

arXiv.org > math > arXiv:1107.5301

Mathematics > Combinatorics

Remarks for the Ramsey theory for trees

János pach, József Solymosi, Gábor Tardos

(Submitted on 26 Jul 2011)

Extending Furstenberg's ergodic theoretic proof for Szemer\'edi's theorem on arithmetic progressions, Furstenberg and Weiss (2003) proved the following qualitative result. For every d and k, there exists an integer N such that no matter how we color the vertices of a complete binary tree T_N of depth N with k colors, we can find a monochromatic replica of T_d in T_N such that (1) all vertices at the same level in T_d are mapped into vertices at the same level in T_N; (2) if a vertex x of T_d is mapped into a vertex y in T_N, then the two children of x are mapped into descendants of the the two children of y in T_N, respectively; and 3 the levels occupied by this replica form an arithmetic progression. This result and its density versions imply van der Waerden's and Szemer\'edi's theorems, and laid the foundations of a new Ramsey theory for trees.

Using simple counting arguments and a randomized coloring algorithm called random split, we prove the following related result. Let N=N(d,k) denote the smallest positive integer such that no matter how we color the vertices of a complete binary tree T_N of depth N with k colors, we can find a monochromatic replica of T_d in T_N which satisfies properties (1) and (2) above. Then we have $N(d,k)=\$ Theta(dk\log k). We also prove a density version of this result, which, combined with Szemer\'edi's theorem, provides a very short combinatorial proof of a quantitative version of the Furstenberg-Weiss theorem.

Comments:10 pages 1 figureSubjects:Combinatorics (math.CO)MSC classes:05D10Cite as:arXiv:1107.5301 [math.CO](or arXiv:1107.5301v1 [math.CO] for this version)

Submission history

From: Gábor Tardos [view email] [v1] Tue, 26 Jul 2011 19:32:00 GMT (10kb) Search or Article-id

All papers - Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.CO

< prev | next >

new | recent | 1107

Change to browse by:

math

Link back to: arXiv, form interface, contact.