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1. INTRODUCTION

Consider a given function f:[0,1] — R such as
2
£(z) = exp {cosh (M) } _ (1)

3 +sinz3

If you require fol f(z)dz, a formula such as (1) isn’t of much use and leads
to questions like “What does it mean to ‘know’ a function?” The formula
says some things (e.g. f is smooth, positive, and bounded by 20 on [0, 1}) but
there are many other facts about f that we don’t know (e.g., is f monotone,
unimodal, or convex?).

Once we allow that we don’t know f, but do know some things, it becomes
natural to take a Bayesian approach to the quadrature problem:

e Put a prior on continuous functions C{0, 1]
e Calculate f at z,,z2,...,2Zn
e Compute a posterior

o Estimate fol f by the Bayes rule

Most people, even Bayesians, think this-sounds crazy when they first hear
about it. The following examples may help.

EXAMPLE 1. Brownian Motion. The easiest prior to work with is Brownian
motion on C[0,1] with a normal prior on f(0). The Markov property implies
that

E{f®)|f (=) =wi, 0<i<n}
is the straight line interpolent of (z:,y:), assuming for simplicity that zo = 0,

z, = 1. This is the Bayes rule for interpolation if squared error is used as loss.
The associated quadrature rule is the well known trapezoid rule.

EXAMPLE 2. gSplines). If the prior is taken as once integrated Brownian
motion f(t) ~ f, B dz, an easy computation shows that the Bayes rule is the
cubic spline interpolent. Integrating k times yields splines of order 2k + 1.
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Seeing standard procedures emerge from the Bayesian approach may con-
vince readers the argument isn’t so crazy after all. The examples suggest the
following program: Take standard numerical analysis procedures and see if they
are Bayes (or admissible, or minimax).

This program leads to interesting problems and results: Is there a prior
giving even order splines? (I don’t know.) Is Simpson’s rule Bayes? (Oaly for
priors concentrated on cubic polynomials.) Among the possible benefits:

Benefit (A) It offers a clear approach to the design problem: Where should
we sample f to get the best estimate of the integral? This can have surprising
answers, even in the simplest cases. For example, in one-dimension, with Brow-
nian motion as prior the best sampling points are at z; = #j_l, 1<i<n,not
at £/n. Thus, for n = 2, it’s best not to sample at the ends, but at (%, %) Jerry
Sacks and Don Ylvisaker have made profound contributions to this program.
A recent survey is Sacks and Ylvisaker (1985). An early article that explicitly
brings out the connections between time series design problems and Bayesian
numerical analysis is Sacks and Ylvisaker (1970).

Benefit (B) In truth, we don’t really need a lot of new machinery to deal with
quadrature in one-dimension. This is a well understood problem. The Bayesian
approach generalizes in a straightforward way to p-dimensions, where most of us
feel we can use all the help we can get. O’Hagan (1985) and Shaw (1985) have
recently reported useful results for quadrature in high dimensions using this
approach. They worked on the problem of computing posterior expectations.
Stewart has reported quite a number of successful applications in real problems.
His article in Bernardo et al. (1985) is a convenient reference.

Benefit (C) The Bayesian approach yields more than the Bayes rule; it yields
a posterior distribution. This can be used to give confidence sets as in Wahba
(1983). See Cox (1986) for a more careful study.

Benefit (D) The Bayesian approach throws fresh light on the choice of nu-
merical procedures. Consider the Brownian motion prior. In many contexts,
the underlying f is known to be smooth, so Brownian motion is not even a
rough approximation to the prior knowledge. This suggests smoother priors,
and more smoothing in the numerical procedure.

The list of benefits A-D above suggests a mathematics problem. In the
special case of Brownian motion we may ask: Is Brownian motion the only
prior yielding linear interpolation? A little reflection turns up the following.
(1) If B; is standard Brownian motion, then oB; also interpolates linearly, for

any fixed o, and so for o a randomly distributed scale factor independent

of Bt. 3
(2) A Poisson process, or any independent increments process, also interpolates



like B;. This suggests that the underlying space of paths C[0,1] is crucial.

It turns out that (1) and (2) are the only conditions required to get a
theorem: the following result has essentially been proved by David Williams
(1980).

Theorem. 1. If ® is a measure on C[0,1] that predicts like Brownian motion
By:

E(f(t)|f(t:) = %, 0<i<n)=Ep(f)|f(t:) =w:, 0<i<n)

for every finite sequence t1, tz,...,tn, then m has the distribution of a scale
mizture of Brownian motion: m ~ 0By, with o independent of B:.

REMARK 1. Under 7, the process f(t) is a Martingale. The proof uses Levy’s
characterization of Brownian motion as the only Martingale with a linear com-
pensator. The article of Dozzi (1981) gives details for a similar characterization
of the Brownian sheet.

