clear that
∑

i∈I ζ
ij
k = 0 for all j ∈ J1. By

Lemma 2.1, we have

Gf ′(χ
k′/2
P ′ ) = (−1)

(p−1)(p1−1)φ(h)

4e p
φ(k′)−φ(k)

2e Gf (χ
k/2
P ).

Furthermore, by Corollary 2.11, we have

Gf ′(χP ′ ) = (−1)
(p−1)(p1−1)φ(h)

4e p
φ(k′)−φ(k)

2e Gf (χP ).

Thus, the assumptions (i), (ii), and (iii) of Theorem 3.2 are satisfied. Now, by applying Theo-
rem 3.2, the size of the set {ψ′(γaD′) | a = 0, 1, . . . , q′ − 2} is exactly two, where

D′ =

p1−1⋃

j=0

p
e1−1
1⋃

i1=0

⋃

i∈H

C
(k,q)

(2i1+ik/h)p1+jk/p
e1
1

=

p
e1
1 −1⋃

i1=0

⋃

i∈H

C
(k,q)
2i1+ik′/h.

In particular, by eq. (3.4), the two values in {ψ′(γaD′) | a = 0, 1, . . . , q′ − 2} are

ǫp
φ(k)(p1−1)

2e

(
−1±

√
τpf

2

)
+
k

2
·
(
ǫp

φ(k)(p1−1)
2e − 1

k

)
=

−1± ǫ
√
τpf ′

2
,

which completes the proof. �

Example 3.6. In [11], several examples satisfying the condition of Theorem 3.5 were found from
index 2 case, which were generalized into infinite families using Gauss sums of index 2. We can
find by computer further two examples having the following parameters from index 4 case:

(p1, p, f, e) = (13, 3, 3, 4) and (29, 7, 7, 4).

In particular, the latter example was found by Tao Feng [12]. We choose H in Theorem 3.5 as
H = Q∪2Q∪{p1} for the former parameter and choose H = Q∪2Q∪{0} for the latter parameter,
where Q is the subgroup of index 2 of (Z/2p1Z)

∗. It is easy to check that these H satisfies the
condition of Theorem 3.5 and 〈p〉 is of index 4 in (Z/2pe11 Z)∗ for general e1. Hence, these examples
can be generalized into infinite families.
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4 Final remarks

We close this paper by referring the reader to the interesting paper [27] by Wu. Immediately after
writing up this manuscript, the author became aware that Wu [27] obtained a nice result on the
existence problem of cyclotomic srgs.

In our paper, cyclotomic constructions of strongly regular Cayley graphs and skew Hadamard
difference sets on Fq were given. For example, we proved the following result (which follows from
the more general theorem 3.3): For an odd prime p1, assume that (i) gcd (p(p− 1), p1) = 1 (ii) 〈p〉
is of index e modulo p1 (iii) Cay(Fp(p1−1)/e , C

(p(p1−1)/e,p1)
0 ) is strongly regular. Then, if 〈p〉 is of

index e modulo pm1 , Γ = Cay(F
pp

m−1
1 (p1−1)/e

,
⋃pm−1

1 −1
i=0 C

(pp
m−1
1 (p1−1)/e,pm

1 )
i ) is also strongly regular.

Since there are a lot of subfield or sporadic examples satisfying the assumption of this result, we
consequently obtain many new infinite families of strongly regular Cayley graphs. This result
can be viewed as a “recursive” construction of srgs not saying anything about the existence of
“starting” srgs.

On the other hand, Wu [27] gave necessary and sufficient conditions for Γ to be an srg by gener-
alizing the method used in the paper of Ge, Xiang, and Yuan [13]. Although it seems that the
assumptions of our main result are simpler and the situation is definitely much more general than
that of [27], the approach in [27] is obviously different from ours and his results are not completely
included in ours. In fact, Wu [27] obtained two conditions (one is an equation and the other is
a congruence) which are necessary and sufficient for the construction to give rise to an srg, and
his approach has the advantage of revealing an interesting connection between strongly regular

Cayley graphs Cay(Fp(p1−1)/e , C
(p(p1−1)/e,p1)
0 ) and cyclic difference sets in (Z/p1Z,+), which will

be very effective to get some new cyclic difference sets and also a strong necessary condition for
the existence of cyclotomic srgs.
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