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Abstract

In this paper we derive control charts for the variance of a Gaussian process

using the likelihood ratio approach, the generalized likelihood ratio approach, the

sequential probability ratio method and a generalized sequential probability ratio

procedure, the Shiryaev-Roberts procedure and a generalized Shiryaev-Roberts ap-

proach. Recursive presentations for the calculation of the control statistics are

given for autoregressive processes of order 1. In an extensive simulation study these

schemes are compared with existing control charts for the variance. In order to

asses the performance of the schemes both the average run length and the average

delay are used.

Keywords : control charts; CUSUM charts; generalized likelihood ratio; SPRT; Shiryaev-
Roberts procedures; variance changes; time series; statistical process control; sequential
detection

1 Introduction

In many applications we are faced with the problem to detect changes over time in an

observed process. Because usually a change should be detected fast sequential methods

are more appropriate in such a situation. The most important tools for monitoring a

process are control charts (cf. Stoumbos et al. (2000)). Control charts are successfully

applied in engineering for a long time (e.g., Lawson and Kleinman (2005), Frisén (2007)).

In the last 20 years many further applications in different areas have been studied like,

e.g., in public health, economics, environmental sciences. In that context the underlying

processes have a more complicate structure and are mostly modeled by a time series.

Alwan and Roberts (1988) showed that control charts for independent variables cannot

be directly applied to time series. They proposed to use residual charts, i.e. to transform

the original observations such that the transformed observations are independent and to

apply the well-known control charts to these residuals. Residual charts have been studied

by several authors (e.g., Harris and Ross (1991), Wardell et al. (1994), Lu and Reynolds

(1999)). Another possibility is to directly monitor the observed process. The behavior
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of the Shewhart chart for time series was studied in Schmid (1995). An extension of the

exponentially weighted moving average (EWMA) chart of Roberts (1959) to time series

was proposed by Schmid (1997a). Cumulative sum (CUSUM) charts for time-dependent

processes have been studied among others by Nikiforov (1975), Schmid (1997b), Frisén

and Knoth (2012). An overview on control charts for time series is given in Knoth and

Schmid (2004) and Okhrin and Schmid (2007).

Most of the literature on that topic is dealing with the monitoring of the mean behavior

of the observed process. Here we want to focus on the surveillance of the variance of a

time series. We are interested to detect an increase in the variance. For instance, such

a question is of great importance in economics where the variance is the most applied

measure for the risk and an early detection of a change in the risk behavior of an asset

is an important information for an analyst. The first EWMA control chart for time

series was introduced by MacGregor and Harris (1993). Schipper and Schmid (2001)

introduced several one-sided variance charts for stationary processes, however, their main

focus was in the area of nonlinear time series. In many applications the control statistic

for independent processes is used and the independent process is replaced by the time

series. Thus the structure of the time series is not taken into account for the derivation

of the control statistic. This is a disadvantage of this procedure.

In this paper we derive control charts for the variance of a Gaussian process by making

use of the likelihood ratio approach (LR), the sequential probability ratio test of Wald

(SPRT), and the Shiryaev-Roberts (SR) procedure. For deriving these charts it is first

assumed that the size of the change is known. Thus all obtained charts depend on a

reference value which has to be suitably chosen in advance. This is sometimes a drawback

in applications. We consider generalized control charts as well. They are obtained via

the generalized LR, SPRT, and SR procedure. The great advantage of these schemes is

that they do not depend on a reference value. It has to be emphasized that our results

are quite general and cover all autoregressive moving average processes with a Gaussian

white noise.

In Section 2 the underlying model of the paper is introduced. It is explained how in

our paper the target process and the observed process are related with each other. In

Section 3 the CUSUM control chart for the variance in the independent case is briefly

presented and a new CUSUM control scheme for Gaussian processes is derived over the

LR approach. In an example we consider the special cases of autoregressive processes of

order 1 and 2 and it is shown that in that case the control statistics can be calculated

recursively. In Section 4 a CUSUM variance chart is derived by the SPRT and the result

is a residual chart. In Section 5 the Shiryaev-Roberts method is used to get a control

chart for the variance. In the Sections 6 to 8 generalized control schemes are derived. In

Section 6 we use the generalized LR method, in Section 7 a generalization of the SPRT
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approach, and in Section 8 a generalization of a modified version of the SR method is

obtained.

In an extensive simulation study these control schemes are compared with each other

assuming that the underlying target process is an autoregressive process of order 1 (AR(1))

(Section 9). As a measure for the performance of a control scheme the average run length

(ARL) and the average delay are taken. All charts are calibrated such that the in-control

ARL is the same if no change is present. Our results show that except the SR chart all

other schemes with a reference value have the smallest out-of-control ARL if the reference

value is equal to the true value of the change. It turns out that the generalized SR chart

has the smallest ARL if the change is small. It is even better than the charts with the

optimal reference value. For medium and larger changes the LR chart and the SPRT chart

provides better results provided that the reference value is not dramatically smaller than

the true change. Except the generalized SPRT scheme for all charts the worst average

delay is equal to the average run length. The limit of the average delay seems to be

the smallest for the GSR chart. This scheme must be preferred for larger changes if the

change arises at a later time point.

2 Modelling

The aim of statistical process control (SPC) consists in detecting structural deviations

within a process over time. It is examined whether the present observations can be

considered as realizations of a given target process {Yt}. The procedure is a sequential

one. The observations (samples) are analyzed consecutively. It is desirable to detect a

change as quickly as possible after its occurrence. Of course there are various types of

changes which may influence the target process. In this paper we focus on the detection

of an increase in the variance. Such a problem arises in practice very often. For instance,

the variance is considered as a risk measure in economics and thus an increasing variance

is a hint that the risk of an asset is getting larger. In engineering the variance reflects

the quality of a production process and an increase is a bad sign since the production is

getting worse.

Let {Yt} be a (weakly) stationary process with mean µ and autocovariance function

Cov(Yt, Yt+h) = γ(h). In what follows it is assumed that the relationship between the

target process {Yt} and the observed process {Xt} is given by

Xt =

Yt for 1 ≤ t < τ

µ+ ∆(Yt − µ) for t ≥ τ
(1)

for t ∈ Z with ∆ > 1 and τ ∈ N ∪ {∞}. Thus a change in the scale appears at position
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τ if τ < ∞. The observed process is said to be out of control. Else, if τ = ∞, then

{Xt} is called to be in control. Here it is assumed that at a given time point exactly one

observation is available.

