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Tropical geometry of PERT

Masanori Kobayashi and Shinsuke Odagiri

Abstract. Based on a description of project networks by max-plus algebra

and poset, the adjacency of critical paths is presented using tropical geometry.

1. Introduction

The max-plus algebra, also known as the tropical semiring, appears in discrete
event systems[1]. For instance, the event firing time of a Petri net is analysed by
max-plus linear algebra. PERT (Program Evaluation and Review Technique) and
CPM (Critical Path Method) are popular methods of scheduling, and the problem
of resource conflict is discussed in [4].

Suppose there is a set of several activities with an order; each activity can be
started after all the preceding activities have accomplished. The activities form a
project network . Each activity x is assigned with a nonnegative number tx rep-
resenting the time required for x, which is called the time cost of x. One usually
includes the start activity u and the end activity y both with time cost zero.

Fix a project network. A successive series of activities from u to y is called a
path. For the accomplishment of a path I, we need at least the sum of the time costs
along I. Take the maximum for all the paths, and you get the earliest finishing time
for the project itself. The path attaining the maximum is called a critical path.

Since the critical path determines the time necessary to complete all the activ-
ities, it is important to watch and control the critical path. If one can reduce the
time cost of an activity on the critical path, the total duration becomes shorter.
On the contrary, an accident on the critical path directly results in the delay of the
closing.

However, if an activity out of the critical path suddenly requires more time, or
some activities in the critical path reduces their time costs, the critical path might
change. If so, which path is likely to be critical? In this paper, the question is
answered geometrically by the adjacency of paths.

We formulate a project network as a graph and an ordered set in Section 2, and
show when a tropical polynomial is realised as the earliest finishing time in Section
3. The topology of the transition of critical paths is discussed in Sections 4 and 5.
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2. Graph representation and poset structure of a project network

A project network is usually represented by a directed graph called a PERT
chart , and there are two popular ways; namely, activity-on-arrow (AOA) and
activity-on-node (AON) diagrams. In the AOA diagram, as imagined literally, each
activity is represented by an arrow (a directed edge). A vertex represents a mile-
stone between activities. On the other hand, in the AON diagram, an activity is
represented by a vertex and a dependency between activities by an arrow. Both
diagrams can represent any project networks, but we adopt the AON diagram,
where the insertion of dummy arrows (e.g. the dotted arrow in Figure 1, with no
corresponding activities) are not needed.

Activity Predecessor
a

b

c

d

-

-

a

a, b

a

b

c

d

Activity-on-arrow

a

b

c

d

Activity-on-node

Figure 1. PERT charts (u and y are omitted)

Every AON diagram is simple, that is, has no self-loops or multiple arrows.
Thus an arrow is represented by a pair of two different (namely, initial and terminal)
vertices. Logically there are no circular references, so the graph contains no cycles.
By the semipositivity of time costs we may assume that an arrow connects only
a pair of predecessor-successor (i.e. there are no activities in between); e.g. if
x0 → x1 → · · · → xk (k ≥ 2) exists then we do not include the arrow x0 → xk. We
call that final condition as having no ‘short-cuts’.

We shall identify such a graph and a partially ordered set (‘poset’) as follows.
X is supposed to be the set of activities.

Proposition 2.1. Let X be a finite set. There is a one-to-one correspondence
between the set of partial orders on X and the set of simple directed graphs with
vertex set X without cycles or short-cuts.

Proof. First note that for a finite ordered set, x < x′ is equivalent to the
existence of a finite sequence of predecessor-successors x = x0 < · · · < xk = x′.
This can be done by inductive insertions of intermediate elements if exist.

Assume a partial order is given to X . Combining a predecessor and a successor
by an arrow, one get a simple directed graph without short-cuts. The antisymmetric
law guarantees the vacancy of cycles. The graph is nothing but a Hasse diagram.

On the contrary, from a given directed graph, the reachability along a finite
(≥ 0) sequence of arrows defines a partial order. The reflectivity and transitivity is
obvious. x < x′ and x′ < x does not occur simultaneously since there are no cycles.

