Mathematics > Combinatorics

Specified Intersections

Dhruv Mubayi, Vojtech Rodl

(Submitted on 28 Jul 2011 (v1), last revised 3 May 2012 (this version, v2))

Let M be a subset of $\{0, \ldots, n\}$ and F be a family of subsets of an n element set such that the size of A intersection B is in M for every A, B in F. Suppose that I is the maximum number of consecutive integers contained in M and n is sufficiently large. Then we prove that $|F|<\min \left\{1.622^{\wedge} n 100^{\wedge}, 2^{\wedge}\left\{n / 2+l \log ^{\wedge} 2 n\right\}\right\}$.
The first bound complements the previous bound of roughly (1.99)^n due to Frankl and the second author which applies even when $M=\{0,1, . ., n\}-\{n / 4\}$. For small I, the second bound above becomes better than the first bound. In this case, it yields $2^{\wedge}\{n / 2+o(n)\}$ and this can be viewed as a generalization (in an asymptotic sense) of the famous Eventown theorem of Berlekamp.

Our second result complements the result of Frankl-Rodl in a different direction. Fix eps>0 and eps $n<t<n / 5$ and let $M=\{0,1, . ., n)-\left(t, t+n^{\wedge}\{0.525\}\right)$. Then, in the notation above, we prove that for n sufficiently large, $|\mathrm{F}|<\mathrm{n}\{\mathrm{n}$ \choose ($\mathrm{n}+\mathrm{t}$)/2\}.
This is essentially sharp aside from the multiplicative factor of n. The short proof uses the Frankl-Wilson theorem and results about the distribution of prime numbers.

Subjects: Combinatorics (math.CO)
MSC classes: 05
Cite as: arXiv:1107.5651 [math.CO] (or arXiv:1107.5651v2 [math.CO] for this version)

Submission history

From: Dhruv Mubayi [view email]
[v1] Thu, 28 Jul 2011 09:03:05 GMT (15kb)
[v2] Thu, 3 May 2012 00:53:37 GMT (15kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

