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Abstract

Super-resolution methods form high-resolution images from low-resolution images. In this paper,

we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli

process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it

is nonparametric, the number of elements found is also determined from the data. We test the results on

both benchmark and natural images, comparing with several other models from the research literature.

We perform large-scale human evaluation experiments to assess the visual quality of the results. In a

first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is

not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB)

algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs
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Index Terms

Bayesian nonparametrics, factor analysis, dictionary learning, variational inference, gibbs sampling,

stochastic optimization, image super-resolution.

I. INTRODUCTION

The sparse representation of signals with a basis is important in many applications. It has been

extensively used in image denoising, inpainting, super-resolution, classification and compressive

sensing [1], [2], [3], [4], [5], [6], [7], [8].

Many real data sets can be sparsely represented in some basis; typically this basis itself has to

be learned from the data [1], [2], [3], [6], [7], [8], [9], [10], [11], [12]. For example, an image

can be represented by weighted combinations of recurrent patterns of pixels. This construction

may be beneficial, both while building a model for more accurate representation of the data (e.g.

superior image denoising models) and while deriving and implementing an inference procedure

for more efficient algorithms.

In this paper we consider image super-resolution (SR), the problem of recovering a high-

resolution (HR) image from a low-resolution (LR) image. It has many applications, e.g., to

smart phones, surveillance cameras, medical imaging, and satellite imaging.

There are a variety of approaches for image super-resolution. In general, rendering an HR

image from an LR image has many possible solutions. We must use regularization of some

form, i.e., prior information about the HR, to guarantee uniqueness and stability of the extension.

For this purpose, researchers have proposed several methods [13], [14]. Interpolation-based

methods, such as the Bicubic method and Bilinear method, often over-smooth images, losing

detail. Example-based approaches use machine learning to avoid this [15], [16], [17]; they train

on ground-truth HR and LR images, learning a statistical relationship between the two. These

relationships are later used to reconstruct unknown HR images from corresponding LR images.

Freeman et al. ([15]) proposes a method that stores a training set of preprocessed patches

and uses a nearest-neighbor search to super-resolve. Kim et al. ([16]) proposes using kernel

ridge regression with a regularized gradient descent. Another class of SR algorithms use texture

similarity to match image regions with known textures [18], [19]. Finally, there are methods for
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single-image super-resolution. One classic example is [20] which uses recurring patterns at same

and different scales in a single image.

In this work, our focus is on SR via example-based sparse coding. ScSR (Super-resolution via

Sparse Representation) is such an algorithm pioneered in [21]. This algorithm is based on sparse

coding via L1 regularized optimization. In [21], image data are represented using a collection

of dictionary elements (recurring patterns of pixels) that are weighted across different positions.

Although very powerful, this model requires one to specify the number of dictionary elements

and the variance of the noise model in advance—parameters that may be difficult to assess

for real-world images. It also only provides a batch learning algorithm, i.e., computing model

parameters via a gradient descent algorithm on a fixed small subset of the data.

Bayesian nonparametric methods circumvent all these limitations. These methods adapt the

structure of the latent space to the data and provide a powerful representation because they

infer parameters that otherwise have to be assigned a priori [22], [23], [24], [25], [26], [27],

[28], [29], [30], [31], [32]. The full posterior distribution can be approximated via MCMC or

variational inference, yielding sparse representations and learned dictionaries.

Bayesian nonparametric methods have been used in many image analysis applications: to learn

deep architectures used for object recognition in [22], for image inpainting and denoising in [28],

[29], for image segmentation in [30], [31], and to learn nonparametric multiscale representations

of images in [32].

In this paper, we develop a Bayesian nonparametric method for super-resolution. We show

that inference in our model is feasible, performing super-resolution with both a sampling based

algorithm and an online variational inference algorithm. In the latter, we approximate the posterior

distributions via a stochastic gradient descent over a variational objective that enables us to use

the full data set and process the data segment by segment. We also provide human evaluation

experiments which shows that signal-to-noise ratio (a typical quantitative measure of success

in image analysis applications) is not necessarily consistent with human judgement. We devise

a new model, new algorithms, and study a human-based evaluation. We make the following

contributions:

‚ We develop a sparse Bayesian nonparametric model for SR, learning the number of dictio-

nary elements and the noise variance from the data.

‚ We develop an online variational Bayes (VB) algorithm finding high quality “coupled
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Fig. 1. Depicting the observations extracted (e.g. image patches) from high and low resolution images.

dictionaries" in a fraction of the time needed by traditional inference.

‚ We devise large scale human evaluation experiments to explicitly assess the visual quality

of results.

Our approach to SR gives a rich nonparametric representation with scalable learning.

The remainder of the paper is organized as follows: Section II describes the proposed super-

resolution model and non-parametric prior, Section III contains the derivation of the posterior

inference algorithms, Section IV presents the experimental results and implementation details,

Section V includes the discussion and future work.

II. PROPOSED APPROACH

Bayesian factor analysis can be used to learn factors / dictionaries from natural images. Zhou

et al. ([28]) used beta process factor analysis in image denoising, inpainting and compressive

sensing. These models learn both the dictionary elements and their number from the data.

We build here a nonparametric factor analysis model that couples an HR image to a corre-

sponding LR image. In training, we learn the HR/LR relationship from observed HR/LR pairs.

To perform super-resolution, we condition on an observed LR image and compute the conditional

expectation of its corresponding HR image. A more detailed description of the training process is

as follows. We create training data by taking observed HR images and forming corresponding LR

images. Figure 1 depicts the preprocessing and data extraction steps. We first down-sample the

HR images. Then, we up-sample those by interpolating with a deterministic weighting function

(e.g. bicubic interpolation). We extract same-sized patches from the same locations of both the

HR and interpolated LR images, and consider those patches as coupled to each other. These are
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the data on which we train the model.