Note that the change in the scale does not influence the mean structure. It holds that

E(Xt) = µ as well in the in-control state as in the out-of-control state. Moreover, we get

that

V ar(Xt) =

V ar(Yt) for 1 ≤ t < τ

∆2V ar(Yt) for t ≥ τ
,

Cov(Xt, Xt+h) =


γh for t < min{τ, τ − h}

∆γh for min{τ, τ − h} ≤ t < max{τ, τ − h}

∆2γh for t ≥ max{τ, τ − h}

.

Thus the observed process {Xt} is not stationary in the out-of-control case.

3 A Variance Chart based on the Likelihood Ratio

Approach

3.1 LR Approach applied to Independent Variables

The CUSUM chart for the mean was introduced by Page (1954). The CUSUM scheme

is a control chart with memory. At each time point the decision is based not only on

the present observation, but also on previous observations. The CUSUM chart gives

all former observations the same weight. Moreover, the control chart depends on an

additional design parameter, the reference value. Up to now mainly CUSUM charts for

the mean have been considered in literature.

CUSUM charts can be derived by means of the log likelihood ratio approach (see

Siegmund (1985, Ch. II.6)). In that context it is demanded that ∆ is a known quantity.

For instance, assuming that the variables Yt are independent and normally distributed

with expectation µ and variance γ0 the log likelihood ratio of the present model is given

by (see, e.g., Hawkins and Olwell (1998) and Schipper and Schmid (2001))

1− 1/∆2

2
(S̃n(∆)− S̃τ−1(∆))

for n ≥ τ with

S̃n(∆) =
n∑
i=1

(Xi − µ)2

γ0

− nK(∆) (2)

4



and

K(∆) =
log(∆2)

1− 1/∆2
. (3)

We conclude that the process is out of control at time n ≥ 1 if

S+
n (∆) = S̃n(∆)− min

0≤i≤n
S̃i(∆) > c. (4)

Note that S+
n (∆) can be calculated recursively as S+

n (∆) = max{0, S+
n−1(∆) + (Xn −

µ)2/γ0 −K(∆)} for n ≥ 1 with S+
0 (∆) = 0. This representation dramatically simplifies

the practical calculation of the control design.

Unfortunately ∆ is unknown in practice and for that reason it is necessary to fix a

value for ∆, say ∆∗. In practice ∆∗ > 1 is interpreted as the change against which we

want to be protected. Then we have to replace K(∆) by K(∆∗). Thus we obtain

S+
n (∆∗) = max{0, S+

n−1(∆∗) +
(Xn − µ)2

γ0

−K(∆∗)}, n ≥ 1, S+
0 (∆∗) = 0. (5)

The process is concluded to be out of control at time n ≥ 1 if S+
n (∆∗) > c. For each

fixed value of ∆∗, we determine the value of c such that the in-control ARL is equal to

some predetermined quantity ξ.

In the above derivation it is assumed that the underlying process is independent. In

this paper, however, we are interested in target processes which follow a time series.

Because of the complicated structure of the likelihood function of a time series practition-

ers have used the above recursion (5) for time series as well (e.g., Schipper and Schmid

(2001)). Then {Xt} stands for a time series, µ is equal to its mean and γ0 is the in-control

variance. It has to be noted that the control limit c must be chosen by taking the time

series structure into account. The run length of this scheme is given by

NLR,iid(c; ∆∗) = inf{n ∈ N : S+
n (∆∗) > c} (6)

with S+
n (∆∗) as in (5).

While for independent observations several numerical methods are available to cal-

culate the ARL (cf. Brook and Evans (1972), Knoth (2010)) the determination of this

quantity turns out to be very difficult if the target process has a dependence structure. In

that case no explicit formulas for the ARL are available and in practice the control limits

are determined via simulations.
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3.2 LR Approach applied to Gaussian Processes

In this section {Yt} is assumed to be a Gaussian process with mean zero and covariance

function k(i, j) = Cov(Xi, Xj). Assume that the covariance matrix [κ(i, j)]i,j=1,..,n is non-

singular for each n ≥ 1. Let Ŷt denote the best linear predictor of Yt based on Yt−1, .., Y1.

This quantity can be recursively calculated using the innovations algorithm (cf. Brockwell

and Davis (1991, p.172))

Ŷt =

{
0 for t = 1∑t−1

j=1 θtj(Yt−j − Ŷt−j) for t ≥ 2
.

The quantities θtj can be determined recursively. Note that Ŷt =
∑t−1

j=1 atjYj with some

coefficients atj. Note that for a Gaussian process the best linear predictor is equal to the

predictor obtained by minimizing the mean-square distance.

Following Brockwell and Davis (1991, p.255) the likelihood function of (Y1, .., Yn) is

given by

Ln(Y1, .., Yn) = (2π)−n/2(v0 · · · vn−1)−1/2 exp(−1

2

n∑
j=1

(Yj − Ŷj)2/vj−1). (7)

The quantity vj = E(Yj+1 − Ŷj+1)2 denotes the mean-square error. It can be recursively

calculated as well (Brockwell and Davis (1991, p.172)).

Next we introduce a new CUSUM chart for the variance. It is based on the idea to

apply the likelihood ratio procedure to a Gaussian process. First, we fix n and consider

the testing problem H0 : τ > n against H1 : 1 ≤ τ ≤ n. Assuming ∆ to be known the

likelihood function under the null hypothesis that no change has occurred up to time n

is equal to the joint density of (X1, .., Xn) in the in-control case and it is given by

f0(X1, .., Xn) = (2π)−n/2(v0 · · · vn−1)−1/2 exp(−1

2

n∑
j=1

(Xj − X̂j)
2/vj−1) (8)

with vj as above and X̂t =
∑t−1

j=1 atjXj.

If there is a change at position τ ∈ {1, ..., n} then the joint density of (X1, .., Xn) is

equal to

fτ (X1, . . . , Xn) = f0(X1, . . . , Xτ−1,
Xτ

∆
, . . . ,

Xn

∆
)× 1

∆n−τ+1

= (2π)−n/2(v0 · · · · · vn−1)−1/2 1

∆n−τ+1
exp{−1

2
(
n∑
j=1

(Zj,τ − Ẑj,τ )2

vj−1

)}
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with

Zj,τ =

{
Xj for 1 ≤ j < τ

Xj/∆ for τ ≤ j ≤ n
, Ẑj,τ =

j−1∑
v=1

ajvZv,τ .