It is easy to see that the compositions of those two maps in both directions are
identity maps. �
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Thus, a PERT chart without short-cuts is equivalent to a Hasse diagram of a
poset with a minimum element u and a maximal element y such that the vertices
are nonnegatively weighted. A path is a graph-theoretic path from u to y in the
Hasse diagram, which consists of a totally-ordered set of vertices. Assumption of
‘no short-cuts’ guarantees that the ordered set is maximal; if one can add another
activity, the insertion must be somewhere in-between, thus a short-cut exists. On
the contrary, suppose a poset X with u and y is given. Take a maximal totally-
ordered subset I. Since I is maximal, I contains u and y, and the predecessor-
successor relation on I extends to that on X . Thus I corresponds to a path of the
PERT chart.

We omit u and y from X unless necessary from now on.

Lemma 2.2. Every finite poset (X,≤) can be embedded into a totally-ordered
set (X,≤′) with the same set.

Proof. Add a minimum element u to X . Order the elements of X by the
order distance from u with respect to ≤, and define ≤′ by being closer to u is
smaller. The order for the elements with same distance is arbitrary. If x ≤ x′, then
the distance to x′ is greater than or equal to that to x. Thus the identity map is
monotone. �

By the lemma, we may always assume that a finite poset of order n is equivalent
to [n] := {1, 2, . . . , n} as a set, where i < j in the poset order implies i < j

as integers. The other implication is not necessarily true. A totally-ordered set
corresponds to a serial PERT chart, whereas in the case of a parallel PERT chart,
as a poset [n] is an antichain, where distinct elements are not comparable.

3. Earliest finishing time as a tropical polynomial

Let F be the earliest finishing time of a project network with n activities. We
denote the time costs by t1, . . . , tn. Since the change of states matters, the time
costs are treated as variables, not as constants.

For a subset I of [n], we write the monomial term
∏

i∈I ti as tI .

Proposition 3.1. The earliest finishing time F can be written as a tropical
polynomial of t1, . . . , tn satisfying the following three conditions:

(1) the degree of F on each variable is at most one,
(2) the coefficient of each term is a unit,
(3) no term is divisible by any other terms. (‘nondivisibility’)

Proof. For each path, the sum of the time costs is a tropical monomial, and
the maximum is represented by the tropical addition. (1) follows since every path
contains each activity at most once. (2) is obvious. Thus every term of F can
be written as tI for some I, where I is a maximal totally-ordered subset of [n].
Suppose a term tJ is divisible by a term tI . That condition is equivalent to that
I ⊂ J holds. Since I is maximal, I = J follows. �

Let us think of the inverse problem: what is a sufficient condition for a tropical
polynomial to have a corresponding PERT chart?

We call a nonconstant tropical polynomial F prerealisable if F satisfies the
three conditions of Proposition 3.1. Prerealisable polynomial can be written in
the form of

∑

I∈I tI , where I is a nonempety subset of the power set 2[n] which
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satisfies that if I, J ∈ I and I ⊂ J then I = J . Moreover, We say that a tropical
polynomial is PERT-realisable (or simply, realisable) if there exists a PERT chart
with the earliest finishing time being F . By Proposition 3.1, a realisable tropical
polynomial is prerealisable.

Proposition 3.2. Let F =
∑

I∈I tI be a tropical polynomial of n variables.
Then F is realisable iff there exists a poset structure on the index set [n] such that

I is a maximal totally-ordered subset ⇔ tI is a term of F.

Proof. If F is realisable, then we have the equivalence since they both mean
that I is a path of the PERT chart. Suppose that the index set has a poset structure
satisfying the given equivalence. Then from Proposition 2.1, we have a correspond-
ing PERT chart such that every maximal totally-ordered subset corresponds to a
path and vice versa. Thus F is the earliest finishing time of the PERT chart. �

Prerealisable polynomials are not always realisable as shown below.

Proposition 3.3. Let I be a subset of 2[n] \{[n]} such that for every i, j ∈ [n],
there exists I ∈ I including both i and j. Then F =

∑

I∈I tI is not realisable.

Proof. Suppose F is realisable. Then [n] has a poset structure ≤ such that
every I ∈ I is totally ordered. Then ([n],≤) is totally ordered since every two
elements are comparable. This contradicts to the maximality of I. �

Let n, k be positive integers satisfying k ≤ n. Take I to be {I ⊂ [n] | #I = k}.
We write the corresponding tropical polynomial F as Fn,k. Apparently Fn,k is
prerealisable.