In the model, each small patch is generated from latent global dictionary elements—small

images functioning as factor loadings—using local sparse weights and Gaussian noise. We will

first explain how these latent variables are generated and then present how they are used to

generate the observations.

We learn two dictionaries: one for high resolution images and one for low resolution images.

In terms of notation, dplqk represents the LR dictionary element, and dphqk is the HR dictionary

element. P plq and P phq represent the dimensionality of the low and high resolution dictionary

elements, respectively. To model each dictionary element, we use a zero-mean Gaussian distri-

bution,

dplqk ∼ N p0, P plq´1IP plqq dphqk ∼ N p0, P phq´1IP phqq.

The matrix form of the dictionaries are Dplq and Dphq where kth columns of those matrices are

dplqk and dphqk , respectively.

Following [21], we assume that the sparse weights are shared by both resolution levels for

combining dictionary elements to produce images. This is the key property of the model that

allows us to frame super-resolution as inference. Sparse weights have two components: real

valued weights sik and binary valued assignments zik. To model the weights sik, we use a zero-

mean Gaussian distribution with precision α. zi is a binary vector that encodes which dictionary

elements are activated for the corresponding observation. ppzq represents the prior of this variable

and we will elaborate on this in next section. These are given as

sik ∼ N p0, 1{αq zik ∼ ppzikq.

We place Gamma priors on the precisions of the sparse weights and observation noise (α and

γ). The two resolution levels share these variables as well,

γ ∼ Gammapc, dq, α „ Gammape, fq.

Let xphqi and xplqi represents patches extracted from HR and LR images, respectively, as shown

in Figure 1. Given the (global) dictionary elements and (local) sparse weights, the observations

are modeled as

ε
plq
i ∼ N p0, γ´1IP plqq ε

phq
i ∼ N p0, γ´1IP phqq

xplqi “ Dplqpsi d ziq ` εi
plq xphqi “ Dphqpsi d ziq ` εi

phq
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where tplq, phqu represents LR and HR, respectively. Here, N is the total number of patches, and

d represents the element-wise multiplication of two vectors. Figure 1 illustrates the graphical

model.

To use this model in SR, we must be able to compute the posterior distributions of the hidden

variables. In the training phase, we must compute the posterior distributions ppDphq,Dplq|txphqi , xplqi uq

of the dictionaries, given a collection of HR/LR image pairs. In testing, we use their posterior

expectation to reconstruct a held-out HR image from an LR image,

Erxphqj |x
plq
j , tx

phq
i , xplqi us « D̂

phq
pŝj d ẑjq (1)

where D̂
phq

is the mean of the posterior distribution ppDphq|txphqi , xplqi uq and pŝj d ẑjq are the

posterior expectation of the sparse weights from the LR image patches (xplqj ) via posterior

inference. (We discuss algorithms for posterior inference in Section III.)

A. Beta-Bernoulli Process Prior (BP)

We now discuss the prior for the factor assignments zi. We use a beta-Bernoulli process (BP)

[22], [23], [24], [25], [26], [27], [28], [29], a prior on infinite binary matrices which is connected

to the Indian buffet process (IBP). Each row encodes which dictionary elements are activated

for the corresponding observation; columns with at least one active cell correspond to factors.

The distinguishing characteristic of this prior is that the number of these factors is not specified

a priori. Conditioned on the data, we examine the posterior distribution of the binary matrix to

obtain a data-dependent distribution of how many components are needed.

The IBP metaphor gives the intuition. Consider a buffet of dishes at a restaurant. Suppose there

are infinite number of dishes and we are trying to specify the infinite binary matrix indicating

which customers (observations) choose which dishes (factors/dictionary elements). In the Indian

buffet process (IBP), N customers enter the restaurant sequentially. Each customer chooses

dishes in a line from a buffet. The first customer starts from the beginning of the buffet and

takes from each dish, stopping after Poisson(τ ) number of dishes. The ith customer starts from

the beginning as well, but decides to take from dishes in proportion to their popularity within the

previous i´ 1 customers. This proportionality can be quantified as mk

i
where mk is the number

of previous customers who took this kth dish. After considering the dishes previously taken by

other customers, the ith customer tries a Poisson( τ
i
) number of new dishes. Which customers
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Fig. 2. Graphical Model.

chose which dishes is recorded by the infinite binary matrix with N rows (indicating the

customers/observations) and infinite columns (indicating the dishes/factors/dictionary elements).

One important (and surprising) property of this process is that the joint probability of final

assignment is independent of the order of customers getting into the restaurant which is called

exchangeability property of the prior [33].

The probabilistic construction is as follows. Each observation i is drawn from a Bernoulli

process (a sequence of independent identically distributed Bernoulli trials), xi „ BePpBq where

B is drawn from a beta process B „ BPpc0, B0q. B0 represents the base measure with B0 “

N p0, 1{βIq. As K Ñ 8, the ith observation is xi “
ř8

k“1 zikδdk where zik denotes whether

the dictionary element dk is used while representing the ith observation or not, and the sample

from the beta process is given by B “
ř8

k“1 πkδdk . Here, πk represents the usage probability of

dictionary element dk.

