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HIERARCHICAL MODELS FOR MICROARRAY DATA1

By Steven P. Lund and Dan Nettleton
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When analyzing microarray data, hierarchical models are often
used to share information across genes when estimating means and
variances or identifying differential expression. Many methods utilize
some form of the two-level hierarchical model structure suggested
by Kendziorski et al. [Stat. Med. (2003) 22 3899–3914] in which the
first level describes the distribution of latent mean expression levels
among genes and among differentially expressed treatments within
a gene. The second level describes the conditional distribution, given
a latent mean, of repeated observations for a single gene and treat-
ment. Many of these models, including those used in Kendziorski’s
et al. [Stat. Med. (2003) 22 3899–3914] EBarrays package, assume
that expression level changes due to treatment effects have the same
distribution as expression level changes from gene to gene. We present
empirical evidence that this assumption is often inadequate and pro-
pose three-level hierarchical models as extensions to the two-level
log-normal based EBarrays models to address this inadequacy. We
demonstrate that use of our three-level models dramatically changes
analysis results for a variety of microarray data sets and verify the va-
lidity and improved performance of our suggested method in a series
of simulation studies. We also illustrate the importance of account-
ing for the uncertainty of gene-specific error variance estimates when
using hierarchical models to identify differentially expressed genes.

1. Introduction. There are many analytic methods for microarray data
that utilize a hierarchical model to share information across genes when
estimating mean expression levels. A large subset of these methods model
differences in expression levels from gene to gene and differences in expres-
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sion levels caused by treatment effects with a single distribution. Canon-
ical examples of such methods are implemented in the EBarrays package
for R developed by Kendziorski et al. (2003). This work has been influ-
ential as indicated by a variety of recent methods that cite Kendziorski
et al. (2003) and follow their modeling strategy. Examples include Newton
et al. (2004), Yuan and Kendziorski (2006a, 2006b), Yuan (2006), Lo and
Gottardo (2007), Keleş (2007), Wei and Li (2007, 2008), Wu et al. (2007),
Jensen et al. (2009), and Rossell (2009).

The analytic methods provided in EBarrays are based on two-level hierar-
chical parametric models that can be used to analyze data from experiments
with more than two treatment groups and produce posterior expression pat-
tern probabilities, which can be used to assess the significance of and classify
differential expression of genes. The first level of the hierarchical model de-
scribes the distribution of latent mean expression levels among genes and
among differentially expressed (DE) treatments within a gene. The second
level describes the conditional distribution, given a latent mean, of repeated
observations for a single gene and treatment.

A necessary user input to models like those included in EBarrays is a list
of possible expression patterns. In a two-treatment experiment, the only two
expression patterns are equivalent expression and differential expression. In
general, each pattern describes how to partition the experimental units into
groups based on the experimental conditions or treatments associated with
the experimental units. An analysis based on these models can yield a gene-
specific posterior probability estimate for each pattern.

The application of hierarchical models to microarray data has many ben-
efits: “sharing” information across genes compensates for having few repli-
cates, users may define expression patterns of interest involving two or more
experimental conditions, posterior probabilities assigned to expression pat-
terns are easy to interpret and allow for easy classification or ranking, and
simultaneous analysis of all genes in a data set greatly reduces the dimension-
ality of the inference problem. While the work of Kendziorski et al. (2003)
lays a foundation for a powerful method of microarray analysis upon which
many methods have been developed, there is room to relax assumptions and
to improve the models described.

The main point of this paper concerns the assumption—implied by the
modeling strategy of Kendziorski et al. (2003)—that expression changes
across genes have the same distribution as expression changes caused by
treatment effects. This assumption is convenient for computational reasons
but has undesirable consequences. In particular, if expression differences
from gene to gene tend to be larger than treatment effects, the power to
identify differentially expressed genes will be reduced. Based on our expe-
rience with microarray data, we see no reason to believe that expression
differences across genes have the same distribution as expression differences
caused by treatment effects in all experiments. Thus, we propose to relax this
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assumption by adding an additional level to the hierarchy of Kendziorski’s
et al. (2003) lognormal–normal (LNN) model. This creates a three-level hier-
archical model that we will call the lognormal–normal–normal (LN3) model.