Corollary 3.4. Fn,k is realisable iff k = 1 or n.

Proof. If k = 1 (resp. k = n), then Fn,k corresponds to the PERT chart
consisting of n parallel (resp. serial) activities. On the other hand, if 2 ≤ k ≤ n−1,
Fn,k is not realisable by the previous proposition. �

A simple nonrealisable example is F3,2 = t1t2 ⊕ t2t3 ⊕ t1t3.

4. Tropical hypersurface and critical paths

We consider the topology of the space of paths. First we fix the notation.
We regard t = (t1, t2, . . . , tn) as the tropical coordinates of R

n, though we
mainly work on the semipositive orthant Rn

≥0, which we denote by Γ . For I ⊂ [n],
we denote by eI the element of Γ such that ti equals one for i ∈ I and zero
otherwise. When I = {i}, we write e{i} as ei.

For a tropical polynomial F = F (t1, . . . , tn), the tropical hypersurface V (F ) in
R

n is the locus where more than one terms attain the maximum. We denote by
V (F )≥0 the intersection V (F ) ∩ ΓC and by ΓF the complement Γ r V (F )≥0.

In the sequel, fix a tropical polynomial F =
∑

I∈I tI and I ∈ I. We define
a close (resp. an open) convex polyhedral cone CI (resp. C◦

I ) to be
⋂

J∈I{t ∈
Γ | tI ≥ tJ} (resp.

⋂

J∈I{t ∈ Γ | tI > tJ}). Since V (F )≥0 =
⋃

J,K
J 6=K

(CJ ∩ CK),

V (F )≥0 is also a cone.

Proposition 4.1. If F is prerealisable, the following holds:

(1) C◦
I is a nonempty and CI is n-dimensional.
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(2) C◦
I is the interior of CI in Γ .

(3) CI is the closure of C◦
I in Γ .

Proof. We first prove (1). The value of tI at eI equals #I, and the value
of a term tJ at eI is #(I ∩ J). Thus tI is strictly the biggest term of F at eI by
nondivisibility, thus eI ∈ C◦

I . CI contains an nonempty open subset C◦
I , thus is

n-dimensional.
We now prove (2). Suppose t ∈ CI satisfies tI = tJ for some distinct I, J in I.

By nondivisibility, there exists j ∈ J r I. Then for any ε > 0, t + εej is in Γ but
not in CI since tI < tJ . This shows that t is a boundary point of CI in Γ , and the
interior of CI in Γ is contained in C◦

I . C
◦
I is open in Γ , thus is the interior of CI .

For (3), let t be a point in CI . For any ε > 0, t+ εeI is in Γ and belongs to C◦
I

by nondivisibility. Thus t is in the closure of C◦
I . Since CI is closed, it coincides to

the closure of C◦
I . �

A prerealisable polynomial has a remarkable characterization as a function on
the semipositive orthant.

Proposition 4.2. A tropical polynomial F =
∑

I∈I tI satisfies the nondivisi-
bility condition iff each tI solely attains the maximum at some point in Γ .

Proof. If F satisfies the nondivisibility condition, then C◦
I is nonempty for all

I from the previous proposition. On the contrary, suppose I ⊂ J , where I, J ∈ I.
Then {t ∈ Γ | tI > tJ} is an empty set, and we have C◦

I = ∅. �

Theorem 4.3. Let F be the earliest finishing time of a project network. Then
V (F )≥0 is the set of points in Γ which has two or more critical paths. The points
in each connected component of ΓF has the same unique critical path. Every path
becomes a critical path for some time costs.

Proof. By the definition of critical path and tropical hypersurface, t ∈ V (F )
is equivalent to that there are more than one critical paths for the time cost t ∈ Γ .

We show by prerealisablity that C◦
I is a connected component of ΓF and ΓF =

⋃

I∈I C
◦
I . Tropical monomials are linear functions, hence continuous. Thus, the

difference of any two tropical monomials in F has a same sign on each connected
component U of ΓF . Hence the maximum term is the same on U and U is contained
in some C◦

I . Since C◦
I is convex, if at t and t

′ the tropical polynomial F attains a
same sole maximum term tI , the points are connected by a segment in C◦

I .
The last statement follows from the nonemptiness of C◦

I . �

Remark 4.4. If we allow the time costs to take negative values, the previous
theorem still remains valid. The general version may be useful for possible gener-
alizations like this. In the problem of percolation or invasion, the AND condition
‘all the previous activities is finished’ in PERT is replaced to the OR condition ‘at
least one previous activity is finished’. In this case we have the MIN-plus algebra
instead. By multiplying (−1) to all the time costs, one can regard the problem as
a negative-time-costs version of PERT.

