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Abstract. The following electromagnetism (EM) inverse problem is addressed. It consists
in estimating local radioelectric properties of materials recovering an object from the global
EM scattering measurement, at various incidences and wave frequencies. This large scale ill-
posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver,
distributed on High Performance Computing (HPC) machines. Applied to a large training data
set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, on which
Bayesian inference can be performed. Considering the radioelectric properties as a dynamic
stochastic process, evolving in function of the frequency, it is shown how advanced Markov
Chain Monte Carlo methods, called Sequential Monte Carlo (SMC) or interacting particles, can
provide estimations of the EM properties of each material, and their associated uncertainties.

1. Introduction
The inverse problem is described in figure 1. The Radar Cross Section quantifies the scattering
power of an object, at a given incidence and wave frequency. It is defined as the ratio
between the radar transmitted power and the incident power density (in plane wave) [1]. RCS
measurement process is schematically presented on the right part of figure 1. The object or
mock-up is illuminated by a quasi-planar monochromatic wave, inside an anechoic chamber
where interferences are limited.The acquisitions are realized at K successive discrete frequencies
(f1, f2, · · · , fK), for different incidence angles (by piloting motorized rotating support). From
this raw data, a signal processing is performed, mainly consisting of calibration and filtering.
At the end, the measurement provides an evaluation of the calibrated complex (amplitude and
phase) scattering coefficient, for each frequency and incidence.

Figure 1. The EM inverse problem
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A metallic axi-symmetric object is recovered with N areas (see figure 3), each area
corresponding to a material with its associated isotropic radioelectric properties, i.e. the complex
parameters of permittivity ε and permeability µ. The EM inverse problem can be expressed as:
is it possible to extract some local information on the material properties (εk, µk) of each area
from the global scattering measurement?

2. The stochastic modeling
At a given frequency fk, the system state Xk can be defined by (omitting fk to lighten the

notations): Xk =
[
ε′ ε′′ µ′ µ′′

]T
, with ε′, ε′′, µ′ and µ′′, respectively the real and imaginary

permittivity and permeability components of theN areas. Notice that the state dimension can be
high (4 ·N with N ≈ 100). On the other hand, considering measurements at the given frequency
fk with various incidence angles in both polarizations (TM and TE), the observation vector is
made of the real (<(·)) and imaginary (=(·)) parts of the complex scattering coefficients cTM

and cTE measured at M angles θ1, · · · , θM : Yk = [<(cTM) =(cTE) <(cTM) =(cTE)]T .
Considering all frequencies, vectors X = (X1, . . . ,XK) and Y = (Y1, . . . ,YK) respectively
define complete system state and observation.

2.1. Observation model
The 2D-axisymetric Maxwell solver software (F2D) can predict the observation from the system
state. Assuming a multidimensional Gaussian measurement uncertainty model, it leads to the
following likelihood model Yk | Xk ∼ N (F2D(Xk),Rk) (at a given frequency fk), where Rk is
the covariance matrix (assumed known). To avoid numerous and heavy F2D computations, we
have developed the following global approach. First, the high dimension state space and the
associated system response are explored randomly around expected properties (prior knowledge),
computations being massively distributed on HPC machines.

Let BA = {(X(1)
k ,Y

(1)
k ), · · · , (X(NE)

k ,Y
(NE)
k )} the training data composed of NE couples. It is

then processed by N-D statistical techniques; sensibility analysis and model reduction techniques
can possibly reduce the state space dimension. Applying multidimensional regression, it turns
out that the model is approximatively linear. According to the studied cases, the linearity errors,
evaluated by residue analysis and bootstrap techniques, are significant but much lesser than the
RCS measurement uncertainties. Finally, the following linear Gaussian model can be considered
(at a given frequency fk):

Yk | Xk ∼ N (Ak ·Xk + Y0
k,Rk) (1)

where the deterministic part of the linear model is given by the learned matrix 4M × 4N Ak

and the vector Y0
k.

2.2. Prior model at a fixed frequency
Let us fix a frequency fk. We model our a priori knowledge on Xk with a Gaussian distribution
N (mk,Pk). The object is divided in Nb blocks of areas, each of them composed of a rather
homogeneous material. The location of these blocks is known exactly. Prior mean value mk

is defined with reference values of ε′, ε′′, µ′ and µ′′ for each of theses blocks. Then, for any

component Xi
k, we define a variance σiS,k

2
as a mix between absolute and relative uncertainty.