A secondary point of this paper concerns the assumption of a constant
coefficient of variation used in Kendziorski’s et al. (2003) gamma–gamma
(GG) and lognormal–normal (LNN) models, which, for the latter model,
implies an error variance of log expression values that is common to all
genes. This assumption is now widely regarded as untenable. To address
this, Lo and Gottardo (2007) introduced a method to relax the assumption
of the GG and LNN models, and many methods to estimate gene-specific
error variances for microarray data have been developed. [See, e.g., Baldi
and Long (2001), Lönnstedt and Speed (2002), Wright and Simon (2003),
Cui et al. (2005).] Kendziorski’s et al. (2003) EBarrays package includes
the LNN-moderated variance (LNNMV) method, which uses shrunken point
estimates of gene-specific error variances similar to those described by Smyth
(2004). We briefly demonstrate that using point estimates of gene-specific
error variances without accounting for their uncertainty produces liberal
posterior pattern probability estimates, which causes underestimation of the
proportion of false positives on a list of significant genes. We propose a simple
adaptation to the LNNMV method to account for the uncertainty in gene-
specific variance estimates and demonstrate this corrects the liberal bias in
the estimated expression pattern posterior probabilities. Finally, we combine
our proposed three-level hierarchical modeling strategy with gene-specific
error variance modeling to obtain a more general model denoted LN3MV.

We formally describe the four lognormal based models (LNN, LNNMV,
LN3, and LN3MV) and corresponding analytic methods in Section 2. In
Section 3 we present empirical evidence from two example microarray data
sets that clearly supports our proposed three-level hierarchical modeling
strategy. In Section 4 we demonstrate the practical impact of our suggested
adaptations by analyzing data from the two microarray experiments with
several methods. Section 5 describes a variety of simulation studies used to
verify the validity and improved power of our suggested methods. For both
real and simulated data sets, the use of our proposed three-level hierarchal
model dramatically increases power to detect DE genes.

2. Model descriptions. Throughout this paper, we will use the term
“group” to denote a set of equivalently expressed (EE) observations from
a single gene. Consider a microarray data set with expression values for J
genes from each of I experimental units divided among 2 experimental condi-
tions. If for gene j there is no difference between the expression distributions
for experimental units under conditions 1 and 2, then the entire set of I ob-
servations forms a single group. If for gene j there is a difference between
the expression distributions for experimental units under conditions 1 and 2,
then the set of observations from experimental units under condition 1 forms
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one group and the set of observations from experimental units under condi-
tion 2 forms a second group. In general, there is at least one group for every
gene and at most one group for every combination of gene and experimental
condition.

Throughout this section, we will use Gp(i) to denote the group (subset
of EE observations) to which the ith experimental unit belongs under the
pth expression pattern. For example, suppose there is an experiment with 6
experimental units distributed across 3 treatment groups labeled control, A,
and B. If a researcher aims to compare each of treatments A and B to
the control, then expression patterns of interest for each gene are p = 1:
control = A, control = B; p= 2: control 6=A, control = B; p= 3: control = A,
control 6= B; and p = 4: control 6=A, control 6=B. If experimental units 1
and 2 received the control treatment, 3 and 4 received treatment A, and 5
and 6 received treatment B; then G1(i) = 1 for i = 1, . . . ,6; G2(i) = 1 for
i = 1,2,5,6 and 2 for i = 3,4; G3(i) = 1 for i = 1,2,3,4 and 2 for i = 5,6;
G4(i) = i/2 rounded up to the nearest integer for all i. We will use P to
denote the number of expression patterns of interest and np to denote the
number of groups under expression pattern p. In the example above, P = 4,
n1 = 1, n2 = n3 = 2, and n4 = 3.

In each model, the marginal density for yj = (yj1, yj2, . . . , yjI)
′, the vec-

tor of observations from the jth gene for I experimental units, is given by
f(yj |θ,π) =

∑P
p=1 πpfp(yj |θ), where π = (π1, π2, . . . , πP )

′, πp is the proba-
bility that a gene follows expression pattern p, θ is a vector of hyperparam-
eters for the given model, and fp(yj |θ) is the density of yj under pattern p
according to the given model. The marginal likelihood of the entire data set
is given by

∏J
j=1 f(yj|θ,π), since observations between genes are considered

independent under each of the discussed models. The posterior probability

gene j follows expression pattern p given yj is
πpfp(yj |θ)

∑P
p=1 πpfp(yj |θ)

.

For each model, estimates of π and θ that maximize the marginal likeli-
hood can be obtained using the EM algorithm, treating expression pattern
as the unknown variable. When used, gene-specific error variances are es-
timated and treated as fixed before using the EM algorithm to estimate
other model parameters. Marginal densities and posterior probabilities are
estimated by treating parameter estimates as the true parameter values in
the formulas above.

