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Abstract This paper describes an efficient EM algorithm for maximum likelihood estima-
tion of a system of nonlinear structural equations corresponding to a directed acyclic graph
model that can contain an arbitrary number of latent variables. The endogenous variables in
the model must be categorical, while the exogenous variables may be arbitrary. The models
discussed in this paper are an extended version of finite mixture models suitable for causal
inference. An application to the problem of education transmission is presented as an illus-
tration.
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1 Introduction

Structural equation models (SEM) are defined by a system of nonlinear equations specify-
ing which variables have a direct causal effect on each endogenous variable in the system.
A recursive non parametric SEM is equivalent to a directed acyclic graph (DAG) and, also,
to a set of conditional independence statements. Pearl (1995) has shown that, under certain
conditions, (theback-door and thefront-door criteria) causal effects can be estimated from
the frequency distribution of the observed variables; these conditions are, however, rather re-
strictive and are difficult to combine with statistical modeling assumptions. In this paper we
restrict attention to models where the full joint distribution of observed and latent variables
is identified and we describe an efficient algorithm for maximum likelihood estimation; cer-
tain routines of this algorithm may also be used to compute natural direct causal effects,
Pearl (2010).
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The class of models considered in this paper may be seen as an extension of latent
class models in the sense that observable variables need notbe independent conditionally
on the latent ones. In addition, an observable variable may have a direct effect on a latent
one and a latent variable may have a direct effect on an other latent which is conceptually
distinct. These models are not entirely new, for example Hagenaars (2002) has considered an
application to a social science context of a model which is a special case of those considered
here. The class of mixture models considered by Alfò and Trovato (2011) may be seen as
a special case of those studied here, relative to the dependence structure; a more detailed
discussion will be given in section 2.2.

We present an application in the context of education transmission, a much debated issue
in Econometrics and Labor Economics. In order to assess the causal effect of the education
of the parents on that of their child, one needs to control forthe latent endowments of the
parents and that of the child, which are likely to be stronglyassociated. The approach we
propose is based on estimating a recursive system of structural equations where the natural
endowment of parents and child are treated as two latent endogenous variables; this, we
believe, provides an innovative contribution to the existing literature on the subject which
we review briefly in Section 5.

The class of models studied in this paper are defined in section 2 where we examine
the relationship with related models. The computation of maximum likelihood estimates
and their implementation are discussed in section 3, an approach to the evaluation of causal
effects is presented in section 4 and the application to education transmission is presented
in section 5.

2 A class of semi-parametric structural equation models

We recall, following Pearl (2000), that a non parametric recursive structural equation model
is a system of equations in the variablesZ1, . . . ,Zn

Zi = fi(pai,εi), i = 1, . . . ,n (1)

wherepai is the subset of variables which are assumed to be the direct causes ofZi, these are
usually calledparents, andε1, . . . ,εn is a set of independent background exogenous variables
which account for all residual effects. The fact that the system is recursive implies that, ifZh

is a parent ofZi; thenh < i. The system is non-parametric in the sense that the distribution
of the εi and the form of the functionsfi do not need to be specified. Such a system is
equivalent to a causal DAG where endogenous variables are represented by nodes and there
is an arrow fromZh to Zi if Zh is a direct cause ofZi, that is if Zh ∈ pai. A convenient
property of causal DAGs is that the joint distribution may befactorized into the product of
the conditional distribution of each node given its parents. A DAG can contain one or more
latent nodes, for example in the case of education transmission discussed in section 5, the
unobservable endowments of the parents and that of the childare supposed to affect the
educational achievements of the latter.

The methodology described in this paper is applicable when endogenous variables, ob-
served or latent, are categorical. Our models differ from non parametric SEM because, when
a variable is assumed to depend on two or more other variables, we allow some of these ef-
fects to be additive on a logit scale appropriate to the nature of the response variable under
consideration. Essentially, logits of typereference category or adjacent are more appro-
priate when response categories are not ordered, logits of type global are preferable when
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response categories are ordered and logits of typecontinuation are more suitable when re-
sponse categories correspond to survival or achievements,see Colombi and Forcina (2001)
for a detailed discussion. IfZi has categories coded as 0,1, . . . ,ci−1, theith structural equa-
tion hasci −1 components, one for each logit ofZi and, in the special case when the effects
of its parents are additive, thehth logit (h = 1, . . . ,ci −1) may be written as