To take into account the spatial local homogeneity, covariance matrix Pk is defined block by
block independently (and separately for each of the ε′, ε′′, µ′, µ′′) by correlation relations between
Xk’s block-sharing components:

Cov(Xi
k,X

j
k) = σik,S

2 · ρ|i−j|S



where ρS ∈ [0, 1] is a spatial correlation parameter (typically ρS = 0.95 in our applications).
It means that the correlation between 2 areas dicreases geometrically at speed ρS with the
distance between them.

2.3. Inter-frequential prior model
Radioelectric properties ε′, ε′′, µ′, µ′′ are known to vary in function of the wave frequency [1];
their non-stationary dynamic can be quite different from frequency f1 to fK . However, in order
to take account of expected frequency profiles regularity (for each material and ε′, ε′′, µ′, µ′′),
we model sequence (Xk, k ∈ {1, . . . ,K} with a linear Gaussian correlation structure, given by
the generalised autoregressive (AR) random process [2]:

X1 ∼ N (m1,P1)

(Xk+1 −mk+1) = Dρ ·Hk+1 ·H−1k · (Xk −mk) +
√
Id −D2

ρ ·Hk+1 ·Vk (2)

where

• for each k, Hk is the “square root” matrix of covariance matrix Pk, defined as being the
unique symetric definite positive matrix satisfying Hk ·HT

k = Pk;

• (Vk, k ∈ {1, . . . ,K}) are i.i.d. N (0, Id);

• Dρ is a positive diagonal matrix commuting with the Hk, further described, and depending
on a parameter ρ.

One notices that so defined sequence Xk still admits N (mk,Pk) as marginal distributions. More
generally, it can be shown that the distribution of concatenated vector X = (X1, . . . ,XK) is a
Gaussian distribution with mean m = (m1, . . . ,mK) and covariance matrix:

P = H ·



Id Dρ D2
ρ · · · DK−1

ρ

Dρ Id Dρ
...

D2
ρ Dρ

. . .
. . .

...
...

. . .
. . . Dρ

DK−1
ρ · · · · · · Dρ Id


· HT

where H is the diagonal by block matrix H = diag(H1, . . . ,HK), which explicits every joint
distribution (Xi,Xj).
Finally, let us clarify parameter ρ (and matrix Dρ). Dρ’s role in these equations makes clear
that it’s a frequential correlation parameter. Its dimension is to be chosen among 3 possibilities
according to our assumptions.

• 1st case: ρ is assumed independant from material and ε′, ε′′, µ′, µ′′. It is one-dimensional,
ρ ∈ [0, 1], and Dρ = ρ.Id.

• 2nd case: ρ depends on the material (block). It is Nb-dimensional, ρ ∈ [0, 1]Nb , and Dρ

giving to each line (component of Xk) its associated component of ρ.

• 3rd case: ρ depends on material and ε′, ε′′, µ′, µ′′. It is 4.Nb-dimensional, and Dρ is the
diagonal matrix composed with 4.Nb ρi.Id-type blocks.



2.4. Global model
Conditionnaly to frequential correlation parameter ρ, the problem of the determination of
X = (X1, · · · ,XK) given the measurements Y = (Y1, · · · ,YK) can be expressed as a classic
linear Gaussian hidden dynamic Markov process observed at ”times” fk (k = 1, · · · ,K):

Xk+1 = Mρ
k ·Xk + w

(1)
k and Yk = Ak ·Xk + w

(2)
k

where w
(1)
k and w

(2)
k are independant Gaussian noises with known parameters, and Mρ

k a known
matrix depending on ρ (see (1) and (2)). Parameter ρ, intuitively representing the inter-
frequency regularity, is unknown and to be estimated. In respect to the probabilistic point
of vue, it is probabilized, and given a prior distribution p(ρ).

3. Sequential Monte Carlo approach for global inversion
3.1. Rao-Blackwellised SMC algorithm
The posterior distribution p(X, ρ|Y) can be decomposed as: p(X, ρ|Y) = p(X|ρ,Y) · p(ρ|Y).
Conditionally to ρ, the system is linear Gaussian: the conditional distributions p(X|ρ,Y) can
be straightforwardly computed by Kalman filtering, including in this off-line context backward
Kalman smoothing. On the other hand, the term p(ρ|Y) ∝ p(Y|ρ) · p(ρ) can be evaluated
(up to a normalising constant) for a given ρ using the likelihood term provided by the Kalman
filter and prior distribution p(ρ). Consequently, in order to exploit this conditional structure of
the system, Kalman smoothers are applied and integrated in an interacting particle approach.
This idea of mixing analytic integration (here Kalman evaluation of p(X|ρ,Y)) with stochastic
sampling is a variance reduction approach, known as Rao-Blackwellisation [3].

