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Let M be a subset of {0, .., n} and F be a family of subsets of an n element set 
such that the size of A intersection B is in M for every A, B in F. Suppose that l 
is the maximum number of consecutive integers contained in M and n is 
sufficiently large. Then we prove that 
|F| < min {1.622^n 100^l, 2^{n/2+l log^2 n}}. 
The first bound complements the previous bound of roughly (1.99)^n due to 
Frankl and the second author which applies even when M={0, 1,.., n} - {n/4}. 
For small l, the second bound above becomes better than the first bound. In 
this case, it yields 2^{n/2+o(n)} and this can be viewed as a generalization (in 
an asymptotic sense) of the famous Eventown theorem of Berlekamp. 
Our second result complements the result of Frankl-Rodl in a different 
direction. Fix eps>0 and eps n < t < n/5 and let M={0, 1, .., n)-(t, t+n^{0.525}). 
Then, in the notation above, we prove that for n sufficiently large, 
|F| < n{n \choose (n+t)/2}. 
This is essentially sharp aside from the multiplicative factor of n. The short 
proof uses the Frankl-Wilson theorem and results about the distribution of 
prime numbers. 
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