Let IA(j) denote the indicator function of the set A and let Tj,τ =
∑j−1

v=τ ajvXv. Note that

Tj,τ = 0 for j ≤ τ . Then

Ẑj,τ =

min{j−1,τ−1}∑
v=1

ajvXv +
1

∆

j−1∑
v=τ

ajvXv = X̂j + (
1

∆
− 1)Tj,τ

and

Zj,τ − Ẑj,τ =

{
Xj − X̂j for 1 ≤ j < τ

Xj − X̂j + ( 1
∆
− 1)(Xj − Tj,τ ) for τ ≤ j ≤ n

.

Thus it follows that

fτ (X1, . . . , Xn) = (2π)−n/2(v0 · · · vn−1)−1/2 1

∆n−τ+1
exp

{
−1

2

(
τ−1∑
j=1

(Xj − X̂j)
2

vj−1

+
n∑
j=τ

(Xj − X̂j + ( 1
∆
− 1)(Xj − Tj,τ ))2

vj−1

)}
. (9)

The likelihood ratio is given by

f0(X1, ..., Xn)

max
0≤τ≤n

fτ (X1, ..., Xn)
= min{1, min

1≤τ≤n
∆n−τ+1

× exp{−1

2

(
n∑
j=τ

(Xj − X̂j)
2 − (Xj − X̂j + ( 1

∆
− 1)(Xj − Tj,τ ))2

vj−1

)
}}.

Hence,

−2 log

 f0(X1, ..., Xn)

max
0≤τ≤n

fτ (X1, ..., Xn)

 = max{0, max
1≤τ≤n

(
−(n− τ + 1) log(∆2)

+
n∑
j=τ

1

vj−1

[
2(1− 1

∆
)(Xj − X̂j)(Xj − Tj,τ )− (1− 1

∆
)2(Xj − Tj,τ )2

])
}.

Replacing ∆ by ∆∗ > 1 the run length of the corresponding control chart is given by

NLR(c; ∆∗) = inf{n ∈ IN : max{0, max
1≤i≤n

(
−(n− i+ 1) log(∆∗2)

+
n∑
j=i

1

vj−1

[
2(1− 1

∆∗
)(Xj − X̂j)(Xj − Tj,i)− (1− 1

∆∗
)2(Xj − Tj,i)2

])
} > c}
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with c > 0.

In the next section the control statistic is determined for several important special

cases. Note that the above result includes all causal autoregressive moving average pro-

cesses with normal white noise and all causal autoregressive fractionally integrated moving

average processes with normal white noise and |d| < 0.5.

3.3 Examples

In the following we will make use of the notation

Sn(∆) =
n∑
j=1

(Xj − X̂j)
2

vj−1

− nK(∆), K(∆) =
log(∆2)

1− 1/∆2
(10)

with X̂j as in Section 3.2. Note that in the case of an independent random sequence

Sn(∆) is equal to S̃n(∆) (see (2)).

The most popular family of time-correlated processes are autoregressive moving aver-

age processes (ARMA). A stochastic process is called an ARMA process of order (p, q) if

it is a solution of the stochastic difference equation

Yt =

p∑
i=1

φiYt−i + εt +

q∑
j=1

θjεt−j.

.

Here it is assumed that {εt} is an independent and normally distributed random

process with E(εt) = 0 and V ar(εt) = σ2. Moreover, it is demanded that the roots of

1−
∑p

i=1 φiz
i are all lying outside the unit circle. Then the ARMA process has a unique

stationary and causal solution.

a) For an AR(1) process with |φ1| < 1 we get that Ŷt = φ1Yt−1 for t ≥ 2 and Ŷ1 = 0.

Consequently we get that vt = σ2 for t ≥ 1 and v0 = γ0 = σ2/(1 − φ2
1). Furthermore

at,t−1 = φ1 for t ≥ 2, atj = 0 for j = 1, .., t− 2 and Tj,τ = φ1Xj−1 = X̂j for j ≥ τ + 1 and

Tj,τ = 0 for 1 ≤ j ≤ τ .

We get

max
1≤τ≤n

−(n− τ + 1) log(∆2) +
n∑
j=τ

1

vj−1

[
2(1− 1

∆
)(Xj − X̂j)(Xj − Tj,τ )− (1− 1

∆
)2(Xj − Tj,τ )2

]

= max
1≤τ≤n

−(n− τ + 1) log(∆2) + (1− 1

∆2
)

n∑
j=τ+1

(Xj − X̂j)
2

vj−1
+ 2(1− 1

∆
)
Xτ − X̂τ

vτ−1
Xτ − (1− 1

∆
)2 X

2
τ

vτ−1


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= (1− 1

∆2
) max

1≤τ≤n

(
Sn(∆)− Sτ (∆) + 2

1

1 + 1/∆

Xτ − X̂τ

vτ−1

Xτ −
1− 1/∆

1 + 1/∆

X2
τ

vτ−1

−K(∆)

)

= (1− 1

∆2
) max

1≤τ≤n

(
Sn(∆)− Sτ (∆) +

X2
τ

vτ−1

−K(∆)− 2

1 + 1/∆

XτX̂τ

vτ−1

)

= (1− 1

∆2
) max

1≤τ≤n

(
Sn(∆)− Sτ−1(∆)− X̂2

τ

vτ−1

+
2/∆

1 + 1/∆

XτX̂τ

vτ−1

)
. (11)

One of the problems in calculating the above quantity consists in the fact that the max-

imum has to be taken over all time points. This is usually quite time consuming and

makes a procedures inattractive. In the present case, however, it is possible to derive a

recursion. Let

A+
n (∆) = max

1≤τ≤n

(
Sn(∆)− Sτ−1(∆)− X̂2

τ

vτ−1

+
2/∆

1 + 1/∆

XτX̂τ

vτ−1

)

for n ≥ 1 and A+
0 (∆) = 0 then it holds for n ≥ 1 that

A+
n (∆) = max

{
(Xn − X̂n)2

vn−1

−K(∆)− X̂2
n

vn−1

+
2/∆

1 + 1/∆

XnX̂n

vn−1

,

max
1≤τ≤n−1

(
Sn(∆)− Sτ−1(∆)− X̂2

τ

vτ−1

+
2/∆

1 + 1/∆

XτX̂τ

vτ−1

)}

=
(Xn − X̂n)2

vn−1

−K(∆) + max

{
− X̂2

n

vn−1

+
2/∆

1 + 1/∆

XnX̂n

vn−1

, A+
n−1(∆)

}
.