In the following subsections, we formally define four models and seven
methods of analysis. The distinguishing features of the seven methods are
summarized in Table 1 for future reference.

2.1. The lognormal–normal model. The LNN model for the log scale ob-
servation for the jth gene from the ith experimental unit under expression
pattern p can be written as

yji = µ+ τjGp(i) + εji,
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Table 1

Legend for method and model acronyms

Relies on distinct
modeling strategies for Uses Accounts for
differences across genes gene-specific uncertainty in
and differences across error variance error variance

Method Model DE treatments estimates estimators

LNN LNN
LNNMV LNNMV X

LNNMV* LNNMV X

LNNGV LNNMV X X

LN3 LN3
X

LN3MV* LN3MV X X

LN3GV LN3MV X X X

The methods with acronyms ending in MV* use point estimates of error variances that
account for the degrees of freedom used when estimating treatment means (see Section 2.3).

where

τj1, . . . , τjnp

i.i.d.
∼ N(0, σ2

τ ) and εj1, . . . , εjI
i.i.d.
∼ N(0, σ2).

In this expression, µ represents the average expression of all genes and
groups, τjGp(i) represents a random group effect for observations from the
Gp(i)th group (under pattern p) in the jth gene, and εji represents a random
error.

Under this model, fp(yj |θ) is the density from a multivariate normal dis-
tribution with mean vector (µ, . . . , µ)′ and pattern specific covariance matrix
Σp = σ2I+σ2

τMp, where I is the identity matrix and Mp is a symmetric ma-
trix with element [i, j] = 1 if experimental units i and j are in the same
group under pattern p and [i, j] = 0 if experimental units i and j are in
different groups. This model has hyperparameters θ= (µ,σ2, σ2

τ ).

2.2. The lognormal–normal–normal model. To explicitly model gene ef-
fects separately from treatment effects, we propose a three-level hierarchical
model, which we denote LN3. Under the LN3 model, the log scale obser-
vation from the jth gene and the ith experimental unit under expression
pattern p is modeled as

yji = µ+ γj + τjGp(i) + εji,

where

γj
i.i.d.
∼ N(0, σ2

γ), τj1, . . . , τjnp

i.i.d.
∼ N(0, σ2

τ ) and

εj1, . . . , εjI
i.i.d.
∼ N(0, σ2).



6 S. P. LUND AND D. NETTLETON

In this expression, µ represents the average expression of all genes and
groups, γj represents a random gene effect for the jth gene, τjGp(i) repre-
sents a random group effect for observations from the Gp(i)th group (under
pattern p) in the jth gene, and εji represents a random error. Under expres-
sion pattern p, the density for the vector of log-scale observations for the
jth gene, fp(yj |θ), is evaluated according to a multivariate normal distri-
bution with mean vector (µ, . . . , µ)′ and pattern specific covariance matrix
Σp = σ2I+σ2

γJ+ σ2
τMp, where I is the identity matrix, J is a matrix of 1’s,

and

Mp[i, j] =

{

1, if Gp(i) =Gp(j),

0, otherwise.

This model has hyperparameters θ = (µ,σ2, σ2
τ , σ

2
γ) and is a generalization

of the LNN model. That is, the LNN model is a special case of the LN3

model in which σ2
γ = 0.

2.3. The lognormal–normal model with gene-specific error variances. The
LNN model assumes that all genes have a common error variance, σ2. This
assumption can be relaxed to allow each gene to have a unique error vari-
ance, σ2

j , forming the LNNMV model. We consider three methods based on
this model, including EBarrays’ LNNMV.

Under this model, the log scale observation for the jth gene from the ith
experimental unit under expression pattern p can be written as

yji = µ+ τjGp(i) + εji,

where

τj1, . . . , τjnp

i.i.d.
∼ N(0, σ2

τ ) and εj1, . . . , εjI
i.i.d.
∼ N(0, σ2

j ).

This model has hyperparameters θ = (µ,σ2
τ ,σ

2), where σ2 = (σ2
1 , σ

2
2, . . . , σ

2
J).

The LNNMV method from EBarrays places a scaled inverse chi-squared
distribution on the gene-specific error variances. That is, σ2

j ∼ inv-χ2 (df = ν,

scaling = Φ), such that νΦ/σ2
j ∼ χ2

ν . Given estimates ν̂ and Φ̂, the gene-

specific error variances are estimated by σ̂2
j =

ν̂Φ̂+(I−T )S2
j

ν̂+I−2 , where S2
j is the

ordinary sample variance estimator with (I − T ) degrees of freedom for the
log-scale observations from the jth gene and T is total number of experi-
mental conditions.