5. Adjacency of paths

When the time costs change, on purpose or by accident, a change of critical
paths may follows. Let us define a graph to monitor the transition.
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Take two maximal paths I, J in a PERT chart with the set of paths I, or
in general, two monomial terms tI , tJ in a prerealisable polynomial F . We say
CI , CJ are adjacent (or I, J are adjacent), if CI , CJ have a common codimension-
one wall. When a critical path changes, some of the adjacent paths always attain
the maximum (at least in a moment).

Let G(F ) be a non-oriented graph with the vertex set I and the edges between
adjacent vertices. We call G(F ) the adjacency graph of F . By Proposition 4.2, we
identify each vertex I with the chamber CI .

Example 5.1. Fn,1 = t1 ⊕ · · · ⊕ tn in Corollary 3.4 is realisable as a parallel
chart. For every i, j ∈ [n], C{i} and C{j} are adjacent at neighbourhood of a point
e{i,j} along the codimension-one wall {ti = tj}. Thus we have G(Fn,1) = Kn, the
complete graph with n vertices.

For 2 ≤ k ≤ n− 1, chambers CI , CJ of Fn,k are adjacent iff #(I ∩ J) = k − 1,
which is because CI =

⋂

i∈I, j∈[n]\I{t ∈ Γ | ti ≥ tj}.

Example 5.2. Let F =
∑n−1

i=1 titi+1 (n ≥ 2). Then G(F ) is Kn−1, again
a complete graph. Note that F corresponds to a zigzag PERT chart having n

activities with the beginning (resp. ending) nodes being labelled odd (resp. even)
and the activities are connected by an edge iff their labels differ by one.

Let N(F ) be the 1-skeleton of the Newton subdivision of F ([3]). Then G(F )
is a subgraph of N(F ) because the Newton subdivision of F is dual to V (F ). Note
that the Newton subdivision of F equals the Newton polytope of F since all the
coefficients of F are the same.

Since the number of the vertices of G(F ) equals #I, the number of vertices of
G(F ) and N(F ) coincides. However, some edges in N(F ) may not appear in G(F ).

Example 5.3. Let F be a prerealisable tropical polynomial

F = t1t3t6 ⊕ t1t4t5 ⊕ t1t4t6 ⊕ t2t3t6 ⊕ t2t5.

Then F is realisable, since there exists a corresponding PERT chart drawn left
side of Figure 2. The right figure is G(F ), where boxes represents vertices with
I written inside, and the the bold lines are the edges (which was obtained by
calculating V (F )). However, N(F ) contains the dotted lines too. In fact, G(F )
cannot be obtained as the 1-skeleton of a Newton subdivision of any prerealisable
polynomial. This is because for any polytope of dimension d, the degree of each
vertex must be bigger than d. Thus if there exists a prerealisable polynomial F ′

satisfying N(F ′) = G(F ), N(F ′) must be a polygon since there exists a vertex of
degree 2. Then every vertex of N(F ′) must be of degree 2, whereas G(F ) has a
vertex of degree 3.

Now we explain an important feature of adjacency. Let {1, 4, 6} be the current
critical path. Suppose we decrease the time cost of the activity 1. Then the critical
path may change. The new one should be {2, 3, 6}, because that is the only path
which is adjacent to {1, 4, 6} and does not contain 1 as seen in the adjacency graph.
Or suppose the time cost of the activity 5 has suddenly risen up. Then {1, 4, 5},
not {2, 5}, is the only possibility.

One should study V (F ) to obtain G(F ), which is not very easy in general.
When the PERT chart has some structure, one might obtain G(F ) accordingly.
We shall discuss three cases: independency, product structure and homogeneity.