This representation turns out to be quite useful since it shows that the decision rule of

the control scheme can be calculated recursively. Replacing ∆ by ∆∗ the run length of

this control scheme is given by

NLR(c; ∆∗) = inf
{
n ∈ N : max{0, A+

n (∆∗)} > c
}
. (12)

Putting φ1 = 0 in (11) we get the CUSUM variance chart for independent variables

which was discussed in Section 3.2. Moreover, the representation (11) shows as well the

relationship to residual charts. The control statistic of the CUSUM variance chart for

independent samples applied to the residuals has a similar structure (cf. Section 4). The

difference lies in the additional quantities based on X̂2
τ and XτX̂τ .
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b) Let {Yt} be a causal AR(2) process. Then Ŷt = φ1Yt−1 + φ2Yt−2 for t ≥ 3,

Ŷ2 =
φ1

1− φ2

Y1, and Ŷ1 = 0.

Thus we have for t ≥ 3 that at,t−1 = φ1, at,t−2 = φ2 and at,j = 0 for 1 ≤ j ≤ t − 3.

Moreover, a21 = φ1/(1 − φ2). Furthermore, v0 = γ0, v1 = γ0(1 − φ2
1/(1 − φ2)2), vt = σ2

for t ≥ 2, and

γ0 = σ2 1− φ2

(1 + φ2)[(1− φ2)2 − φ2
1]
.

This leads to

Tj,τ =


X̂j for j ≥ τ + 2

φ1Xτ for j = τ + 1 ≥ 3

X̂2 for j = τ + 1 = 2

0 for 1 ≤ j ≤ τ

.

Consequently,

n∑
j=τ

1

vj−1

[
2(1− 1

∆
)(Xj − X̂j)(Xj − Tj,τ )− (1− 1

∆
)2(Xj − Tj,τ )2

]
=

= (1− 1

∆2
)

(
n∑

j=τ+1

(Xj − X̂j)
2

vj−1

+
1

vτ−1

(X2
τ −

2∆

1 + ∆
XτX̂τ )+

I{2,3,..,n}(τ)
1

vτ
(

2

∆ + 1
φ2Xτ−1(Xτ+1 − X̂τ+1)− ∆− 1

∆ + 1
φ2

2X
2
τ−1)

)

and

max
1≤τ≤n

−(n− τ + 1) log(∆2) +

n∑
j=τ

1

vj−1

[
2(1− 1

∆
)(Xj − X̂j)(Xj − Tj,τ )− (1− 1

∆
)2(Xj − Tj,τ )2

] =

= (1− 1

∆2
) max

1≤τ≤n

(
Sn(∆)− Sτ (∆)−K(∆) +

1

vτ−1

(X2
τ −

2∆

1 + ∆
XτX̂τ )+

+I{2,3,..,n}(τ)
1

vτ
(

2

∆ + 1
φ2Xτ−1(Xτ+1 − X̂τ+1)− ∆− 1

∆ + 1
φ2

2X
2
τ−1)

)
.
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As in the previous example, it is possible to calculate this quantity recursively. Let

B+
n (∆) = max

1≤τ≤n

(
Sn(∆)− Sτ (∆)−K(∆) +

1

vτ−1

(X2
τ −

2∆

1 + ∆
XτX̂τ )+

+I{2,3,..,n}(τ)
1

vτ
(

2

∆ + 1
φ2Xτ−1(Xτ+1 − X̂τ+1)− ∆− 1

∆ + 1
φ2

2X
2
τ−1)

)
then

B+
n (∆) =

(Xn − X̂n)2

vn−1

−K(∆) + max

(
1

vn−2

(X2
n−1 −

2∆

1 + ∆
Xn−1X̂n−1)+

+I{2,3,..}(n− 1)
1

vn−1

(
2

∆ + 1
φ2Xn−2(Xn − X̂n)− ∆− 1

∆ + 1
φ2

2X
2
n−2)−K(∆), B+

n−1(∆)

)
.

4 A Variance Chart based on the Sequential Proba-

bility Ratio Test

4.1 SPRT applied to Independent Variables

CUSUM control charts are connected to the sequential probability ratio test (SPRT).

Here, we derive the CUSUM procedure directly from the related SPRT. Assume that the

variables {Xt} are independent and identically normally distributed with expectation µ.

First, we consider the simple testing problem H∗0 : V ar(Xt) = γ0 against H∗1 : V ar(Xt) =

∆∗2γ0 with known ∆∗. The SPRT says that sampling is stopped at time n if S̃n(∆∗) /∈
[A,B] with S̃n(∆) as in (2). If S̃n(∆∗) > B then H0 is rejected. Otherwise, if S̃n(∆∗) < A,

then H0 is accepted.

Because we are interested to detect an increase in the variance we putA = 0. Moreover,

if S̃n(∆∗) ≤ 0, then the chart is restarted at point zero and the procedure continues.

Setting B = c we get the standard CUSUM chart of Section 3.1 with run length

NSPRT,iid(c; ∆∗) = inf{n ∈ N : max
0≤i≤n

(S̃n(∆∗)− S̃i(∆∗)) > c}.

The decision rule can be recursively calculated by using S+
n (∆∗) from (4). Note that it

holds that NSPRT,iid(c; ∆∗) = NLR,iid(c; ∆∗), i.e. the likelihood ratio approach and the

sequential probability ratio procedure lead to the same control scheme if the underlying

process consists of independent random variables.
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4.2 SPRT applied to Gaussian Processes

In this section we apply the SPRT to a Gaussian process as in Section 3.2. We consider

the simple testing problem H∗0 against H∗1 (see Section 4.1) with known ∆∗. Using (8),

(9) and the fact that Tj,τ=1 = X̂j it follows that

log

(
fτ=1(X1, X2, . . . , Xn)

f0(X1, X2, . . . , Xn)

)
= −n

2
log(∆∗2) +

1

2
(1− 1

∆∗2
)

n∑
j=1

(Xj − X̂j)
2

vj−1

=
1

2
(1− 1

∆∗2
) Sn(∆∗)

with Sn(∆) as in (10).