The denominator of the LNNMV point estimator for σ2
j does not account

for degrees of freedom used when estimating treatment means for each gene
in the computation of S2

j . Similar to MLEs for σ2 in a traditional ANOVA

analysis, this estimator systematically underestimates σ2
j , resulting in lib-

eral detection of differential expression. If one were to use a point estimator
for σ2

j , we would recommend the less liberal approach of using the pos-
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terior expectation σ̂2
j = Ê(σ2

j |S
2
j ) =

ν̂Φ̂+(I−T )S2
j

ν̂+(I−T )−2 . We denote this approach

as LNNMV*; however, this adjusted denominator does not provide a fully
adequate solution.

The EBarrays methods estimate the posterior probability that gene j

follows expression pattern p given yj as
π̂pfp(yj |θ̂)

∑P
p=1 π̂pfp(yj |θ̂)

, assuming all hyper-

parameter estimates are the true hyperparameter values. This expression is
clearly sensitive to θ̂. Given that µ and σ2

τ are assumed to be the same for all
genes and there are typically thousands of genes in a microarray data set, the
effective sample size for estimating these parameters is high so that there will
generally be little uncertainty associated with the ML estimates µ̂ and σ̂2

τ

obtained from the EM algorithm. Therefore, it may be reasonable to act as if
µ̂= µ and σ̂2

τ = σ2
τ when estimating posterior pattern probabilities. Similarly,

it may also be reasonable to ignore uncertainty in the estimator of σ2 under
the LNN and LN3 models. However, when σ2

j is allowed to vary from gene
to gene, there will be nonnegligible uncertainty in the corresponding estima-
tors σ̂2

j , which is not taken into account by assuming σ̂2
j = σ2

j . Under a model
allowing for gene-specific error variances, a better estimator of the posterior

probability that gene j follows expression pattern p is
π̂pfp(yj |µ̂,σ̂2

τ ,ν̂,Φ̂)
∑P

p=1 π̂pfp(yj |µ̂,σ̂2
τ ,ν̂,Φ̂)

,

where fp(yj |µ̂, σ̂
2
τ , ν̂, Φ̂) =

∫

fp(yj |µ̂, σ̂
2
τ , σ

2
j )f(σ

2
j |ν̂, Φ̂)dσ

2
j , where f(σ2

j |ν̂, Φ̂)

is the empirically estimated inverse chi-squared prior distribution for σ2
j .

Our suggested approach is to estimate ν̂ and Φ̂ using the method described
by Smyth (2004) and compute shrunken estimates σ̂2

j = Ê(σ2
j |S

2
j ) to use

when fitting the EM algorithm to obtain estimates for µ,σ2
τ , and π. Then

when estimating the posterior expression pattern probabilities for each gene,
we suggest empirically approximating fp(yj |µ̂, σ̂

2
τ , ν̂, Φ̂) as

∑Q
q=1 fp(yj |µ̂, σ̂

2
τ ,

σ∗2q)/Q where σ∗2q is the q/(Q+ 1)th quantile of f(σ2
j |ν̂, Φ̂) and Q is a rea-

sonably large number like 1000. We denote this method as LNNGV, which
has hyperparameters θ = (µ,σ2

τ , ν,Φ). The effectiveness and impact of this
suggestion are examined in Sections 4 and 5.

2.4. The lognormal–normal–normal model with gene-specific error vari-

ances. As with the LNN model, the LN3 model assumes that all genes have
a common error variance, σ2, and this assumption can be relaxed to form
the LN3MV model, which allows for gene-specific error variances. For the
LN3MV model, we consider two methods, denoted LN3MV* and LN3GV,
which incorporate gene-specific error variances in exactly the same way as
the LNNMV* and LNNGV methods, respectively. The LN3MV* (LN3GV)
method is a generalization of the LNNMV* (LNNGV) method. That is, the
LNNMV* (LNNGV) method is a special case of the LN3MV* (LN3GV)
method in which σ2

γ = 0.
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3. Evidence supporting need for three-level hierarchical models. Obser-
vations from a common gene are correlated for many reasons, even across
differentially expressed treatments. Variability from gene to gene in several
factors contributes to such correlation, including binding affinity of probe
sets [Binder et al. (2004)], amount of florescent dye that binds to each cDNA
fragment [Binder et al. (2004)], RNA transcription and degradation rate
[Selinger et al. (2003)], and the function of genes’ corresponding proteins.
These considerations imply that models for microarray data should contain
gene effects like those present in the LN3 and LN3MV models but omitted
from the models of Kendziorski et al. (2003).

