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Abstract

Power laws pervade statistical physics and complex systems [1,2], but, traditionally, researchers in these
fields have paid little attention to properly fit these distributions. Who has not seen (or even shown)
a log-log plot of a completely curved line pretending to be a power law? Recently, Clauset et al. have
proposed a method to decide if a set of values of a variable has a distribution whose tail is a power
law [3]. The key of their procedure is the identification of the minimum value of the variable for which
the fit holds, which is selected as the value for which the Kolmogorov-Smirnov distance between the
empirical distribution and its maximum-likelihood fit is minimum. However, it has been shown that
this method can reject the power-law hypothesis even in the case of power-law simulated data [4]. Here
we propose a simpler selection criterion, which is illustrated with the more involving case of discrete
power-law distributions.

1 Procedure

This method is similar in spirit to the one by Clauset et al. [3,4], but with important differences [5]. Here
we just present the recipe, the justification is available in Ref. [6].

Consider a discrete power-law distribution, defined for n = a, a+ 1, a+ 2, . . .∞ (with a natural),

f(n) = Prob[variable = n] =
1

ζ(β + 1, a)nβ+1

S(n) = Prob[variable ≥ n] =
ζ(β + 1, n)

ζ(β + 1, a)

with β > 0 and ζ the Hurwitz zeta function [3] (Riemann function for a = 1),

ζ(γ, a) =
∞
∑

k=0

1

(a+ k)γ
.

Note then that f(n) is a power law but S(n) is not (only asymptotically).

For a fixed, the data values verifying n ≥ a are numbered from i = 1 to Na, and the remainder is removed.
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Then, the method consists of the following steps:

1. Maximum likelihood estimation of the exponent β.

Calculate the log-likelihood function,

ℓ(β) =
1

Na

Na
∑

i=1

ln f(ni) = − ln ζ(β + 1, a)− (β + 1) lnGa,

with Ga the geometric mean of the data in the range, lnGa = N−1
a

∑

lnni.

Calculate the maximum of ℓ(β) (for instance through the downhill simplex method [7]),

βemp = max
∀β

ℓ(β),

which has an error (standard deviation [3])

σ =
βemp√
Na

.

The computation of the zeta function uses the Euler-Maclaurin formula [8, 9],

∞
∑

k=0

f̃(k) ≃
M−1
∑

k=0

f̃(k) +

∫ ∞

M

f̃(k)dk +
f̃(M)

2
−

P
∑

k=1

B2k

(2k)!
f̃ (2k−1)(M),

where B2k are the Bernoulli numbers (B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, . . . ) [8]. So,

ζ(γ, a) ≃
M−1
∑

k=0

1

(a+ k)γ
+

(a+M)1−γ

γ − 1
+

1

2(a+M)γ
+

P
∑

k=1

B2kC2k−1(M),

with

C2k−1(M) =
(γ + 2k − 2)(γ + 2k − 3)

2k(2k − 1)(a+M)2
C2k−3(M) and C1(M) =

γ

2(a+M)γ+1
.

The second sum in the formula runs from k = 1 to a fixed P , taken P = 18, except if a minimum
value term (B2kC2k−1(M)) is reached, case in which the sum is stopped; this ensures a better
convergence [9]. We also take M = 14.

Once we obtain βemp, how do we know if the fit is good or bad?

2. Calculation of the Kolmogorov-Smirnov statistic [7],

demp = max∀n≥a

∣

∣

∣

∣

Nn

Na
− S(n;βemp)

∣

∣

∣

∣

,

with Nn the number of data taking values larger or equal to n. The maximization is performed for
all values of n ≥ a, integer and not integer.

Large and small values of demp denote respectively bad and good fits. But what is large and small?
This is determined in Step 3.
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3. Simulation of the discrete power-law distribution, with exponent βemp and n ≥ a.

We use a generalization of the rejection method of Ref. [10]:

(a) Generate a uniform random number u between 0 and umax, with a = 1/u
1/βemp

max .

(b) Obtain a new random number
y = int(1/u1/βemp),

where int(x) means the integer part of x. Notice that its probability function is

q(y) = (a/y)βemp − (a/(y + 1))βemp .

(c) Accept y as the simulated value if a new uniform random number v (between 0 and 1) fulfills

v ≤ f(y)q(a)

f(a)q(y)

and reject y otherwise. If accepted, take n = y.
Notice that the computation of the ζ function is not required.

Defining τ = (1 + y−1)βemp and b = (a+ 1)βemp the acceptation condition becomes simpler,

vy
τ − 1

b− aβemp

≤ aτ

b
,

(d) Repeat the process until Na values of n = y are obtained.

4. Apply step 1 (maximum likelihood estimation) to the simulated data.

Call the obtained exponent βsim.

5. Apply step 2 (calculation of the Kolmogorov-Smirnov statistic) to the simulated data, using the fit
obtained in step 4, as

dsim = max∀n≥a

∣

∣

∣

∣

Nsim(n)

Na
− S(n;βsim)

∣

∣

∣

∣

,

with Nsim(n) the number of simulated data taking values larger or equal to n.

6. Comparison of the 2 statistics demp and dsim is not enough, so:

Repeat steps 3, 4, and 5 a large enough number of times (e.g., 100 or more, as allowed by compu-
tational resources), in order to get an ensemble of values of dsim.

7. Compute p−value as

p =
number of simulations with dsim > demp

number of simulations
.

The error of the p−value comes from that of a binomial distribution,

σp =

√

p(1− p)

number of simulations
.

Low values of p, like p ≤ 0.05 are considered bad fits.
For higher values, p > 0.05, the power-law fit with βemp cannot be rejected.
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Repeating the whole procedure for “all” values of a we obtain a set of acceptable pairs of a and βemp.
Select the one that gives the smallest value of a provided that p is above 0.20 (for instance). In a formula,

a∗ = min{a such that p > 0.20},

which has associated the resulting exponent β∗
emp.

Note that the final p−value of the procedure is not the one obtained for fixed a, but this is not relevant
in order to provide a good fit (as long as the latter is larger than, say, 0.20).

The figures illustrate the results for n = word frequencies in the Finnish novel Seitsemän veljestä by
Aleksis Kivi, for which a∗ = 1 and β∗

emp = 1.13 ± 0.01, with Na∗ = 22035 and 8.1 × 104 word tokens.
Notice that f(n) is a power law but S(n) is not, but both are representations of a power-law distribution.

We thank R. D. Malmgren (for discussions), L. Devroye (for his book), G. Boleda (for many things!),
and the assistants to the 2012 meeting of the network complexitat.cat (for their interest).
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