Following the procedure described in the first part the SPRT leads to a CUSUM chart

with run length

NSPRT (c; ∆∗) = inf{n ∈ N : max
0≤i≤n

(Sn(∆∗)− Si(∆∗)) > c}. (13)

Note that the decision rule can be calculated recursively as described in (5). This is a

great advantage of this scheme in comparison with the CUSUM schemes obtained by the

likelihood approach.

Applying the SPRT approach we get a CUSUM scheme for Gaussian processes which

is equal to the classical CUSUM chart for independent samples obtained in Sections 3.1

and 4.1 if the recursion is applied to the normalized residuals. Thus the chart is equal to

the CUSUM residual chart for the variance.

Because the normalized residuals are independent the recursive presentation shows

that the control statistic follows a Markov process. Thus for the calculation of the ARL

and the average delay the Markov chain approach of Brook and Evans (1972) can be

applied. Another advantage of this scheme is based on the fact that the residuals do not

depend on the process parameters in the in-control state and thus the control limit does

not depend on the process parameters. Consequently this approach has some advantages

which simplify its application.

5 A Variance Chart based on the Shiryaev-Roberts

Approach

The Shiryaev-Roberts (SR) approach is based on papers of Shiryaev (1963) and Roberts

(1966). We make use of the change point model introduced in Section 2. In Section 3

the maximum of the likelihood ratio is taken over all possible positions of the change

12



point, i.e. τ ∈ {1, ..., n}. In the SR procedure the maximum is replaced by the sum over

τ ∈ {1, ..., n}. This procedure can be interpreted as a Bayesian procedure where τ has

a geometric prior distribution with parameter p converging to 0. Pollak (1985) proved

for independent variables that the SR-rule to be asymptotically Bayes risk efficient as

p→ 0. The SR approach for independent variables has been recently discussed by several

authors, e.g., Moustakides et al. (2009) and Pollak and Tartakovsky (2009).

5.1 Shiryaev-Roberts Approach for Independent Variables

First it is assumed that variables {Yt} are independent and normally distributed with

mean µ and variance γ0. Let f denote the density of a univariate normal distribution

with mean µ and variance γ0 and let g be the density of a univariate normal distribution

with mean µ and variance ∆2γ0. Using the notation of Section 3 and Lj(x) = g(x)/f(x)

the SR statistic is given by

Rn(∆) =
n∑
i=1

fi(X1, ..., Xn)

f0(X1, ..., Xn)
=

n∑
i=1

n∏
j=i

Lj = (1 +Rn−1(∆))Ln (14)

for n ≥ 1 and R0(∆) = 0. For normal variables we get that

Rn(∆) =
n∑
i=1

1

∆n−i+1
exp

{
1

2γ0

(1− 1

∆2
)

n∑
j=i

(Xj − µ)2

}

= (1 +Rn−1(∆))
1

∆
exp

{
1

2γ0

(1− 1

∆2
)(Xn − µ)2

}
. (15)

However, in practice, we do not know the size of the change ∆. As described above it is

replaced by a known quantity ∆∗ > 1. This leads to Rn(∆∗).

For deriving the control statistic it was assumed that the target process is independent.

Following Section 3.1 we apply this statistic for time series as well. The independent

variables are replaced by the time series. The run length of the chart is given by

NSR,iid(c; ∆∗) = inf{n ∈ N : Rn(∆∗) > c}. (16)
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5.2 Shiryaev-Roberts Approach for Gaussian Processes

Now we apply this approach to a Gaussian process {Yt} fulfilling the assumptions of

Section 3.2. Using (8) and (9) we receive that

Rn(∆) =
n∑
i=1

fi(X1, . . . , Xn)

f0(X1, . . . , Xn)

=
n∑
i=1

1

∆n−i+1
exp

{
−1

2

n∑
j=i

(Xj − X̂j + ( 1
∆
− 1)(Xj − Tj,i))2

vj−1

+
1

2

n∑
j=i

(Xj − X̂j)
2

vj−1

}

=
n∑
i=1

1

∆n−i+1
exp

{
n∑
j=i

1

vj−1

(
(1− 1

∆
)(Xj − X̂j)(Xj − Tj,i)−

1

2
(1− 1

∆
)2(Xj − Tj,i)2

)}
.

Replacing ∆ by ∆∗ the run length of the SR chart is given by

NSR(c; ∆∗) = inf{n ∈ N : Rn(∆∗) > c}. (17)

5.3 Example

Suppose that {Yt} is a causal AR(1) process. Following Example a) of Section 3.3 we get

that

Rn(∆) =
n∑
i=1

1

∆n−i+1
exp

{
1

2
(1− 1

∆2
)

(
n∑
j=i

(Xj − X̂j)
2

vj−1

− X̂2
i

vi−1

+
2

1 + ∆

XiX̂i

vi−1

)}
.

It is possible to determine the SR statistic recursively

Rn(∆) =

(
Rn−1(∆) + exp

{
(1− 1

∆2
)(

1

1 + ∆

XnX̂n

vn−1

− X̂2
n

2vn−1

)

})
1

∆
exp

{
1

2
(1− 1

∆2
)
(Xn − X̂n)2

vn−1

}

for n ≥ 1 and R0(∆) = 0. As above the unknown magnitude of the change ∆ is replaced

by a reference value ∆∗. This leads to Rn(∆∗).

6 A Variance Chart based on the Generalized Like-

lihood Ratio Approach

The disadvantage of the procedures considered in Sections 3 to 5 consists in the fact that

for the derivation of the procedures the magnitude of the change has to be known. In

practice, however, in many cases no information is available about the size of a possible

shift. In that case other procedures must be favored. Such approaches are discussed

in Sections 6 to 8. In this section we consider the generalized likelihood ratio (GLR)
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approach which can be considered as an extension of the likelihood ratio method since

the size of the change is assumed to be unknown. GLR charts have not received much

attention in SPC up to now (cf. Reynolds and Lou (2012)) and have been mostly discussed

in literature on change-point analysis (e.g., Lai (2001)).

6.1 GLR applied to Independent Variables

Assume that {Yt} is an independent normally distributed random sequence with mean µ

and variance σ2. We make use of the change point model introduced in Section 2. Let

fτ,∆ denote the out-of-control density of (X1, .., Xn)′ then we have to calculate

max
1≤τ≤n

sup
∆>1

log(fτ,∆(X1, ..., Xn)).

We get with T̃n =
∑n

i=1(Xi − µ)2/γ0 that

log(fτ,∆(X1, ..., Xn)) = −n
2

log(2πγ0)− n− τ + 1

2
log(∆2)− 1

2

[
T̃τ−1 + (T̃n − T̃τ−1)/∆2

]
.