λih =
h

∑
l=1

βi0l + ∑
Z j∈pai

c j−1

∑
l=1

βi jl I(Z j ≥ l), (2)

whereI(Z j ≥ l) is the indicator function. Note that we have used the incremental coding for
theβs, this means that, for instanceβi0h is the difference in the intercepts of theh andh−1
logits for Zi. The reconstruction formulas for the case of logits global and adjacent, the only
types used in this paper, are given below

(g) : P(Zi = h) =
exp(λih)

1+exp(λih)
−

exp(λi,h−1)

1+exp(λi,h−1)

(a) : P(Zi = h) =
exp(∑h

l=1 λil)

1+∑ci−1
h=1 exp(∑h

l=1 λil)

From the software point of view, any model of our class is determined by the following
specifications:

– An ordered list of the endogenous variables such that, if there is an arrow fromZi to Z j,
thenZi comes beforeZ j;

– A binary indicator specifying which variables, among the endogenous ones, are latent;
– For each endogenous variable, the list of its parents;
– For each node, the corresponding link function; this is determined by the number of

categories of the node variable and the type of logit (adjacent, global, continuation)
which determines how its conditional distribution is parameterized;

– For each endogenous variable, a regression model which specifies how its logits depend
on the parents and, possibly, on additional exogenous variables measured at the level of
statistical units; this is determined by a design matrix foreach response variable .

2.1 Identifiability

Identifiability results for latent class models under conditional independence are by now well
established. Recent results by Allman et al (2009) can handle several extended latent class
models where certain subsets of the observable variables may be associated conditionally to
the latent. Though, to our knowledge, no results are available to determine whether a general
DAG with an arbitrary number of latent variables is identifiable, the numerical method de-
scribed by Forcina (2008) can be used to determine whether a given model is locally identi-
fiable with very high probability everywhere in the parameter space; this approach was used
in the application. Essentially, the methods samples points from the parameter space and
checks whether the jacobian matrix obtained by differentiating the log-linear parameters of
the saturated model for the joint distribution of the observable variables with respect to the
actual parameters of the model is well away from being singular.

Typical modeling restrictions that might be used to achieveidentifiability are assump-
tions of additivity within a given link function, like, for example, a multivariate logistic
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function. Continuous covariates may be included as exogenous variables; these are the vari-
ables determined outside the system so that there is no equation that describes their behavior.
Clearly, when continuous covariates are available, a linear regression model within the as-
sumed link function must be used.

2.2 Discussion

An interesting instance of the models described above was used informally by Hagenaars
(2002) as an extended latent class model. It may be interesting to note that, while in a basic
latent class model the parameters which determine the marginal distribution of the latent are
somehow separate from those which determine the conditional distribution of the responses,
in the general context described here, in principle, any node of the DAG may correspond to a
latent variable and, if there is a latent nodeZi which has no parents, its marginal distribution
is determined by theβi0h, the intercept parameters for the adjacent logits, whose number
equals the number of latent categories minus 1.

A different, but closely related literature is that based onfinite mixture models, like
those developed, for instance, in Alfò and Trovato (2011) where a selection variable and
two or more response variables are assumed to depend on a multivariate continuous latent
distribution. However, when the underlying distribution is approximated with a discrete dis-
tribution with K support points, the resulting model is equivalent to a DAG model with a
single discrete latent variable, sayU ; the special case where there are two responsesY1, Y2

and a selection variableY0 is displayed in the DAG below

U

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

  
❅❅

❅❅
❅❅

❅❅

��

Y1 Y0oo // Y2

It is worth noting that the true multivariate nature of the underlying latent, once turned
into a discrete one, should show up in the values of the estimated intercept parametersβi jl ,
wherei indexes the response variable,j the latent andl the category of the latent; the fact
thatβi jl is positive (or negative) for alli, l indicates that the underlying latent is essentially
uni-dimensional.

3 Maximum likelihood estimation

Under the assumption that, conditionally on exogenous covariates, the joint distribution of
the variables (both the observable and the latent ones) in the DAG is multinomial, any iden-
tifiable model may be fitted by an EM algorithm. In the E-step weupdate the hypothetical
latent distribution on the basis of the posterior probabilities that the subjects with a given
observed response profile belong to each possible latent configuration and in the M-step we
maximize the multinomial likelihood of the latent distribution.