First, an independent activity increases the connectivity of the adjacency graph.
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Adjacency graph

1

2

3 4

5

6

PERT chart realising F

{1,4,5}

{1,4,6} {1,3,6}

{2,3,6}

{2,5}

Figure 2. N(F ) 6= G(F )

Proposition 5.4. If a term tI of F contains a variable ti which does not appear
in any other terms, then the vertex I of G(F ) is connected to all other vertices.

Proof. Let tJ be another term of F . eJ is an interior point of CJ . Take the
point t = eJ + sei for s ≥ 0. When s increases from 0, tI is the only term in F

whose value at t gets larger. Eventually we get tI = tJ . Those tI , tJ are the only
terms that attain the maximum at that t. Thus CI and CJ are adjacent. �

Next we treat the product. For two undirected graphs G1 = (V1, E1), G2 =
(V2, E2), we define the Cartesian product G1�G2 as in [2], that is:

(1) the vertex set being V1 × V2,
(2) {(v1, v2), (v′1, v

′
2)} is an edge of G1�G2 iff

{v1, v
′
1} ∈ E1, v2 = v′2 or v1 = v′1, {v2, v

′
2} ∈ E2.

Proposition 5.5. Let F1, F2 be polynomials with no common variables. Then

G(F1F2) = G(F1)�G(F2).

Proof. Let the number of variables of F1, F2 be n,m, respectively. Since

V (F1F2)≥0 =
(

V (F1)≥0 ×R
m
≥0

)

∪
(

R
n
≥0 × V (F2)≥0

)

holds, we have the proposition. �

Remark 5.6. If F1, F2 are realisable, then one can also realise F1F2 by con-
necting every ending node of the PERT chart of F1 to all the starting nodes of the
PERT chart of F2.

The Cartesian product of n copies of K2 is called the n-hypercube graph and
denoted by Qn ([2]).

Corollary 5.7. Qn is the adjacency graph of the realisable tropical polynomial

F =

n
∏

k=1

(tik ⊕ tjk).

Proof. By Example 5.1, K2 is the adjacency graph of F2,1. Therefore, Qn =

(K2)
�n is that of the n product of F2,1 with independent variables. �

Finally we treat the homogeneity.

Proposition 5.8. If F is homogeneous, then G(F ) = N(F ).
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Proof. Put degF = d, and fix a point t. Then the value of each term of F
at t + (a, . . . , a) is exactly a · d bigger than the value at t, so if two chambers are
adjacent, they are also adjacent within Γ . �

For a prerealisable tropical polynomial F =
∑

I∈I tI , put F
∨ =

∑

I∈I t[n]\I .

Lemma 5.9. F∨ is prerealisable.

Proof. If [n] \ I ⊂ [n] \ J holds, I ⊃ J also holds and the nondivisibility
condition of F yields I = J . Thus we have [n] \ I = [n] \ J . �

Remark 5.10. F∨ may not be realisable even if F is realisable. For instance,
Corollary 3.4 show that F3,1 is realisable, whereas F∨

3,1 = F3,2 is not.

Proposition 5.11. If F is homogeneous, then G(F ) = G(F∨).

Proof. For a point p, denote the point symmetric about 0 = (0, . . . , 0) as −p.
Also denote the function taking the inverse value of a tropical monomial function
tI with respect to the tropical multiplication (usual addition) as t−1

I .
Since tI defines a linear function passing through 0, its graph is symmetric

about 0. Thus the value of t−1
I at −p and the value of tI at p are the same.

Tropically adding these monomials, we obtain F =
∑

I tI and F ′ =
∑

I t
−1
I .

The value of F at p coincides to the value of F ′ at −p, so the corner locus of F and
the corner locus of F ′ are symmetric about 0. By tropically multiplying t[n] to F ′,

we have F∨ because t−1
I ⊗ t[n] = t[n]\I . Since tropically multiplying a monomial

does not change the corner locus, V (F ) and V (F∨) are symmetric about 0. Then
we have N(F ) = N(F∨) because of the duality between the Newton subdivision
and the tropical hypersurface, and the proposition follows from Proposition 5.8. �

Since F∨
n,k = Fn,n−k holds, we have the following corollary.

Corollary 5.12. G(Fn,k) and G(Fn,n−k) coincides.

Example 5.13. From the previous corollary and Example 5.1, we obtain

G(Fn,n−1) = G(Fn,1) = Kn.
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