The theoretical impact of gene effects when detecting DE genes can be
demonstrated by comparing the modeled variance of differences between
pairs of observations in two scenarios. The first scenario is when the obser-
vations in a pair come from different groups in a common gene. The sec-
ond scenario is when the observations in a pair come from different genes.
Under the LNN model, the variance of the difference for both scenarios
is 2(σ2

τ + σ2). That is, the LNN model expects differences among same-
gene observations from differentially expressed groups to “look like” differ-
ences among observations from different genes. However, when a gene effect
is present, the variance for differences between observations from different
genes is 2(σ2

γ + σ2
τ + σ2), which is greater than the variance for differences

between observations from different groups in a common gene, 2(σ2
τ + σ2).

In this case, the LNN model expects within-gene differences due to differ-
ential expression to be more extreme than they actually are, which reduces
the model’s power to detect differential expression. Creating a three-level
hierarchical model by adding normally distributed gene effects is a tractable
and effective method to correct this shortcoming. A similar argument can be
made when considering models that accommodate gene-specific error vari-
ances.

If information about DE groups for each gene were known for real mi-
croarray data, we could check for evidence of gene effects by comparing the
variance of between-gene differences to the variance of within-gene differ-
ences across DE groups. Because information about DE groups is unknown,
such a simple strategy is not possible. However, we can fit three-level mod-
els to actual microarray data and examine the resulting estimates of σ2

γ .
Because the two-level models are special cases of three-level models with
σ2
γ = 0, estimates of σ2

γ far from 0 provide evidence in favor of our proposed
three-level hierarchy over the two-level hierarchy. The next section presents
results of two example microarray experiments where the estimates of σ2

γ

provide clear support for the three-level hierarchy. We describe this point in
detail in the supplementary material [Lund and Nettleton (2012)].

As additional evidence of the inadequacy of models that omit gene effects,
we compare the correlation structure implied by the LNN model to the
correlation structure present in actual microarray data.
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Table 2

Empirical evidence for presence of gene effects

Dataset (conditions) π̂EE σ̄
2

τ
π̂EEσ̄

2

τ
Average across condition cov

DC3000 (NaCl, ctrl) 0.716 0.952 0.681 0.903
DC3000 (phen, ctrl) 0.693 0.977 0.677 0.910
DC3000 (PEG, ctrl) 0.352 0.914 0.322 0.838
DC3000 (H2O2, ctrl) 0.961 0.957 0.920 0.948
Mouse (Ch, FF) 0.874 0.281 0.245 0.280
Mouse (Ch, MP) 0.824 0.281 0.231 0.279
Mouse (FF, MP) 0.956 0.284 0.272 0.284

Under the LNN model,

cov(yji, yji′) =

{

σ2
τ , if yji and yji′ are EE,

0, otherwise.

For any two experimental units, under the LNN model,
∑J

j=1 cov(yji, yji′)/

J = πEE(i, i
′)σ2

τ , where πEE(i, i
′) is the proportion of genes that are EE

between experimental units i and i′. If experimental units i and i′ correspond
to the same experimental condition, an unbiased estimator of σ2

τ is given by

σ̂2
τ (i, i

′) =
∑J

j=1(yji − ȳ·i)(yji′ − ȳ·i′)/(J − 1), because πEE(i, i
′) = 1 in this

case. It follows that σ̄2
τ is also an unbiased estimator of σ2

τ , where σ̄2
τ is the

average of σ̂2
τ (i, i

′) over all pairs of experimental units (i, i′) such that the
experimental condition associated with experimental units i and i′ is the
same.

In practice, given an estimate π̂EE(i, i
′), observed covariances between ex-

perimental units associated with different experimental conditions are often
much larger than π̂EE(i, i

′)σ̄2
τ . Table 2 summarizes this phenomenon for vari-

ous treatment comparisons within two separate microarray data sets, which
are described in Section 4. Each data set was analyzed with the LIMMA
package for R developed by Smyth (2004). Estimates of πEE(i, i

′) were ob-
tained by applying the method of Nettleton et al. (2006) to the distribution
of p-values for each pairwise comparison. The final column provides esti-
mates of between-treatment covariances, which were computed as the aver-
age of all the pairwise covariances involving one experimental unit from each
of the two treatments. The LNN and LNNMV models imply the observed
between-treatment covariances should closely match π̂EEσ̄

2
τ , but Table 2

shows that the estimated between-treatment covariances were larger than
π̂EEσ̄

2
τ for every treatment comparison.