In spite of the rather complex framework, the E-step has the familiar form of the product
of the observed frequencies times the estimated posterior probabilities. Letπ̂h| j(i) denote the
probability of belonging to latent configurationh conditionally on having observed configu-
ration j for the ith unit, wherej andh denote, respectively, a given cell of the observed and
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latent frequency table; let alsoN j(i) denotes the observed frequency in cellj for theith unit,
the reconstructed frequency table is given by

M j,h(i) = N j(i)
π̂h| j(i)

∑h π̂h| j(i)
.

Due to the recursive nature of this class of models, the M-step may be performed by maxi-
mizing the conditional likelihood of each endogenous variable conditionally on its parents
and on exogenous variables. An efficient algorithm for fitting these generalized logistic mod-
els is described in Evans and Forcina (2012), section 4.

Though the theory required to implement the EM algorithm to our models is straight-
forward, the difficulty lies in setting up a software that canperform these tasks efficiently
having as input a general DAG with an arbitrary number of latent variables. Essentially, in
the E-step we first need to compute the marginal probability distribution of the observed
variables and then expand this back into the joint distribution while, in the M-step, we first
need to compute, for each node, the conditional distribution of the response variable given
its parents and, at the end, reconstruct the joint distribution recursively. The basic idea is
to arrange probabilities and frequencies in lexicographicorder so that the categories ofZ j

run faster than those ofZi if j > i. Marginal distributions are computed by first rearrang-
ing entries into a two-way table where the variables to be retained are by column and then
summing across rows. Expansion of a smaller table into a larger one is performed first by
replicating each entry a number of times equal to the number of cells of the omitted variables
and then rearranging entries according to the original ordering of variables. Rearrangement
of cells are performed by suitable indices which are constructed before starting the algo-
rithm. The MATLAB functions that implement the EM algorithm on a general DAG will be
made available as supplementary material.

To start the algorithm, an initial E-step is performed by assuming the the posterior prob-
abilitiesπh| j(i) are uniform, except for a small random perturbation. In the initial M-step a
one-step ahead logistic model is fitted and estimates are adjusted to smooth possibly large
absolute values. In this way an initial estimate of the latent distribution is obtained. With
some expertise, the models described in this paper could also be fitted with the LG-Syntax
module described by Vermunt and Magidson (2008)

The methodology described by Bartolucci and Forcina (2006), section 3.3, was used
to compute standard errors of the parameter estimates from the estimate of the expected
information matrix. The idea is to collect all parameters into the vectorβ , to compute the
score vector of the log-likelihood for the observed distribution by the chain rule and the
information matrix as follows

s =
∂ L(β)

∂ γ ′
∂ γ
∂ θ ′

∂ θ
∂ β ′ , F = E(ss′/n),

whereγ is the vector of log-linear parameters for the saturated log-linear model of the ob-
served distribution,θ is the vector of log-linear parameters for the latent distribution andF is
the expected information matrix. The extension of this procedure to a general DAG model is
a rather complex task which is handled by specific routines which exploit the rearrangement
indices mentioned above.

4 Evaluation of causal effects

In this paper we formulate the questions of interest and compute appropriate answers within
the formal language developed by J. Pearl (see for example Pearl 2000, Chapter 3) which
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we summarize briefly below. It may be useful to note that, in Pearl’s framework, the joint
distribution of the observed variables in the DAG is assumedto be known, or estimated
from observed frequencies, and the formal language is required to evaluate causal effects by
taking into proper account the causal relations described by the DAG. The fact that certain
variables are or are not endogenous, is irrelevant when we estimate the statistical model,
as long as the conditional independencies implies by the DAGare true. However, while in
a non-parametric context certain causal effects may not be estimable from the joint distri-
bution of the observable variables, in our semi-parametricframework, once the statistical
model is identifiable, any causal effect of interest may be easily computed from the esti-
mated latent distribution.

In a structural equation model, see equation (1), we may evaluate the causal effect of a
subset of variablesX = (Zi)i∈I on Y = (Z j) j∈J, with J disjoint from I, by first applying to
the ”do operator”

P(y | do(x)) = ∑
i6∈I∪J

P(z1, . . . ,zn | do(x)),

this is equivalent to determine the distribution that wouldarise if we could perform an ideal-
ized experiment where the variables inX were randomized. Once the intervention distribu-
tion has been constructed, we need to choose how to compare distributions ofY for different
values ofx: the two most obvious alternatives are differences or ratios of the relevant proba-
bilities. Because in the application we deal with ordered categorical distributions, we simply
compute the ratio of the corresponding survival probabilities.