In inference, we use a finite beta-Bernoulli approximation [25]. The finite model truncates the

number of dictionary elements to K and is given by

πk „ Betapc0η0, c0p1´ η0qq, zik „ Bernoullipπkq

where c0 and η0 are scalars and k P 1, . . . K. As K tends to infinity, the finite beta-Bernoulli

approximation approaches the IBP/BP. If the truncation is large enough, data analyzed with this

prior will exhibit fewer than K components [23].
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B. Super-resolution via Posterior Distributions

Our algorithm has 2 stages: fitting the model on pairs of HR and LR images, and super-

resolving new LR images to create HR versions.

Training: Coupled Dictionary Learning Stage. In training, we observe xphqi and xplqi . All

other random variables are latent. The key inference problem to be solved is the computation of

the posterior distributions of the hidden variables. In the training phase, we must compute the

posterior distributions ppDphq,Dplq|txphqi , xplqi uq of the dictionaries given a collection of HR/LR

image pairs. We rewrite the coupled model in a form similar to the single scale model:

xpcqi “

¨

˝

xplqi
xphqi

˛

‚,dpcqk “

¨

˝

dplqk
dphqk

˛

‚, ε
pcq
i “

¨

˝

ε
plq
i

ε
phq
i

˛

‚ (2)

where the superscript pcq corresponds to combination of plq and phq. Writing the fully-observed

model in this way reveals that we can train the dictionaries with similar methods as for the

single-scale base model (Training amounts to approximating the posteriors of these values). The

differences are that we use combined patches xpcqi and combined dictionaries dpcqk . This leads

to shared sparse weights for the two resolution levels. (The details of how we compute the

distribution ppDphq,Dplq|txphqi , xplqi uq are discussed in Section III.)

Super-resolving a Low Resolution Image. With fitted dictionaries in hand, we now show

how to form HR images from LR images via posterior computation.

In this prediction setting, the HR image xphqi is unknown; the goal is to reconstruct it from the

LR image patches xplqi , the posterior estimates of the dictionaries pD̂
phq
, D̂

plq
q, and the precisions

γ̂, α̂ of the noise and the sparse weights,

xpcqi “

¨

˝

xplqi
´

˛

‚, dpcqk “

¨

˝

dplqk
dphqk

˛

‚, ε
pcq
i “

¨

˝

ε
plq
i

´

˛

‚.

First we find estimates of the sparse factor scores, pŝi d ẑiq, by using the LR image patches

xplqi and posterior estimates of the dictionaries and precisions γ and α. The fitted value of α

determines the strength of a “regularization term" that controls the sparsity of the factor scores.

More precisely, this prediction setting has 3 steps. The input is a set of held-out LR image

patches xplqi , the posterior estimates of the dictionaries pD̂
phq
, D̂

plq
q, and the precisions γ̂, α̂ of the

noise and the sparse weights. The steps are as follows:
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1) We find estimates of the sparse factor scores, pŝi d ẑiq, conditioned on the LR image

patches xplqi and estimates pD̂
phq
, D̂

plq
q, γ̂, α̂ from the training stage.

2) Eq. 1 determines the HR patches x̂phqi .

3) We replace each xplqi by its corresponding collocated x̂phqi ; the whole HR image, X̂
phq

, is the

pixel-wise average of those overlapping reconstructions.

Post-processing: Following [21], we apply a post-processing step that, when down-sampled,

the reconstructed HR image, X̂
phq

, should match the given LR image Xplq. Specifically, we solve

the following optimization:

X̂
phq˚

“ argmin
X

||fpXq ´ Xplq||22 ` c||fpXq ´ X̂
phq
||
2
2

where fpq is a linear operator consisting of an anti-aliasing filter followed by down-sampling.

This optimization problem is solved with gradient descent.

III. POSTERIOR INFERENCE

In the proposed approach, all of the priors are in the conjugate exponential family. In a first

implementation, we use Gibbs sampling. We iteratively sample from the conditional distribution

of each hidden variable given the others and the observations. This defines a Markov chain

whose stationary distribution is the posterior [34]. The corresponding sampling equations are

analytic and provided in the appendix A-B (appendix is in the supplementary material).

The Gibbs sampler has difficulty with scaling to large data, because it must go through many

iterations, each time visiting the entire data set before the sampler mixes. For this reason, both

our Gibbs sampler and ScSR use 105 patches sampled from 3 ˆ 106. We now develop here

an alternative algorithm to Gibbs sampling for SR that scales to large and streaming data.

Specifically, we develop an online variational inference algorithm.

Variational inference is a deterministic alternative to MCMC that replaces sampling with

optimization. The idea is to posit a parameterized family of distribution over the hidden variables

and then optimize the parameters to minimize the KL divergence to the posterior of interest [35].

Our algorithm iteratively tracks an approximate posterior distribution, which improves as more

data are seen.

In typical applications, the variational objective is optimized with coordinate ascent, iteratively

optimizing each parameter while holding the others fixed. However, in Bayesian settings, this
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suffers from the same problem as Gibbs sampling—the entire data set must be swept through

multiple times in order to find a good approximate posterior. In the algorithm we present here,

we replace coordinate ascent optimization with stochastic optimization—at each iteration, we

subsample our data and then adjust the parameters according to a noisy estimate of the gradient.

Because we only to subsample the data at each iteration, rather than analyze the whole data

set, the resulting algorithm scales well to large data. This technique was pioneered in [36]

and was recently exploited for online learning of topic models [37] and hierarchical Dirichlet

processes [38].

We first develop the coordinate ascent algorithm for the coupled model. Then we derive the

online variational inference algorithm, which can more easily handle large data sets.

A. Variational Inference for the Coupled model

We use the coupling perspective in Section II-B to derive the batch variational Bayes (VB)

algorithm. The single-scale base model is the BPFA model of [26], which gives a mean-field

variational inference algorithm. The batch VB algorithm derived here is the coupled version of

that.