The additional covariance observed between experimental units from dif-
ferent experimental conditions is easily explained by the presence of gene
effects. For any two experimental units, under the LN3 model,

∑J
j=1 cov(yji,

yji′)/J = σ2
γ + πEE(i, i

′)σ2
τ rather than πEE(i, i

′)σ2
τ .
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4. Data analysis.

4.1. Data set descriptions. We analyzed a NimbleGen mRNA data set
of 5608 genes from the DC3000 strain of the bacterial plant pathogen Pseu-

domonas syringae, resulting from an unpublished experiment conducted in
the Department of Plant Pathology at Iowa State University. NimbleGen
performed RMA normalization on the data [Irizarry et al. (2003)]. The ex-
periment had two biological replicate samples grown in each of five different
media: control (ctrl), phenol (phen), sodium chloride (NaCl), polyethylene
glycol MW8000 (PEG), and hydrogen peroxide (H2O2). Before analyzing
the data, the primary investigator suggested that any two noncontrol media
will be EE only when they are also EE with the control, which reduces the
number of expression patterns included in the analysis. Because each of the
four treatments can be either EE or DE with the control, there are 24 = 16
different expression patterns to consider.

The second data set we analyzed is a subset of the data used in Somel
et al. (2008), available at the Gene Expression Omnibus (GEO) website as
GDS3221. This experiment examined the impact of diet on the expression
of 45,101 genes in mice. We analyzed data from nine Affymetrix GeneChips
corresponding to three treatment groups of three mice each. Each treatment
involved ad libidum feeding of one of the following diets: (1) vegetables,
fruit, and yogurt identical to the diet fed to chimpanzees in their ape facility
(Ch); (2) McDonald’s fast food (FF); (3) mouse pellets on which the mice
were raised (MP). To keep the presentation simple, we have omitted data
from a second batch of chips and a fourth diet group (cafeteria food), which
produced expression profiles very similar to those from the McDonald’s diet.
With the three included treatment groups, there are a total of five possible
expression patterns: Ch = FF =MP; Ch = FF 6=MP; Ch 6= FF=MP; Ch =
MP 6= FF; and Ch 6=FF, Ch 6=MP, FF 6=MP.

4.2. Analysis of real data. We analyzed these data sets with each of
the eight methods and report the resulting parameter estimates from the
GG, LNN, LNNGV, LN3, and LN3GV methods in Table 3. [The LNNMV*,
LNNMV, and LN3MV* methods share theoretical models (and thus param-
eter estimates) with the LNNGV, LNNGV, and LN3GV methods, resp.] The
parameter estimates in Table 3 are consistent with what we expected. For
both data sets, when a random gene effect is accounted for in the model, the
estimated treatment effect variance decreases drastically and the gene effect
variance is estimated to be much larger than the treatment effect variance.
This means the LN3 and LN3GV methods are able to detect smaller treat-
ment effects than their respective two-level counterparts, LNN and LNNGV.
It is not surprising then to see that for both data sets the LNN method esti-
mates a larger proportion of genes following the null pattern than does the
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Table 3

Hyperparameter estimates and estimated proportion of null genes for DC3000 (top)
and mouse diet (bottom) data from each of the models

Model used to analyze

Parameter GG LNN LNNGV LN3 LN3GV

α̂ 69.8 – – – –
α̂0 1.54 – – – –
ν̂* 0.0254 – – – –
µ̂ – 0.501 0.419 0.277 0.264
σ̂
2
τ – 0.982 0.878 0.151 0.101

σ̂
2
γ – – – 0.813 0.832

σ̂
2 – 0.0129 – 0.0116 –

Φ̂ – – 0.00509 – 0.00509
ν̂ – – 3.546 – 3.546
π̂null 0.728 0.721 0.657 0.655 0.492

α̂ 269.5 – – – –
α̂0 4.59 – – – –
ν̂* 0.0187 – – – –
µ̂ – 0.206 0.210 0.194 0.194
σ̂
2
τ – 0.279 0.281 0.00468 0.00678

σ̂
2
γ – – – 0.278 0.275

σ̂
2 – 0.00346 – 0.00331 –

Φ̂ – – 0.00249 – 0.00249
ν̂ – – 8.186 – 8.186
π̂null 0.958 0.954 0.931 0.802 0.840

LN3 method, or that the LNNGV method estimates a larger proportion of
genes following the null pattern than does the LN3GV method.