4.1 Direct effects

In a complex DAG causal effects may act through several different pathways, and we may
be interested in assessing the effects that act along certain specific paths. Consider, for in-
stance, the model described in Table 1 presented in section 5. There,Sp (parents’ education)
affectsSc (child education) directly, or by affectingUc (child latent endowment) orY (fam-
ily income) which, in turn, affectSc. The effect ofUp (parents’ latent endowment) travels
through many channels, but we would mainly be interested in its effect onSc while observed
family backgrounds is held fixed, to capture the effect of natural inheritance, that is the path
from Up to Sc going throughUc.

Effects exerted through specific paths are called ‘direct effects’. In the literature different
definitions of direct effects have been considered; the one used in our application is the
‘natural direct effect’ which is defined as follows (see for example Pearl (2000) Definition
4.5.1 or Pearl (2010) section 6.1.3). Suppose we are interested in the causal effect of a set
of variablesX onY exerted through all paths except those going through a set ofmediating
variablesM = (Zi)i∈K , with K disjoint from I,J. Then, first we computes the intervention
distribution obtained by settingX = x andM = m

P(y | do(x),do(m)) = ∑
i6∈I∪J∪K

P(z1, . . . ,zn | do(x),do(m)) ;

the effect ofM is then averaged out, with weights provided by the distribution of M whenX
is set to its reference category by intervention.

Computation of direct effects requires the computation of several intervention distribu-
tions, a task that is similar to the one implemented within the EM algorithm described above
to reconstruct the joint distribution. In practice, the basic ingredients are the DAG structure
and, for each node, the estimated conditional distributiongiven its parents. Then, nodes are
processed one at a time to reconstruct the required intervention distribution.
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5 Application to Education transmission

The question of assessing the effect of raising the education of the parents by policy in-
tervention on the education of their children is difficult because the answer depend on the
extent to which the association between parents’ and children’s education is due to the trans-
mission of unobservable endowments across generations.

5.1 Background and Literature

For simplicity, consider the very simple model in the four variablesSp,U p andSc,Uc, which
denote schooling and unobservable endowments respectively for parents and child, while
ε p, εc are exogenous errors and assume that

Sc = f (Sp,Uc,εc) (3)

Uc = g(Sp,U p,ε p) . (4)

This model says that a child’s education depends on her own endowment and her parents’
education, and in turn the child’s endowment depends on her parents’ schooling and en-
dowment. Under this model the observed association betweenSp andSc is partly due to the
effect of endowment on schooling within each generation combined with the transmission
effect fromU p to Uc. Thus the stronger the endowment transmission effect the weaker the
scope of education policy. One could substitute from equation (4) into (3) to get the reduced
form equation

Sc = f (Sp,U p,ε) (5)

which requires controlling only for parents’ endowment. Three main approaches in this di-
rection have been pursued. Behrman and Rosenzweig (2002) take differences between sub-
jects with twin mothers, having adjusted for assortative mating in order to control for differ-
ences between education of fathers; Plug (2004) uses data onadoptees under the assump-
tion that there should be no endowment transmission, although, as noted by Holmlund et al
(2011), association may be induced by selective placement of adoptees. Finally, Black et al
(2005) analyze a dataset where differences in parent’s education was exogenously induced
by reforms in municipal schooling laws which they used as an instrument. For a critical
assessment see Holmlund et al (2011) who apply the three methods to a single data set and
show that they produce conflicting results.

Alternatively one could estimate equation (3) in isolation, which requires controlling
only for the child’s endowment. By fitting a much more complexversion of (3), Cameron
and Heckman (1998) address the issue of how the family background affects the probabil-
ity of transition from one grade of education to the next. Though their model resembles
(3) the heterogeneity is assumed independent from the observed covariates, so it could be
interpreted as the component ofUc which is not determined by family background.

The variableU p, namedfamily endowment, is essentially identified by the variables it
affects, so it is meant to capture the family environment in which children grow up. It is in
principle a cross classification of various characteristics of the family, but in practice it turns
out to be naturally ordered in a scale of ‘quality’. The child’s unobservableUc is identified
mainly through cognitive and non-cognitive test scores, soit is not to be interpreted as
strictly reflecting an individual intrinsic endowment; it is rather a mixture of this and other
unobservables like motivation and acquired knowledge useful for schooling advancement.
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5.2 Data

We use data from the National Child Development Survey (NCDS), produced by a UK co-
hort study targeting the population born in the UK between the 3rd to the 9th of March
1958. Individuals were surveyed at different stages of their life and information on their
schooling achievement, various tests results and family background was collected. A com-
plete description of the data is available at
http://www.esds.ac.uk/longitudinal/access/ncds.