We first define a parametrized family of distributions over the hidden variables. Let Q “

tπ,Z, S, D, γ, αu denote the hidden variables for all i, k. We write coupled data as in Equation

2; in the new set-up the variables to be learned become Q “ tπ,Z, S,Dpcq, γ, αu. We use a fully

factorized variational distribution,

qpQq “ qτ pπqqφpDpcqqqνpZqqθpSqqλpγqqεpαq.

Each component of this distribution is governed by a free variational parameter,

qτkpπkq “ Betapτk1, τk2q qνikpzikq “ Bernoullipνikq

qφkjpdkjq “ N pφkj,Φkjq qλpγq “ Gammapλ1, λ2q

qθikpsikq “ N pθik,Θikq qεpαq “ Gammapε1, ε2q

We optimize these parameters with respect to a bound on the marginal probability of the

observations. This bound is equivalent, up to a constant, to the negative KL divergence between

q and the true posterior. Thus maximizing the bound is equivalent to minimizing KL divergence
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to the true posterior. Let Ξ “ tc0, η0, c, d, e, fu be the hyper-parameters. The variational lower

bound is

logpppXpcq|Ξqq ě Hpqq `
ÿK

k“1

!

Eqrlog ppπk|c0, η0, Kqs

`
ÿN

i“1
Eqrlog ppzik|πqs `

ÿJ

j“1
Eqrlog

`

ppdkj|βkjq
˘

s

`
ÿN

i“1
Eqrlog

`

ppsik|αqppα|e, fq
˘

s

)

(3)

`
ÿN

i“1

!

Eqrlog ppxpcqi |Z,S,Dpcqγqs ` Eqrlog ppγ|c, dqs
)

,

where Hpqq is the entropy of the variational distribution and dimensionality of the dictionary

elements J is twice as big as the single-scale model. We denote this function Lpqq.

Holding the other parameters fixed, we can optimize each variational parameter exactly; this

gives an algorithm that goes uphill in Lpqq [39]. (Further, this will provide the algorithmic

components needed for the online algorithm of Section III-B.)

Update equations for each free parameter optimizing this bound are given below. In all

equations, IP represents P ˆ P identity matrix, and x̃pcqip´kq represents the reconstruction error

using all but the kth dictionary element, that is

x̃pcqip´kq “ xpcqi ´ Dpcqpsi d ziq ` dpcqk psik d zikq.

The expectation based on the variational distribution is then given by

Eqrx̃pcqip´kqs “ xpcqi ` φ
pcq
k pθikνikq ´

K
ÿ

k“1

φ
pcq
k pθikνikq.

Update for the binary factor assignment zik: The variational parameter for factor assignment

zik is νik. We first consider two values of the variational distribution for two values (0,1) of zik,

qpzik “ 1q 9 exppEqrlnpπkqsqexp
´

´

λ1
λ2

`

pθ2ik `Θikqpφ
pcqT

k φ
pcq
k `

ř

j Φkjq ´ 2θikφ
pcqT

k Eqrx̃pcqip´kqs
˘

2

¯

qpzik “ 0q 9 exppEqrlnp1´ πkqsq, where

Eqrlnpπkqs “ ψ
`

c0η0 `
ÿ

i

νik
˘

´ ψpc0 `Nq

Eqrlnp1´ πkqs “ ψ
`

c0p1´ η0q ´
ÿ

i

νik `N
˘

´ ψpc0 `Nq
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Then the update equation for the variational parameter νik is given as

νik “
qpzik “ 1|´q

qpzik “ 1|´q ` qpzik “ 01|´q

Update for the shared sparse weight sik: The variational distribution for the sparse weight

sik is Gaussian parametrized with mean θik and variance Θik. Coordinate ascent update equation

for these free variational parameters are

Θik “

´ε1
ε2
`
λ1
λ2
νikpφ

pcqT

k φ
pcq
k `

ÿ

j

Φkjq

¯´1

θik “
λ1
λ2

Θikνikφ
pcqT

k Eqrx̃pcqip´kqs.

Update for the kth coupled dictionary element dpcqk : The variational distribution for the

couple dictionary element dpcqk is Gaussian parametrized with mean φ
pcq
k and variance Φ

pcq
k .

Coordinate ascent update equation for these free variational parameters are

Φ
pcq
k “

´

2P I2P `
λ1
λ2

N
ÿ

i“1

pθ2ik `Θikqν
2
ik

¯´1

φ
pcq
k “

λ1
λ2

Φ
pcq
k

N
ÿ

i“1

θikνikEqrx̃pcqip´kqs.

The updates for high resolution (h) and low resolution (l) components can be given separately

as

Φ
phq
k “

´

2P IP `
λ1
λ2

N
ÿ

i“1

pθ2ik `Θikqν
2
ik

¯´1

Φ
plq
k “

´

2P IP `
λ1
λ2

N
ÿ

i“1

pθ2ik `Θikqν
2
ik

¯´1

φ
phq
k “

λ1
λ2

Φ
phq
k

N
ÿ

i“1

θikνikx̃phqip´kq φ
plq
k “

λ1
λ2

Φ
plq
k

N
ÿ

i“1

θikνikx̃plqip´kq.