Rather than examining parameter estimates, researchers are often more
interested in creating lists of genes that are likely to follow expression pat-
terns of interest. To construct a list of DE genes, one would collect all genes
with an estimated posterior probability of equivalent expression (ePPEE)
less than a given threshold. When the ePPEE falls below the given thresh-
old for many genes, not all identified potentially DE genes may be indi-
vidually studied further. However, the size and contents of the entire list
provide important information to researchers about the global effects of the
treatments on gene expression. The composition of a long list of potentially
DE genes forms the basis for popular gene set enrichment analyses that are
commonly used to interpret the results of microarray experiments. To ex-
amine the practical differences between gene lists created by the methods,
we begin by plotting the empirical CDF of the ePPEEs for each method for
the two data sets in Figure 1. These plots quickly provide the observed size
of a gene list for any PPEE cutoff, obtained by intersecting a vertical line
at the desired PPEE cutoff with the curve for each method.
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Fig. 1. Comparison across methods of empirical ePPEE CDFs for DC3000 (top) and
mouse diet (bottom) data.

The plots show substantial differences between the examined methods
in the number of detected genes over a wide range of PPEE thresholds.
For models with gene-specific error variances, incorporating uncertainty in
estimated error variances greatly reduced the number of detected genes
(LNNGV and LN3GV curves are lower than LNNMV* and LN3MV* curves,
resp.). In the DC3000 data at a PPEE cutoff of 0.1, for example, the
LNNMV, LNNMV*, and LNNGV methods would produce lists with 1983,
1498, and 893 genes, respectively. Incorporating gene effects greatly in-
creased the number of detected genes (LN3, LN3MV*, and LN3GV curves
are higher than LNN, LNNMV*, and LNNGV curves, resp.). In the mouse
diet data at a PPEE cutoff of 0.1, for example, the LN3GV method identified
almost three times as many DE genes as the LNNGV method (945 vs. 324
genes, resp.). These results indicate that differences between the methods’
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Table 4

Overlap in lists of top 200 most significant DE genes for DC3000 (top) and mouse diet
(bottom) data

Method 1 2 3 4 5 6 7

(1) GG 200
(2) LNN 187 200
(3) LNNMV 122 119 200
(4) LNNMV* 118 120 160 200
(5) LNNGV 130 127 185 162 200
(6) LN3 186 198 117 118 125 200
(7) LN3MV* 117 114 194 154 184 113 200
(8) LN3GV 77 81 137 149 133 79 135

(1) GG 200
(2) LNN 193 200
(3) LNNMV 108 107 200
(4) LNNMV* 125 124 152 200
(5) LNNGV 88 87 173 136 200
(6) LN3 193 197 109 124 89 200
(7) LN3MV* 93 92 181 134 184 94 200
(8) LN3GV 83 82 155 148 158 82 148

ePPEEs are practically significant, and care should be taken when choosing
among the suggested methods.

Constraints on time, money, material, and personnel resources limit the
number of genes that researchers will follow up on with further study. Thus,
the overlap between lists from each method containing a fixed number of the
most significant genes is an important feature for assessing the similarity be-
tween methods’ results. Table 4 provides the size of pairwise intersections
of lists containing the 200 most significant genes from each method for the
DC3000 and mouse diet data sets, respectively. These results show substan-
tial practical differences between rankings, as many lists overlap by roughly
half their genes and most lists overlap by fewer than 150 genes.

5. Simulation study. Here we briefly summarize our simulation study
and its results. Detailed accounts of simulation procedures and results are
presented in the supplementary material [Lund and Nettleton (2012)].

We conduct a variety of simulations to assess the accuracy and power of
the considered methods. By “accuracy,” we refer to the property that for any
given collection of genes the average estimated posterior probability for each
pattern should closely match the proportion of genes in the collection that
follow the given pattern. By “power,” we refer to a method’s ability to detect
differential expression. We prefer the method that creates the largest list of
genes for a given ePPEE threshold, provided that the method’s ePPEEs are
accurate.
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We simulated data from each of the five models (GG, LNN, LNNMV, LN3,
and LN3MV) using the model parameters reported for the DC3000 data set
in Table 3. In addition to these model-based simulations, we also conducted
simulations using an HIV mRNA expression data set from the GEO website,
named GDS1449. We analyzed each simulated data set with each method
and recorded estimated posterior probabilities for each expression pattern
for each gene.