REMARK 2. The theorem suggests a rich class of open problems: to what
extent do Bayes rules determine the prior. Diaconis and Ylvisaker (1979, 1983)
survey known results in a finite-dimensional setting. In the present setting,
almost all questions are open. One knows that posterior linearity characterizes
mixture of Poisson processes on D{0,1], but nothing about cubic splines or
other linear operators of Brownian motion.

REMARK 3. The characterization of Brownian motion reported in Theorem 1
above is closely connected to versions of de Finetti’s theorem. See Buhlman
(1963) or Freedman (1963).

Section 2 of this paper sets out some history in modern language. Bayesian
numerical analysis dates back (at least) to Poincare (1896). Section 3 provides
entry to modern applications, work of the Gemans and Julian besag on image
restoration, work of Steffen Lauritzen on geodetic interpolation, and work of
Don Ylvisaker on a tractable class of priors called G-Maps.

The final section states a collection of open problems and conjectures.

Two other surveys detail work not described here: Smale (1985) or Lee and
Woznakowski (1986) describe recent work of a group of numerical analysts with
a similar flavor. Ylvisaker (1986) gives a comprehensive survey.

2. SOME HISTORY

A. POINCARE’S APPROACH TO INTERPOLATION

An early, clear example of Bayesian numerical analysis appears in Poincare
(1896). In Chapter 20, Poincare discusses the theory of interpolation. He
states the problem thus: we measure certain values of an unknown function



f(z): f(a1), f(a2),..., f(an). Construct the curve v = f(z).

Poincare discusses several approaches to this problem: one can always find
a function that passes exactly through the observed points, and then seek a
function “as continuous as possible”. A second approach “also arbitrary to a
degree” is to find an approximation of the form f(z) = coteyz+.. -4,z with ¢
fixed smaller than n—1. Poincare recognizes the difficulties in specifying ¢, and
goes on to discuss algorithms involving continued fractions when q is specified.

Poincare’s final approach, in Chapter 21 is of particular interest. He begins
by supposing that f (z) has a power series expansion

f(z)=Ao+A1$+... s

where the A; are unknown. He puts a prior distribution on the A;, supposing
them to be independent, mean zero Gaussian, with variance a?. Given f(a;),
he searches for the “most probable value of f(z) for another value z”.

Poincare treats the problem using the language of Bayesian statistics (“the
probability of causes”). He sets up and solves the following problem: u,, ..., Up
are unknown parameters with a Gaussian prior, y1,...,y, are n observed linear
functions of the u;, find the posterior mean of another fixed linear combination
of the u;.

Formally passing to the limits as p — oo, Poincare arrives at the following
solution to the original interpolation problem. Let

9(z)=0¢ +olz+o2z® +... .
Then the posterior mean of f (z) given f(a;) equals
f(z) = erg(a;z) + €29(a27) + ... + eng(anz)
with €, ¢€3,...,€, chosen to exactly match the given data when z = aj,az,...,
@n. This requires solving n linear equations in the unknowns €y, ..., ¢,.

This solution depends critically on the variances o?, and Poincare notes that
if the high order variances are set to Z€ro, one gets a new scheme for polynomial
interpolation.

All of this took place many years before there was a rigorous theory of

Gaussian processes, yet the language and spirit of Poincare’s approach are in
perfect accord with the modern approach.

B. PALASTI-RENYI’S MINIMAX RESULT

L. Palasti and A. Renyi (1956) give an early game theoretic formulation of
the quadrature problem and prove that the Monte Carlo strategy is minimax.
In their setup, the admissible functions are continuous and satisfy

/01 {f(x) - /01 f(t)dt}zdz = s (1)



One desires to approximate the integral I = 1-01 f(z)dz by the sum S =
E f(zx). A pure strategy for Player I consists in the choice of a function

f. A pure strategy for Player II consists of an n-tuple of points (z;,...,z,) of
(0,1). The loss for Player II is defined as A =,(S — I)%. A mixed strategy for II
is defined by a measure p on the subsets of the n-dimensional unit cube. Then
the loss is defined as A(f,u) = f(S — I)2du.

They show that the uniform distribution po is minimax in the sense that
sup A(f,n0) < sup A(f, p) for any measure p.

The same type of result is shown to hold for p-dimensional integrals. Anal-
N

ogous results hold for the problem of estimating the sum ¥ = Y y;, by
k=1

n
=X Z Yk, where >
N
Y
Sl — )=+ (2)
k=1
and (kq, k2, .., ky) is some subset of (1,..., N): simple random sampling with-

out replacement is minimax.

Their paper gives rise to many questions: Does Player I have a minimax
strategy? If so, to what prior does it correspond? How do minimax strategies
change if conditions like (1) and (2) change?

A recent treatment of a similar problem deserves mention: Aldous (1983)
considers finding the minimum of function f defined on the vertices of a d-
dimensional cube. He restricts attention to functions such that the only local
minimum is a global minimum. He sets the problem up as a two-person game
and finds its value — roughly, the minimax solutions require 2¢/2 steps for any
algorithm. Nature’s prior on f can be taken as the first hitting times of simple
random walk on the cube.