Update for the dictionary usage probabilities πk: The variational distribution for the

dictionary usage probabilities πk is a beta distribution parametrized with the shape parameters

(τk1, τk2). Coordinate ascent update equation for these free variational parameters are

τk1 “ c0η0 `
N
ÿ

i“1

νik

τk2 “ N ´
N
ÿ

i“1

νik ` c0p1´ η0q.
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Update for the precision γ: The variational distribution for the precision γ of the observation

noise εi is a gamma distribution parametrized with (λ1, λ2). Coordinate ascent update equation

for these free variational parameters are

λ1 “ c`NP

λ2 “ d`
1

2

N
ÿ

i“1

!

||xpcqi ´

K
ÿ

k“1

φ
pcq
k pθikνikq||

2
2 `

K
ÿ

k“1

νikpθ
2
ik `Θikqpφ

pcqT

k φ
pcq
k `

ÿ

j

Φkjq

´

K
ÿ

k“1

νikφ
pcqT

k φ
pcq
k θ

2
ik

)

.

Update for the precision α: The variational distribution for the precision α of the sparse

weights sik is a gamma distribution parametrized with (ε1, ε2). Coordinate ascent update equation

for these free variational parameters are

ε1 “ e`
1

2
NK

ε2 “ f `
1

2

N
ÿ

i“1

K
ÿ

k“1

pθ2ik `Θ2
ikq.

Algorithm 1 Batch VB
Sample N observations from the data. Initialize τ ,ν,φ,Φ,θ,Θ,λ, ε using Gibbs sampler.

for t “ 1 to T do

Init. local variables νnk
,θnk

,Θnk
using Gibbs sampler.

while relative improvement in ` is large do

for k “ 1 to K do

for n “ 1 to N do

update νnk,θnk,Θnk by using batch VB updates.

compute Φk,φk, τ k,λ, ε by batch VB updates.

B. Online Variational Inference

We now develop online variational inference. We divide the variational parameters into global

variables and local variables. Global variables depend on all of the images. These are the

dictionary probabilities πk, dictionary elements dk, precisions α and γ. Local variables are

the ones drawn for each image. These are the weights si, binary variables zi. The algorithm
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iterates between optimizing the local variables using local (per-image) coordinate ascent, and

optimizing the global variables. This same structure is found in many Bayesian nonparametric

models [23], [40].

The basic idea is to optimize Equation 3 via stochastic optimization [41]. This means we

repeatedly follow noisy estimates of the gradient with decreasing step sizes ρt. If the step sizes

satisfy
ř

t ρt “ 8 and
ř

t ρ
2
t ă 8 then we will converge to the optimum of the objective. (In

variational inference, we will converge to a local optimum.)

Algorithm 2 Online VB with mini-batches
Define ρt “ pr ` tq´κ, Initialize τ ,ν,φ,Φ,θ,Θ,λ, ε using Gibbs sampler.

for t “ 1 to N
NS

do

Sample NS new observations from the data. Initialize local variables νnk
,θnk

,Θnk
using Gibbs sampler.

while relative improvement in ` is large do

for k “ 1 to K do

for nt “ pt´ 1q ˆNS ` 1 to tˆNS do

update νntk,θntk,Θntk by using batch VB updates.

compute Φ̃k, φ̃k, τ̃ k, λ̃, ε̃ by batch VB updates as if there are N{NS copies of the images.

for k “ 1 to K do

update Φk,φk, τ k,λ, ε by Equation 6

The noisy estimates of the gradient are obtained from subsampled data. We write the objective

L as a sum over data points. Defining the distribution gpnq which uniformly samples from the

data, we can then write L as an expectation under this distribution,

L “
ÿN

n“1
`pτ ,νn,φ,θn,λn, εn,Xnq. (4)

“ NEgr`pτ ,νn,φ,θn,Θn,λn, εn,Xnqs (5)

The gradient of the objective can be written as a similar expectation. Thus, sampling data at

random and computing the gradient of `n gives a noisy estimate of the gradient.

There are two further simplifications. First, when we subsample the data we optimize the

local variational parameters fully and compute the gradient of `n with respect to only the global

variational parameters. Second, we use the natural gradient [42] rather than the gradient. In mean

field variational inference, this simplifies the gradient step as follows. Suppose we have sampled

an image n and fitted its local variational parameters given the current settings of the global
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Fig. 3. Dictionary trained in batch mode on lluminance channel with SR ratio = 2. (Left) HR Dictionary, (Right) LR

Dictionary, Every square represents a dictionary element and the HR-LR pairs are co-located. HR dictionary consists of sharper

edges.

variational parameters. Let τ̃ , φ̃, Φ̃, λ̃, ε̃ be the global variational updates from Section III-A as

though we observed N copies of that image. (Note that these depend on its local variational

parameters.) Following a noisy estimate of the natural gradient of L is equivalent to taking a

weighted average of the current and the newly fitted global parameters, e.g.

φ “ p1´ ρtqφ` ρtφ̃. (6)

It follows that there is no additional computational cost to optimizing the global variational

parameters with stochastic optimization versus coordinate ascent.

In our implementation, we decrease the step-size ρt by ρt “ pρ0 ` tq´κ. The learning rate

parameter ρ0 down-weights early iterations; the parameter κ controls the speed of forgetting

previous values of the global variables.

The full online VB algorithm is listed in Algorithm 2. (Note that we sample the data in

mini-batches, rather than one at a time. When the mini-batch size is equal to one data point, we

recover the algorithm as described above.)
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C. Initialization with MCMC.

We initialize both the batch and online VB with a few iterations (e.g. 5 or 10) of MCMC.1 This

is useful for two reasons: (1) It provides a good initialization and thus faster convergence, (2)

Noisy random-walks of MCMC help VB avoid low-quality local optima: at the beginning of each

e-step, MCMC initializes si and zi by sampling from their approximate posterior distribution,

given the most recent global variables. These samples are noisy estimates of the sparse weights

near their posterior means. For instance, when the factor assignment zik equals 0, the MCMC

draws the sparse weight sik from the prior N p0, 1{αq whereas in VB it would be exactly 0.