The simulation results clearly support our claims that failing to distinctly
model gene and gene-specific treatment effects reduces power and produces
conservative results and that using point estimates of error variances pro-
duces liberal results. The LN3GV method stands out as the best method
from these simulations. The LN3GVmethod was the only method to produce
accurate ePPEEs in all simulation scenarios, and no method produced bet-
ter average significance rankings (as seen in ROC curves) than those of the
LN3GV method in any simulation scenario. The LN3GV method exhibited
greater power than the LNNGV method, which was the only other method
that did not produce liberal results in at least one simulation scenario.

6. Discussion. When modeling a data set that includes multiple obser-
vations from each of multiple genes, a conventional analysis would begin
with a model that incorporates gene effects. One might decide to omit gene
effects if, after looking, there was no evidence of gene effects or if results
from an analysis were not affected by the omission of gene effects. We have
demonstrated that gene effects are present in real data sets and provided
generalizations of the methods based on lognormal two-level hierarchical
models to include gene effects. These generalizations behave nearly iden-
tically to their two-level counterparts when analyzing data without gene
effects and improve power and accuracy when data contain gene effects.
These extensions serve as an example of how other hierarchical models that
omit gene effects might be improved by more versatile modeling.

Using point estimates of gene-specific error variances without accounting
for their uncertainty produces liberal ePPEEs. We have suggested a cor-
rected approach that involves integration over an empirically estimated prior
distribution for the error variances and demonstrated this adaptation yields
accurate ePPEEs.

As noted in the Introduction, we have identified nearly a dozen meth-
ods that omit gene effects. There are far more methods in the microarray
data analysis literature that do not suffer from this problem. Most pub-
lished methods explicitly or implicitly include gene effects whose distribu-
tion is allowed to differ from the distribution of within gene treatment ef-
fects. Methods based on gene-specific linear models that make no attempt
to borrow information across genes fall into this category, as do methods
that borrow information across genes only for the purpose of improved er-
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ror variance estimation. While we expect our LN3GV method to perform
well when compared against the large collection of competing approaches,
a broad comparison of methods is beyond the scope of this paper, and we
make no claims of superiority here. Our main point is that the hierarchical
modeling approach pioneered by Kendziorski et al. (2003) can be improved
by the inclusion of both gene and gene-specific treatment effects. Given the
influential nature of the original work of Kendziorski et al. (2003), we think
this is an important point to make.

The development of the LNN and GG models by Kendziorski et al. (2003)
represents groundbreaking work on the hierarchical modeling of gene expres-
sion data. We have shown how to improve on the original work by allowing
for random gene effects and replacing gene-specific error variance point esti-
mates without dramatically affecting computational costs. Adding random
gene effects to a model increases the dimension of the parameter space across
which the EM algorithm must optimize by one, but does not substantially
increase computational costs. For any of the described methods, analyzing
a data set with 5000 genes, 9 experimental units, and 4 expression patterns
of interest takes less than 10 minutes using a single Linux machine and R
code that calls a C routine to evaluate multivariate normal densities. We
have developed the R package LN3GV (available at the CRAN webpage)
to implement the LNNMV*, LNNGV, LN3, LN3MV*, and LN3GV meth-
ods discussed in this article. Throughout this paper, the GG, LNN, and
LNNMV methods were implemented via the EBarrays package.

We have focused on the approach of Kendziorski et al. (2003) not only
because of its influential nature but also because of its unique and elegant
approach to inference for experiments with more than two treatments. The
vast majority of competing approaches have been developed primarily for
the case of two treatments. While it is easy to extend many of these methods
to cover the case of more than two treatments, very few methods outside
the Kendziorski et al. (2003) lineage provide an inherent natural strategy
for classifying genes according to their pattern of expression across multiple
treatments. Thus, we believe our efforts to improve the original work of
Kendziorski et al. (2003) have been well spent.

SUPPLEMENTARY MATERIAL

Additional evidence supporting need for three-level hierarchy and simula-
tion study details (DOI: 10.1214/12-AOAS535SUPP; .pdf). The correlation
across genes present in real microarray data makes directly testing the sta-
tistical significance of gene effect variance estimates intractable. We present
a simulation study that demonstrates the gene effect variance estimates ob-
tained when analyzing the DC3000 and mouse diet data sets are drastically
greater than those that arise when analyzing data simulated without gene
effects. We also provide detailed accounts of simulation procedures and re-

http://dx.doi.org/10.1214/12-AOAS535SUPP
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sults used to evaluate the considered methods. These simulations clearly
support our claims regarding the importance of distinctly modeling gene
and gene-specific treatment effects and accounting for uncertainty in error
variance estimators.
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