Let ∆̃2
τ,n = (T̃n − T̃τ−1)/(n− τ + 1) and let ∆2

τ,n = max{1, ∆̃2
τ,n}. It holds that

sup
∆>1

log(fτ,∆(X1, ..., Xn)) = log(fτ,∆τ,n(X1, ..., Xn))

since the derivative of log(fτ,∆(X1, ..., Xn)) with respect to ∆2 is positive if ∆2 < ∆̃2
τ,n

and it is negative for ∆2 > ∆̃2
τ,n. It holds that

log(fτ,∆τ,n(X1, ..., Xn))

=

{
−n

2
log(2πγ0)− 1

2
[T̃τ−1 + n− τ + 1]− n−τ+1

2
log(∆̃2

τ,n) if ∆̃2
τ,n ≥ 1

−n
2

log(2πγ0)− T̃n
2

if ∆̃2
τ,n < 1

.

Thus

sup
∆>1

log

(
fτ,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
=
n− τ + 1

2
[∆2

τ,n − 1− log(∆2
τ,n)].

Because x− 1− log(x) ≥ 0 for x ≥ 1 we obtain that

2 max
1≤τ≤n+1

sup
∆>1

log

(
fτ,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
= max

1≤τ≤n

{
(n− τ + 1)

[
∆2
τ,n − 1− log(∆2

τ,n)
]}
.

Consequently the stopping rule of the GLR test is given by

NGLR,iid(c) = inf{n ∈ N : max
1≤i≤n

{
(n− i+ 1)

[
∆2
i,n − 1− log(∆2

i,n)
]}

> c}.
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6.2 GLR applied to Gaussian Processes

Suppose that {Yt} is a Gaussian process with mean zero and covariance function k(i, j) =

Cov(Xi, Xj) fulfilling the conditions of Section 3.2. Using Tn =
∑n

i=1(Xi− X̂i)
2/vi−1 and

(9) it follows that

log(fτ,∆(X1, . . . , Xn)) = const− n− τ + 1

2
log(∆2)

−1

2

(
Tτ−1 +

n∑
j=τ

(Xj − X̂j + ( 1
∆
− 1)(Xj − Tj,τ ))2

vj−1

)
.

Now we will maximize the function log fτ,∆(X1, . . . , Xn) with respect to ∆. For that

reason we calculate the derivative

d

d∆
log(fτ,∆(X1, . . . , Xn)) = −n− τ + 1

∆
+

1

∆2

n∑
j=τ

(Xj − X̂j + ( 1
∆
− 1)(Xj − Tj,τ ))

vj−1

(Xj − Tj,τ )

= −n− τ + 1

∆
+

1

∆2
(Ṡn,τ − S̈n,τ ) +

1

∆3
S̈n,τ

where

Ṡn,τ =
n∑
j=τ

(Xj − X̂j)(Xj − Tj,τ )
vj−1

, S̈n,τ =
n∑
j=τ

(Xj − Tj,τ )2

vj−1

. (18)

Let

∆̇τ,n =
Ṡn,τ − S̈n,τ +

√
(Ṡn,τ − S̈n,τ )2 + 4(n− τ + 1)S̈n,τ

2(n− τ + 1)
.

Because the derivative of log(fτ,∆(X1, ..., Xn)) with respect to ∆ is positive if 0 < ∆ < ∆̇τ,n

and it is negative else, it holds that

sup
∆>1

log(fτ,∆(X1, ..., Xn)) = log(fτ,∆∗
τ,n

(X1, ..., Xn))

with ∆∗τ,n = max{1, ∆̇τ,n}. Thus

sup
∆>1

log

(
fτ,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
= −(n− τ + 1) log(∆∗τ,n)− 1

2
(

1

∆∗τ,n
− 1)(2Ṡn,τ + (

1

∆∗τ,n
− 1)S̈n,τ ). (19)

Consequently the stopping rule for this chart is given by the following

NGLR(c) = inf

{
n ∈ N : max

1≤i≤n

{
− (n− i+ 1) log(∆∗i,n)
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−1

2
(

1

∆∗i,n
− 1)(2Ṡn,i + (

1

∆∗i,n
− 1)S̈n,i)

}
> c

}
.

6.3 Example

Let {Yt} be a causal AR(1) process. Using the results of Section 3.3a) we get that

Ṡn,τ =
n∑
j=τ

(Xj − X̂j)(Xj − Tj,τ )
vj−1

= Tn − Tτ +
(Xτ − X̂τ )Xτ

vτ−1

, (20)

S̈n,τ =
n∑
j=τ

(Xj − Tj,τ )2

vj−1

= Tn − Tτ +
X2
τ

vτ−1

. (21)

Thus Ṡn,τ = S̈n,τ − Xτ X̂τ
vτ−1

. Consequently

∆̇τ,n =
Ṡn,τ − S̈n,τ +

√
(Ṡn,τ − S̈n,τ )2 + 4(n− τ + 1)S̈n,τ

2(n− τ + 1)

=
−Xτ X̂τ

vτ−1
+
√

(Xτ X̂τ
vτ−1

)2 + 4(n− τ + 1)(Tn − Tτ + X2
τ

vτ−1
)

2(n− τ + 1)

and the stopping rule is given by

NGLR(c) = inf

{
n ∈ N : max

1≤i≤n

{
−(n− i+ 1) log(∆∗i,n)− 1

2
(

1

∆∗i,n
− 1)

(
(

1

∆∗i,n
+ 1)(Tn − Ti +

X2
i

vi−1

)− 2
XiX̂i

vi−1

)}
> c

}
.

7 A Variance Chart based on the Generalized SPRT

Let {Yt} be a Gaussian process as assumed in Section 3.2. Following the SPRT approach

sketched in Section 4 and using (19) we get

sup
∆>1

log

(
fτ=1,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
= −n log(∆∗1,n)− 1

2
(

1

∆∗1,n
− 1)(2Ṡn,1 + (

1

∆∗1,n
− 1)S̈n,1).
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Since Ṡn,1 = S̈n,1 = Tn we get that ∆̇1,n =
√
Tn/n and thus

sup
∆>1

log

(
fτ=1,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
=

{
−n [log(Tn/n)− Tn/n+ 1] /2 if Tn/n ≥ 1

0 if Tn/n < 1
= hn(Tn/n)

with

hn(x) = nh(x) = n(x− 1− log(x))/2. (22)

Note that hn(Tn/n) ≥ 0. Following Section 4 a control chart is obtained by applying this

approach sequentially. The run length of this scheme is

NGSPRT (c) = inf{n ∈ IN : max
0≤i≤n

(hn(Tn/n))− hi(Ti/i)) > c}.