Providing the freedom to “jiggle" gives the algorithm the opportunity, similar to simulated

annealing, to jump away from one local optimum to reach a better optimum.

IV. EXPERIMENTS

We use three data sets. To train, we use the set of 68 images collected from the web by [21].

We test on the Berkeley natural image data set (20 100ˆ100 images) and a benchmark set of

images (11 images of various size) used by the community to evaluate SR algorithms.2 These

data sets provide us with a rich set of HR-LR pairs.

Throughout this work, unless otherwise mentioned we use the same parameters (without any

tuning): we set the SR ratio to 2 or 4 and the patch size to 8 ˆ 8.3 The hyper-parameters are

c “ d “ e “ f “ 10´6 and c0 “ 2, η0 “ 0.5, these are standard uninformative priors used in e.g.

[28]. The truncation level K in BP is set to 512. Most images use fewer factors, e.g. Baboon

uses 487, House 438 and Barbara 471 factors. We apply all algorithms only to the illuminance

channel and use Bicubic interpolation for the color layers (Cb, Cr) for all compared methods.

We study our methods with two kinds of posterior inference—Gibbs sampling (BP) and online

1For batch VB, these MCMC samples are collected on the same subset of the data on which batch VB will process. For

online VB, they are collected from the mini-batches. In both cases, scale problem of MCMC is not an issue since we only

collect few samples (e.g. 5 or 10). As we mentioned before, scale is a problem for MCMC since it needs to go over the data

many times for convergence (e.g. thousands of iterations). Time scaling is discussed in more detail in Section IV-C
2We are using SR ratio=2 or 4. For SR ratio 2, the images which do not have even number of rows/columns are cut to have

even number of rows/column to prevent any possible mismatch and error in computing PSNR in all algorithms. For instance

the last column of pixels from an image of size 330ˆ 171 is excluded so the corresponding image have the size 330ˆ 170.
3The visual results for SR ratio 4 are in the appendix G.
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TABLE I

TEST RESULTS WITH SR RATIO = 2. PSNR FOR THE ILLUMINANCE CHANNEL IS PRESENTED (THE HIGHER THE BETTER).

BP: PROPOSED ALGORITHM TRAINED VIA GIBBS SAMPLER, O-BP PROPOSED ALGORITHM TRAINED VIA ONLINE VB,

SEEING MORE DATA, SCSR: SUPER-RESOLUTION VIA SPARSE REPRESENTATION [21], NNI: NEAREST NEIGHBOR

INTERPOLATION, SME: SPARSE MIXING ESTIMATION [43].

PSNR Bic. NNI Bil. SME ScSR256 ScSR512 BP OBP

Baboon 23.63 23.12 23.05 23.10 24.33 24.36 24.27 24.39

Barbara 25.35 25.10 24.92 24.42 25.88 25.89 25.98 25.99

Boat 29.95 28.39 28.94 29.72 31.23 31.29 31.17 31.31

Camera 30.32 35.20 28.94 26.33 30.68 30.46 31.51 30.94

House 32.79 30.34 31.61 33.28 34.26 34.31 34.08 34.27

Peppers 31.99 29.88 31.18 33.06 33.05 33.06 32.45 33.08

Parthen. 28.12 27.28 27.42 27.28 29.05 29.10 28.96 29.06

Girl 34.76 33.44 33.98 33.98 35.57 35.58 35.62 35.66

Flower 40.04 37.96 38.94 39.72 41.06 41.11 41.26 41.33

Lena 32.83 31.00 31.72 33.57 34.47 34.54 34.56 34.68

Raccoon 30.95 29.82 29.95 31.73 32.39 32.43 32.43 32.62

variational inference (O-BP), which scales to larger data sets.4 To compare, we study both

interpolation and example-based algorithms. Bicubic interpolation is the gold standard in the SR

literature. We also study nearest neighbor interpolation, bilinear interpolation and sparse mixing

estimation (SME) [43]. To compare with an example-based method, we use super-resolution via

4The software for each algorithm presented and all of the visual results will be publicly available.
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sparse representation (ScSR, [21]). 5 6 7 Both BP’s and ScSR’s dictionary learning stages use

105 patches sampled from the training data, however O-BP uses the whole set in online fashion.

The HR and LR dictionaries trained by our approach are shown in Figure 3. The HR dictionary

consists of sharper edges.

As a quantitative measure of performance we compute the signal to noise ratio (PSNR), a

measure that is widely used in image recovery applications. We present the PSNR results for

benchmark images in Table I and natural images in Table II. These PSNR based results can be

summarized as: (1) The online learning algorithm and ScSR performs similarly, (2) They both

slightly perform better than the Gibbs sampler. (3) All of the example based algorithms perform

better than the interpolation based techniques.

A. Evaluation and Crowdsourcing via Mechanical Turk

Though signal to noise ratio (PSNR), is a widely used metric in image recovery applications,

this is not enough to measure human judgement. For this purpose, we also performed human

evaluation experiments on Amazon Mechanical Turk (MTurk, http://www.mturk.com).

The Amazon Mechanical Turk (MTurk) is a web interface for deploying small tasks to

people, called Turkers. Typically an MTurk experiment works as follows: the requesters, people

organizing the experiments and paying Turkers, prepare tasks called HITs (Human Intelligence

Tasks). Each HIT might be a comparison of images, labeling of text etc. Once the HITs are

completed, requesters can approve or reject the HITs based on their reliability measures (for

5We used the code and implementation provided by [21]. We also used their training images, in order to have a fair comparison,

and we did not change any of their parameters (including noise variance).
6We provide visual comparisons to [15], [16], [20], [44] in appendix H. [20] provides very sharp edges by artificially enhancing

them. However, this makes images unrealistic (looking like graphically rendered). Sparse coding allows any single-image SR

algorithm as a pre-processing step. Instead of bicubic interpolation (see Figure 1) [20] might be used with sparse coding to

boost the sharpness of the edges.
7 The dependent hierarchical Beta process (dHBP), another bayesian nonparametric prior, is proposed in [29]. It removes the

exchangeability assumption of beta-Bernoulli construction. This prior assumes that each observation i has a covariate `i P RL.