Similarly to [3], we choose to implement an efficient interacting particle approach, in order
to estimate the marginal distribution η(ρ) := p(ρ|Y) ∝ p(Y|ρ) · p(ρ). Sequential Monte
Carlo (SMC) is a stochastic algorithm to sample from complex high-dimensional probability
distributions. The principle (e.g., [4]) is to approximate a sequence of target probability
distributions (ηn) by a large cloud of random samples termed particles (ζkn)1≤k≤Np ∈ ENp ,
E being called the state space. Between “times” n− 1 and n, the particles evolve in state space
E according to 2 steps:

• a selection step: every particle ζin−1 is given a weight ωi defined by a selection function gn
(ωi = gn(ζin−1)). By resampling (stochastic or deterministic), low-weighted particles vanish
and are replaced by replicas of high-weighted ones.

• a mutation step: each selected particle ζ̂in−1 move, independently from the others,
according to a Markov kernel Mn.

ζ1n−1
...

ζin−1
...

ζ
Np

n−1


gn

−−−−−−−−−−→︸ ︷︷ ︸
selection



ζ̂1n−1
Mn

−−−−−−−−−−→
...

ζ̂in−1 −−−−−−−−−−→
...

ζ̂
Np

n−1 −−−−−−−−−−→︸ ︷︷ ︸
mutation

ζ1n
...
ζin
...

ζ
Np
n


Evolving this way, the cloud of particles, and more precisely the occupation distribution

η
Np
n = 1

Np

∑Np

k=1 δζnk (sum of Dirac distributions), approximates for each n the theoretical

distribution ηn defined recursively by the Feynman-Kac formulae, associated with the potentials
gn and kernels Mn [5].
Back to our objective of sampling from η, we then define the sequence of distributions ηn(ρ):



ηn(ρ) ∝ p(Y|ρ)αn · p(ρ)

where (αn)0≤n≤nf
is a sequence of number increasing from 0 to 1, so that: η0 is prior

distribution p(ρ), easy to sample, ηnf
is target distribution η and sequence (ηn) admits a

Feynman-Kac type structure with calculable selection functions gn and Markov kernels chosen
so that ηn.Mn = Mn (Metropolis-Hastings for example). The distribution η is then interpreted
as being the last distribution of a Feynman-Kac sequence, on which SMC can be performed, the
estimator of η being the occupation distribution ηNp extracted from the last cloud of particles.

3.2. Results
The occupation distribution ηNp which approximates η = p(ρ|Y) can be represented dimension
by dimension via histograms (see figure 2).

Figure 2. Estimation of a 5-dimensional ρ’s distribution with Np = 100 particles.

For each frequency fk, this approximation ηNp ' η, associated with the theoretical
conditioning relations

E(Xk|Y) = E [E(Xk|ρ,Y)|Y]

Cov(Xk|Y) = E [Cov(Xk|ρ,Y)|Y] + Cov [E(Xk|ρ,Y)|Y]

can deliver estimators of respectively the mean and the covariance matrix of Xk .Roughly
speaking, the posterior estimation is performed by randomly picking a ρi from the final cloud
of particles and computing associated samples of Xk by a Kalman smoother conditionally to ρi.
It is illustrated in figure 3, with a good agreement between the true state and estimated state.

Moreover, for any fixed area, the method provides estimators of the mean and marginal
variance for every frequency, so that the results can be presented as frequential profiles, with
marginal uncertainties (see figure 4). Even when the true (simulated) EM property profiles are
chosen markedly divergent from the prior AR-type model, the method turns out to be robust. It
results from the adaptive estimation of ρ which provides small values of ρ (i.e. weak correlation
of EM properties for close frequencies) in the case of highly irregular true profiles.

4. Conclusion
An efficient statistical inference approach has been applied to estimate local material
radioelectric properties from global EM scattering measurements. It combines intensive
computations, meta-modeling and advanced sequential Monte Carlo techniques dedicated to
frequency dynamic estimation.



Figure 3. Estimated radioelectric properties of a Nb = 5-block object (N = 19 areas), at fixed
frequency fk.

Figure 4. Estimated radioelectric properties (K = 30 frequencies) of a fixed area.
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