Some variables are inherently discrete (notably schoolinglevel) while others would be
more naturally described as continuous, like income and test scores. Because the finite mix-
ture model approach used in this paper can be applied only when all endogenous variables
are categorical, continuous variables were turned into discrete. Though clearly a continu-
ous variable contains more information relative to a discrete approximation, there are two
reason why a model based on categorical variables may involve less parametric restrictions
than one based on the original continuous measurements. First, a continuous variable used
as explanatory in a regression model implies linearity unless additional polynomial terms
are introduced; instead, once it has been transformed into aset of a dummy variables corre-
sponding to discrete categories, it can capture patterns ofnon linearity in a non parametric
way. Models involving a continuous variable as response areusually based on the rather
restrictive assumption of normality while, when used as categorical, the discrete distribution
is assumed to be multinomial, that is completely unrestricted, at least in the first stage.

The original sample contains 18560 observations, but more than 80% have at least a
missing entry. Incompleteness is scattered across many variables included in the survey. The
subsample of complete data which we analyze amounts to almost 3000 subjects, 1471 males
(sons) and 1330 females (daughters). The marginal distributions of the summary statistics
for the most relevant variables in the complete-case sub-sample do not differ significantly
from the same distributions in the whole sample, but we cannot really exclude selection bias.
Our main dependent variableSc is the amount of education achieved by each individual,
which takes four levels: no qualification, O-level, A-leveland higher education.

Children are tested at the age of 7 and 11 for mathematics, reading and non-cognitive
skills, and again at 16 for math and reading, and we use the test scores for identification of
the unobservable endowment. More specifically, after taking principal components (which
in all cases explain no less than 90% of the total variance) for math and reading we combine
scores at 7 and 11 into two ordered variables:EM and ER. Math and reading scores at
16 are coded in two additional variablesLM and LR. For non-cognitive skills (available
at ages 7 and 11), principal components yields two factors; these were averaged and then
dichotomized at the median into the binary variableNC.

Parents’ schooling is defined as the age at which they left school (12 to 21 years); for
each parent we extract a three level variable correspondingto significant educational steps:
leaving up to 14 years of age; after 14 but not later than 16; after 16; these are called
Sm, S f for mother and father respectively. As usual there are many missing data on fam-
ily income; to alleviate the problem, since few mothers in the dataset have an income, we
neglect mother’s income (thus avoiding to drop data with missing mother’s income) and
concentrate on fathers’. We group their income in three categories into the ordered variable
Y .

The NCDS contains also information on parents’ interest in their children’s education,
as reported by teachers; this turns out to be an important variable; it should measure the
amount of effort or concern, and, perhaps, is related to the value that family gives to the
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child’s education. Parents’ interest is originally classified into as many as 5 categories; we
extract three binary parents’ interest variables,I7, I11, I16.

6 The Model

We estimate a system of equations which is an extended and highly complex version of (3)
and (4); because of its complexity, it is convenient to summarize the basic features of the
model in table 1 below where, for each variable in the DAG we give the number of cate-
gories, the type of logit (g for global anda for adjacent) and the list of parents. Note that

Table 1 Description of the model

i Zi n.cat. logit pai

1 U p 3 a -
2 I7 2 g U p

3 I11 2 g U p

4 I16 2 g U p

5 Sm 3 g U p

6 S f 3 g U p, Sm

7 Y 3 g U p, Sm, S f

8 Uc 3 a U p, I7, I11, , I16Sm, S f

9 EM 3 g Uc

10 LM 3 g Uc, EM
11 ER 3 g Uc

12 LR 3 g Uc, ER
13 NC 2 a Uc

14 sC 4 g Sm, S f , Y,Uc

there is an arrow fromSm to S f to account for assortative mating. In the fitted model the
dependence of each node on its parents is assumed linear on the appropriate logit link trans-
formation. In particular, because all observable variables in the system are naturally ordered,
we use cumulative (or ‘global’) logits. The levels of unobservable variables, instead, are as-
sumed to correspond to unordered qualitative types, so we use adjacent logits . Separate
models were fitted for daughters and sons to account for gender effects.