In this model, the closer the two sparse factor assignments zi and zj in the covariate space, the more likely they share similar

dictionary elements. It applies dHBP using spatial information as covariates to image inpainting and spiky noise removal, and

shows significant improvement over BP. We obtained preliminary results with dHBP for super-resolution. However, in this setting

we did not observe improvement over BP.
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TABLE II

TEST RESULTS WITH SR RATIO = 2. PSNR FOR THE ILLUMINANCE CHANNEL IS PRESENTED (THE HIGHER THE BETTER).

BP: PROPOSED ALGORITHM TRAINED VIA GIBBS SAMPLER, O-BP PROPOSED ALGORITHM TRAINED VIA ONLINE VB,

SEEING MORE DATA, SCSR: SUPER-RESOLUTION VIA SPARSE REPRESENTATION [21], NNI: NEAREST NEIGHBOR

INTERPOLATION.

PSNR Bic. NNI Bilin. ScSR256 ScSR512 BP O-BP

N1 29.74 27.44 28.39 31.52 31.55 31.52 31.56

N2 29.52 27.71 28.27 31.16 31.20 31.17 31.20

N3 22.97 21.95 22.12 23.94 24.00 23.80 23.94

N4 21.63 20.98 20.90 22.59 22.66 22.38 22.41

N5 24.85 23.85 24.01 26.01 26.06 25.77 25.90

N6 25.34 24.61 24.70 26.20 26.26 26.08 26.07

N7 26.66 25.43 25.73 27.92 27.92 27.77 27.97

N8 26.08 24.71 25.23 27.27 27.43 27.01 27.26

N9 26.02 25.29 25.42 26.82 26.89 26.58 26.73

N10 24.79 24.07 23.92 26.23 26.25 25.91 26.16

N11 26.86 25.22 25.97 28.06 28.04 27.99 28.16

N12 28.16 26.65 27.07 29.63 29.66 29.78 29.86

N13 25.15 24.18 24.22 26.40 26.36 26.31 26.33

N14 26.82 25.98 25.92 27.99 28.01 27.86 27.94

N15 25.78 24.64 24.81 27.00 27.04 26.90 27.06

N16 27.28 25.85 26.16 28.88 29.01 28.83 28.96

N17 27.79 26.33 26.81 29.21 29.24 29.02 29.16

N18 29.13 27.75 28.18 30.38 30.41 30.25 30.43

N19 24.57 23.19 23.50 26.07 26.10 25.92 26.02

N20 22.00 21.13 21.05 23.26 23.28 23.26 23.29

instance trivial solution HITs, as we explain next, and the time spend on each HIT are frequently

used measures for reliability). Approved results are acquired to be used in the analysis.

While preparing HITs, we used the natural image data. We asked Turkers to visually assess

and select the better of two HR reconstructions of each image. We considered all ordered

combinations of the algorithms, each equally likely, e.g., BP vs ScSR, BP vs Bicubic etc.

We initially collected 42, 807 decisions from 208 unique Turkers. For quality control we gave

test pairs in which a ground truth HR image was used, i.e., a comparison of an algorithmic

reconstruction vs a true HR image. All of the judgments of the Turkers who failed to pass this
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Fig. 4. Human Evaluation via Mechanical Turk. (Top) Average win rate in one-to-one comparisons. (Bottom) Win rates

for each one-to-one comparison. Each number represents the winning rate of the method in the column, e.g., 0.57 for BP vs

ScSR (BP is on the column and ScSR on the row) means that on average, 0.57 of the times Turkers voted in favor of BP.

test (Turkers who selected the algorithmic reconstruction instead of true HR) were removed.

This reduced the data to 20, 469 decisions from 161 unique reliable Turkers.

The results of the human evaluation are in Figure 4. In the bottom table, win rates for each

one-to-one comparisons are provided. Each number represents the winning rate of the method in

the column. For instance, 0.93 for O-BP vs Nearest (O-BP is on the column and Nearest on the

row) means that out of 100 binary comparisons of O-BP and Nearest, 93 of the times Turkers

voted in favor of O-BP. In general, we observe that example-based methods perform significantly

better than interpolation-based methods. Within the example-based approaches, the models are

similar. However, our approach does not use the first and second-order derivative filters for the

LR patches used by ScSR as features, yet we perform similarly; moreover we do not need to set

the noise precision and the number of dictionary elements, both required parameters of ScSR

(We used the parameters provided by [21] in ScSR.).
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(a) High (b) Low (c) Bicubic (d) NNI (e) Bilinear

(f) ScSR (g) BP (h) O-BP

Fig. 5. Reconstruction of Natural Image 3. BP: Algorithm presented in this work trained via Gibbs sampler, O-BP Algorithm

presented in this work trained via Online VB, ScSR: Super-Resolution via Sparse Representation. Example based approaches

are superior to interpolation techniques, ScSR and our approach perform similarly.