Assuming τ = 1 in (1) it holds that Pτ=1,∆(Tn ≤ x) = χ2
n(x/∆2) and thus Pτ=1,∆(Tn/n <

1) = χ2
n(n/∆2)→ 0 if ∆→∞. This means that the probability that hn(Tn/n) is positive

is increasing with ∆.

8 Variance Charts based on the Generalized Shiryaev-

Roberts Approach

8.1 GSR applied to Independent Variables

Assume that the variables {Yt} are independent and normally distributed with mean µ

and variance γ0. Following (14) and (15) it is necessary to determine the maximize of

Rn(∆) over ∆. However, it is not possible to get an explicit expression for the value of

∆ which maximizes this quantity since the derivation of Rn(∆) with respect to ∆ leads

to an exponential sum which is difficult to handle. For that reason we choose another

procedure. Instead of Rn(∆) we consider

R∗n(∆) =
n∑
i=1

log

(
fi,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)
.

Because the logarithm is a strictly increasing continuous function this means that instead

of the arithmetic mean the geometric mean is maximized.
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In the case of independent variables we get that

R∗n,iid(∆) = log

(
n∏
i=1

fi,∆(X1, ..., Xn)

f0(X1, ..., Xn)

)

=
n∑
i=1

(
−(n− i+ 1) log(∆) + (1− 1

∆2
)(T̃n − T̃i−1)

)
.

Determining the derivative of R∗n,iid(∆) we see that the maximum of R∗n,iid(∆) is attained

at

∆̃2
n,iid =

2

n(n+ 1)
Un

with

Un =
n∑
i=1

(T̃n − T̃i−1) =
n∑
i=1

i
(Xi − µ)2

γ0

.

Because R∗n,iid(∆) is a concave function the maximum over ∆ ≥ 1 is attained at ∆̂n,iid =

max{1, ∆̃n,iid}. For ∆̃n,iid ≤ 1 it follows that sup
∆≥1

R∗n,iid(∆) = 0, else

2 sup
∆≥1

R∗n,iid(∆) = −n(n+ 1)

2
log(∆̃2

n,iid) + (1− 1/∆̃2
n,iid)Un

= Un −
n(n+ 1)

2
− n(n+ 1)

2

(
log(Un)− log

(
n(n+ 1)

2

))
=

n(n+ 1)

2

(
∆̃2
n,iid − 1− log(∆̃2

n,iid)
)

= hn(n+1)(∆̃
2
n,iid)

with hn as in (22). The run length of the control chart is given by

NGSR,iid(c) = inf{n ∈ N : hn(n+1)(∆̂
2
n,iid) > c}.

8.2 GSR for Gaussian Processes

Now let {Yt} be a Gaussian process as assumed in Section 3.2. As in the previous section

we make use of the geometric mean R∗n(∆). In the present case we get that

2R∗n(∆) =
n∑
k=1

(
−(n− k + 1) log(∆2) + 2(1− 1

∆
)Ṡn,k − (1− 1

∆
)2S̈n,k

)
= −n(n+ 1)

2
log(∆2) + 2(1− 1

∆
)U̇n − (1− 1

∆
)2Ün
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with

U̇n =
n∑
k=1

Ṡn,k, Ün =
n∑
k=1

S̈n,k

and Ṡn,k and S̈n,k as in (18). R∗n(∆) is a concave function for ∆ > 0 and its maximum for

∆ > 0 is attained at position

∆̃n =
U̇n − Ün +

√
(U̇n − Ün)2 + 2n(n+ 1)Ün

n(n+ 1)
.

Thus it holds that

2 sup
∆≥1

R∗n(∆) = −n(n+ 1)

2
log(∆̂2

n) + 2(1− 1

∆̂n

)U̇n −
1

2
(1− 1

∆̂n

)2Ün = gn(U̇n, Ün)

where ∆̂n = max{1, ∆̃n}. The run length of this scheme is

NGSR(c) = inf{n ∈ IN : gn(U̇n, Ün) > c}.

9 Comparison Study

In the above sections several new control schemes for detecting a change in the variance of

a time series were introduced. Because no optimality results are known our aim is to give a

practitioner a clear recommendation which chart should be applied in a specific situation.

In order to compare control charts at all, we have to calibrate them. The control limits

of all charts are chosen such that their in-control ARLs are the same. Here we fix the

in-control ARL to be 500. Using the corresponding control limits the out-of-control ARLs

of all charts are compared with each other using the out-of-control ARL Eτ=1,∆(N(c)) as

well as the average delay Eτ,∆(N(c) − τ + 1|N(c) ≥ τ). These performance criteria are

mostly applied in literature.

In the present case we do not have explicit formulas for the calculation of the per-

formance criteria. Such formulas are not available for control charts for time-dependent

processes. Here we make use of an extensive simulation study. In each case the average

run length and the average delay were determined within a simulation study based on 106

repetitions. The only exception are the GLR charts where no recursive presentation was

given and the calculation of the average run length and the average delay is more time

consuming. In that case we used 105 repetitions.

Note that some control charts depend on a reference value ∆∗ > 1. In our study ∆∗

is taking values within the set {1.10, 1.20, 1.30, 1.40, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00}.
In our comparison study the target process is an AR(1) process with standard nor-
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mally distributed white noise. The coefficients of the process are taking values within

{−0.9,−0.8,−0.7, . . . , 0.7, 0.8, 0.9}.
In Tables 1 to 3 the out-of-control ARLs of the considered charts are given. Because

the ARL turns out to be symmetric with respect to the coefficient φ1 of the AR process

we only show the results for non-negative values of φ1. In each row and each column the

ARLs of nine control charts are given, above the variance chart for iid variables (Section

3.1, cf. (6)), followed by the LR chart (Section 3.2, cf. (12)), the SPRT chart (Section 4.2,

cf. (13)), the Shiryaev-Roberts chart for iid variables applied to time series (Section 5.1,

cf. (16)), the Shiryaev-Roberts chart for Gaussian processes (Section 5.2, cf. (17)), the

GLR chart of Section 6.2, the GSPRT chart of Section 7, and the GSR chart of Section

8.2. The first five charts depend on a reference value. For these charts the smallest out-

of-control ARL over all ∆∗ is listed. In parenthesis the value of ∆∗ is given where the

minimum is attained. The other four charts are generalized schemes and do not depend

on a reference value. In Tables 1 to 3 the ARLs of all charts are written in bold which

for a fixed value of ∆ deviate from the smallest out-of-control ARL by only 2%.