6.1 Main Estimation Results

In Table 2 we display some of the most relevant parameter estimates from different structural
equations included in the model which we fitted to data on sonsand daughters separately..
First of all note that all theβi1h parameters are negative and usually significant, this indicates
that the three parents’ latent class may be ordered from bestto worst; the only exception are
the β81hs which, being positive, indicate that the child’s latent class may also be ordered
from best to worst. This is in agrement with the fact that all the otherβ8 jh are negative, indi-
cating that increasing rearing efforts and higher education on the parents’ side are positively
associated with an improvement of the latent endowment of the child. The few displayed
parameters from the equations for early and late score in math indicate that better endowed
children get better score and that performances are correlated in time. Finally, for the educa-
tional achievements, the displayed estimates confirm that more endowed children get higher
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Table 2 Parameter estimates and standard errors(se) for sons and daughters

Daughters Sons

coeff se coeff se

β411 -1.4133 0.3007 -1.3860 0.2721
β412 -2.7674 0.3951 -2.2284 0.2546
β511 -2.5027 0.2776 -2.4058 0.2285
β512 -0.7036 0.1750 -0.6301 0.1437
β611 -2.9051 0.3717 -5.7254 0.5329
β612 -0.2087 0.2082 -0.4647 0.1749
β811 1.2421 0.6426 0.1621 0.5733
β812 2.8051 0.5843 1.4549 0.4474
β841 -0.5668 0.2332 -0.8648 0.1737
β852 -0.6575 0.2957 -0.8067 0.2468
β862 -0.0092 0.3903 -0.6447 0.4554
β981 -2.8296 0.1876 -2.8735 0.2047
β982 -2.6018 0.1278 -2.5633 0.1204
β10.81 -3.1387 0.2905 -3.0296 0.2333
β10.82 -2.0644 0.2211 -1.5633 0.2147
β10.91 0.3476 0.1984 0.5046 0.1842
β14.51 0.1585 0.1491 -0.0599 0.1422
β14.52 0.3622 0.2009 -0.1078 0.2000
β14.61 0.0818 0.1539 0.3573 0.1464
β14.62 0.1118 0.2050 0.6453 0.2129
β14.81 -1.8843 0.1831 -3.0141 0.2135
β14.82 -2.8394 0.2107 -1.7979 0.2177

achievements. The parameter estimates for the associationwith the education of the parents
are less obvious to interpret: essentially we see that whilethe association with the education
of the father is positive and significant for the son, the association for the daughter is close
to 0 and smaller than the association with the education of the mother. These results may be
interpreted as indicating a possible gender (or role) effect which may act either as pressure
from the related parent or as an effort of emulation. A more specific interpretation of these
results within the context of causal inference is describedin the next section.

6.2 Estimated direct effects

The results are presented in Table 3, where estimates for sons and daughters are considered
separately. The comparisons are expressed as ratios of survival probabilities, so, for example
the upper-left value of 1.3640 says that the probability that a girl reaches education level at
least 1 whenR = (1, 1, 1) is 1.3640 times larger than whenR = (0, 0, 0). The effect of
parents’ education is calculated excluding the income path, so it includes the indirect effect
exerted via child’s endowment.
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Table 3 Causal effects onSc

Daughters Sons
Sc > 0 Sc > 2 Sc > 0 Sc > 2

rearing efforts R = (I7,I11,I16)

from min to max 1.3640 1.8120 1.7379 2.7337
Separately for the three components

R7 from 0 to 1 1.0398 1.0733 1.0780 1.1263
R11 from 0 to 1 1.1761 1.3554 1.2824 1.5182
R16 from 0 to 1 1.1023 1.1943 1.2373 1.4215
Mother’s schooling Sm

from 0 to 1 0.9383 0.9144 0.9893 0.9699
from 1 to 2 1.2005 1.5480 1.1840 1.2741
from min to max 1.1264 1.4155 1.1713 1.2357
Father’s schooling S f

from 0 to 1 1.0593 1.1330 1.1746 1.4384
from 1 to 2 1.0259 1.0748 1.3195 1.9446
from min to max 1.0867 1.2177 1.5499 2.7971
Income Y
from 0 to 1 1.0275 1.0773 1.0071 1.0178
from 1 to 2 1.0546 1.1596 1.0720 1.1844
from min to max 1.0836 1.2493 1.0796 1.2055
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