In the PSNR results, ScSR and O-BP seem to perform similarly and both slightly better than

BP. However, in the human evaluation we observed that BP reconstructions are found to be

better. (Based on 95% confidence intervals, both the BP vs O-BP and BP vs ScSR results are

statistically significant. The O-BP vs ScSR difference is statistically insignificant.) This shows

that PSNR is not necessarily consistent with the human assessment of images [45]. Sample

visual results are shown in Figures 5, 6 and 7. (The remaining results are in the appendix E and

F.)
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(a) High (b) Low (c) Bicubic

(d) NNI (e) Bilinear

(f) SME (g) ScSR

(h) BP (i) O-BP

Fig. 6. Reconstruction of Parthenon Image. BP: Algorithm presented in this work trained via Gibbs sampler, O-BP

Algorithm presented in this work trained via Online VB, ScSR: Super-Resolution via Sparse Representation. SME: Sparse

Mixing Estimation [43]
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(a) High (b) Low (c) Bicubic

(d) NNI (e) Bilinear (f) SME

(g) ScSR (h) BP (i) O-BP

Fig. 7. Reconstruction of Baboon Image. BP: Algorithm presented in this work trained via Gibbs sampler, O-BP Algorithm

presented in this work trained via Online VB, ScSR: Super-Resolution via Sparse Representation. SME: Sparse Mixing

Estimation [43].
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Fig. 8. Learning the number of dictionary elements from the data. (Left) PSNR of the reconstruction of the Barbara image

by nonparametric BP and parametric ScSR with different number of dictionary elements. (Right) Histogram of the number of

dictionary elements for BP when K “ 1024 over 100 samples.

B. Nonparametric property of the model.

In this section, we demonstrate the importance of a Bayesian nonparametric method for image

super-resolution. As we mentioned in Section II-A, we use a beta-Bernoulli process (BP) for the

factor assignments zi that encodes which dictionary elements are activated for the corresponding

observation. In the binary matrix (whose rows are the factor assignment zi’s), the columns with

at least one active cell correspond to factors that are used.

The distinguishing characteristic of this prior is that the number of the factors to be learned

is not specified a priori. Conditioned on the data, we examine the posterior distribution of the

binary matrix to obtain a data-dependent distribution of how many components are needed. For

the parametric ScSR, the number of dictionary elements must be set a priori. This is illustrated

by the following experiment. For both model, we train on 104 patches, for different values of

K (starting from scratch each time); for ScSR, K is the target number (which needs to be set

before starting the algorithm), while for our approach, K functions as an upper bound on the

number of dictionary elements (which should not be too low). Figure 8 shows that, unlike ScSR,

our approach is less sensitive to the value of K if it is sufficiently large. The Barbara image uses

700, 801 and 816 factors in our approach for K equals to 1024, 2048 and 4096 respectively.
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Fig. 9. Held-out prediction performances of Online Learning with different mini-batch sizes. Online-VB run on the whole

data set is compared with the Batch-VB run on a subset of the data. The online algorithms converge much faster than the batch

algorithm does.

C. Online learning, Computational Time and Scaling

In this section, we compare the scale properties of the algorithms presented in this paper. In

online learning, instead of subsampling the patches during the dictionary learning stage, we use

the full data set and process the data segment by segment (so called "mini-batches"). We use

the training data set of Section IV. The learning parameters are set to κ “ 0.501 and ρ0 “ 3.

Figure 9 shows the evolution of the mean PSNR on the held-out natural image data set

by the online and the batch algorithms as a function of the number of image patches seen

(visualizations of the learned dictionaries are provided in appendix D). The number of patches

seen represents the computational time since both algorithms’ time complexity is linear with

number of observations. For online VB, the number of patches seen represents the total number

of data seen after each iteration. For batch VB, this represents cumulative sum of the number

of same data seen after each variational-EM iteration. Even before the second iteration of the

batch VB (100K) is completed, online VB with 5K mini-batch converges – reaches to a local

optima better than batch VB. This means that the online algorithm finds dictionaries at least as

good as those found by the batch VB in only a fraction of the time. As also shown in Table

I, it finds high quality dictionaries. This may be because stochastic gradient is robust to local
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optima [46].

For dictionary training, the convergence time for online VB with 5K mini-batch size is 16

hours. In Gibbs sampling, we throw away the first 1500 samples for the burn-in period and

later collect 1500 samples to approximate the posterior distributions. This takes approximately

50 hours on the same machine with an unoptimized Matlab implementation on 105 number

of patches. Running Gibbs sampling same amount of time with online VB, i.e. collecting less

number of samples such as 500, reduces held-out PSNR between 0.2 dB to 0.5 dB, depending

on the image. This is consistent with the findings in [28].

V. DISCUSSION

We developed a new model for super-resolution based on Bayesian nonparametric factor

analysis, and new algorithms based on Gibbs sampling and online variational inference. With

online training, our algorithm scales to very large data sets. We evaluated our method against

a leading sparse coding technique [21] and other state of the art methods. We evaluated both

with traditional PSNR and by devising a large scale human evaluation. This is a new real-world

application that can utilize online variational methods.

The choice of the inference algorithm depends on the usage case. Our results suggest that with

more computation time Gibbs sampling performs slightly better (based on human evaluation).

If speed is important, our online algorithms can be used without much loss.

Regarding the evaluation metric, the standard in image analysis has been signal-to-noise ratio

(PSNR). However, its practical relevance has been questioned [45]. The human eye is sensitive to

details which are not always captured in this metric, and that is why we ran a human evaluation.

Our experiments show that the signal-to-noise ratio is not necessarily consistent with human

judgement.

As future work, our approach can be used as a building block in other, more complicated,

probabilistic models. For example, our approach could be developed into a time series to perform

super-resolution on video or a hierarchical model can be built that fully generates the whole image

instead of patch based approach.
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