[ Tables 1 to 3 about here. ]

The results of the comparison study are very interesting. First, it can be seen that the

results for the charts based on the independence assumption, i.e. the schemes of Section

3.1 and 5.1, are getting worse if the correlation structure of the target process increases.

Since the other schemes behave much better they should not be applied. Second, the

minimum out-of-control ARL of the LR chart and the SPRT chart is always attained

if ∆∗ is equal to the true value of the change ∆. For the SR chart a slightly different

behavior is observed. Here the best value is greater or equal to ∆. If the optimal values

for the LR and the SPRT chart are taken they provide smaller ARLs than the SR chart.

Among the five schemes with a reference value the LR and the SPRT chart behave the

best. Their results are very similar.

The analysis of the generalized charts shows that again the chart based on the indepen-

dence assumption (here: GSRiid, Section 8.1) behaves bad. The results for the GSPRT

chart are also not very good for small changes but it is the best generalized scheme for

∆ ≥ 1.75. The best results for small changes (∆ ≤ 1.3) are obtained for the GSR chart.

The chart even behaves better than all charts using a reference parameter. This is very

remarkable. However, for ∆ ≥ 1.4 the LR chart and the SPRT chart dominate this

scheme.

In Figure 1 we discuss the sensitivity of the LR, the SPRT, and the SR chart with

respect to the choice of the reference value. In practice we usually do not know the

magnitude of the expected change in advance. In the figure the results of the GLR, the

GSPRT, and the GSR chart are given as well. We focus on two changes, ∆ = 1.3 and
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∆ = 2.0 and on two values of the coefficient of the AR(1) process, φ1 = 0.4 and φ1 = 0.8.

The figure shows the dominance of the GSR chart for ∆ = 1.3. For a small correlation

structure, here φ1 = 0.4, the GLR chart and the SPRT chart show to be better than the

GLR chart if ∆∗ ≤ 2.0. This means that if the deviation from the optimal ∆ = 1.3 is not

too large then these charts have a smaller ARL than the GLR chart but if the deviation

is large (∆∗ ≥ 2.25) then the GLR scheme must be preferred. A similar behavior can be

observed for φ1 = 0.8. However, if the change is larger, here ∆ = 2.0, then the LR and the

SPRT chart are always better than the GLR chart. Even if the reference value is chosen

completely different than the true value of the change the schemes are better. Only the

GSPRT chart turns out to be better than the LR and the SPRT scheme if the deviation

from the optimal value is sufficiently large. It is interesting as well that it seems to be

better to overestimate the value of the change than to underestimate it.

[ Figure 1 about here. ]

Up to now the charts were compared using the average run length. For this perfor-

mance measure it is assumed that the change already arises at the beginning, i.e. τ = 1.

This is of course a restriction. The average delay is a more general criteria because the

change may arise at any position. In Table 4 it is assumed that the change arises up to

the 50th observation, i.e. 1 ≤ τ ≤ 50. Moreover, we focus on the changes ∆ = 1.3 and

∆ = 2.0. The values of the LR, the SPRT, and the SR chart refer to the optimal choice of

the reference value. The table shows that except for the GSPRT chart the worst average

delay is attained at τ = 1, i.e. it is equal to the ARL. As τ increases the average delay

is decreasing and it does not change a lot for τ ≥ 20. The GSPRT chart is an exception.

The worst average delay is attained at τ = 50 and its minimum ARL is observed for a

small value of τ . The table illustrates that the GSR chart behaves quit well for small

changes. The limit of the average delay and the worst case average delay are the smallest

ones for this chart. However, for large changes its behavior is more complicate. While

its ARL is the largest one it turns out to be more effective if the change arises at a later

time point.

[ Table 4 about here. ]

10 Summary

In this paper several new control charts for the detection of a change in a Gaussian process

are introduced. The charts are derived by making use of the likelihood ratio approach, the

sequential probability ratio test, and the Shiryaev-Roberts approach. For the derivation

of the charts it is assumed that the size of the change is known. The obtained charts

22



depend on a reference value which has to be chosen suitably. We consider the case of an

unknown size of the change as well. This attempt leads to generalized control charts.

In an extensive simulation study we compare the introduced control charts with each

other. The target process is assumed to be an AR(1) process. Using the ARL as a

performance criterion it turns out that the GSR chart behaves the best for small changes

(∆ ≤ 1.3). For detecting medium and large changes (∆ > 1.3) the LR and the SPRT

chart turn out to be better. They depend on an additional reference value. The minimum

out-of-control ARL is obtained for both schemes if the reference value is chosen equal to

the true value of the change. It turns out that for larger changes the LR and the SPRT

chart are still better than the best generalized chart if the true change is not dramatically

underestimated.

If we analyze the control charts using the average delay it can be seen that except the

GSPRT chart the worst average delay is always attained at τ = 1, i.e. it is equal to the

ARL. The GSR chart provides the best results for a small change. For medium and large

change the LR and the SPRT chart must be favored if the change is expected to be at

the beginning of the monitoring process. However, if it appears at a later time point the

GSR turns out to have the smallest delay.
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Figure 1: Out-of-control ARLs of several CUSUM charts as a function of the reference
value ∆∗ for an in-control ARL of 500
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Table 4: Average run length (above), worst average delay for 1 ≤ τ ≤ 50 (middle), and
the value of the delay at position τ = 50 (below) for the LR, the SPRT, and the SR chart
for optimal reference parameter, and the GLR, the GSPRT chart, and the GSR chart
(φ1 = 0.4, in-control ARL = 500)

LR SPRT SR GLR GSPRT GSR
∆ = 1.3 32.52 32.59 35.09 39.40 49.18 32.68

32.52 32.59 35.09 39.40 73.46 32.68
29.85 29.85 30.70 33.43 73.46 21.91

∆ = 2.0 7.52 6.79 7.14 9.42 8.38 11.41
7.52 6.79 7.14 9.42 14.22 11.41
6.69 6.41 6.48 8.16 14.22 6.18
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