There has also been some work on admissibility of quadrature rules. Er-
makov (1968) is an early reference. Granovsky and Knoh (1981) or Granovsky
(1986) are recent references.

C. ON EBERLEIN’S APPROACH TO QUADRATURE

W. F. Eberlein and his students developed an approach to quadrature that
is usefully viewed as Bayesian numerical analysis. I will describe the theory
in one dimension, although some striking results demonstrating the efficacy of
Monte Carlo integration as the dimension increases will be cited.

Eberlein works with the set of all real functions on [—1, 1] which have con-



vergent power series expansions.

oo
F={ft) = Z Tpt™: Bls,| < 00}.
n=0
This space can be identified with elements z = (zo,z1,...) of the sequence
space £;. A prior is put on ¥ by putting a prior on the coefficients. This in
turn is done by a simple “stick breaking procedure”.
Choose a sequerice of random variables X, X3, X5, ..., as follows.

¢ Choose X uniformly in {-1,1].
e Given Xo; choose X; uniformly in [—(1 — | Xo|),1 — |Xol].

e Given Xy, Xy,..., Xy, choose X,, ;1 uniformly in
[~(1 = |Xo| — [Xa]), (1 — [Xo| — [Xal))-

This puts a measure on £;, and so on the space of functions ¥. Integrals
with respect to this measure are denoted

[, .

If T is a function that only depends on a finite number of coordinates, then
the integrals are computed as finite dimensional integrals. For example, the
marginal distribution of X, is the law of the product of n+ 1 uniforms on [0, 1),
with a random = sign attached (see Feller (1971, pg. 25)).

Eberlein (1962) shows that this measure is concentrated on functions with
radius of convergence precisely e, so they are all analytic on [—1,1]. Eberlein
showed that £|X;| = 1, so the integral concentrates on the unit ball. Tt is
natural to multiply by an independent scale factor in applications.

This measure was independently described in Freedman (1963). Freedman
put a probability on the set of all probabilities on {0,1,2,...} by repeated
stick breaking. Freedman allowed more general distributions than uniform (his
tale free measures). To get from Freedman’s construction to Eberlein’s, pick
a random probability Py, Py, Ps;..., by uniform stick breaking and then let
X; = £P; with the £ chosen independently at random. Diaconis and Freedman
(1986) contains a survey of applications of this*construction to problems in
Bayesian statistics.

Eberlein and his students made two uses of this integral: It can be used
to compare procedures by looking at mean square error between a quadrature
rule and the true function. It can be used to generate quadrature formulas via
Bayes theorem.

Here is an example of the first use, drawn from V. L. N. Sarma (1968).
Consider two point Gaussian quadrature on [—1,1]. This approximates I(f) =
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[}, f(@)dz by 1(f) = arf(ty) + a2f(t2) where a; = a3 = 1, t; = ~1/+/3,
tz = 1/4/3. Sarma shows

[ - 1y < (or9)s.
Sarma also evaluates the accuracy of naive Monte Carlo, with n pomts sampled
at random in [-1,1], and I(f) = 12f(=;). He shows E((I(f) — I(f))z) =q/n
for an explicit constant . His ca.lculatlons show that to match the expected
accuracy of two point Gaussian quadrature requires n > 1,000.

Of course, one must be careful in interpreting such results. The measure
df lives on functions having power series expansions with coefficients that tend
rapidly to zero. Presumably, such functions are well approximated by a few
terms of the series, and two-point Gaussian quadrature is exact for polynomials
of degree 4.

Sarma (1968) shows that the accuracy of Monte Carlo improves with di-
mension. Sarma (1968), give two results for higher dimensional integrals.

Many natural questions remain. It would be worthwhile to think about the
posterior distribution given the type of information usually computed about f-
¥ £(0), f'(0),..., f™(0) are given, the posterior is easy to compute. Presum-
ably, the Bayes rules are consistent, though a proof is clearly in order. Finally,
as far as I can judge, no serious work was done on the design problem for this
prior.

3. RECENT APPLICATIONS

A. RANDOM SURFACES

There has been a great deal of interest in applying Bayesian fmethods to
problems associated to tomography, computer vision, or image restoration.
Consider an unknown two dimensional picture, coded up on a discrete grid,
e.g. 256 x 256 in black and white “pixels”. One receives some data about the
picture. This could be a noisy version, or the average density along the rows
and columns, or some combination of these.

It is desired to get a good version of the picture. The Bayesian approach
begins with a prior distribution on the set of pictures, computes posteriors given
the information, and then uses a Bayes rule such as the posterior mean or mode
as an estimate.

Workers in this field have reported good results based on “Markov random
field” priors similar to the Ising model of statistical mechanics. Useful surveys
of applications and techniques are given by Besag (1987), Geman and Geman
(1984), and Poggio (1985).



The main problems at the moment seem to be computational. With so
many sites, updating is difficult as is computation of Bayes rules. Workers have
found special classes of priors (e.g. nearest neighbor Markov random fields) and
models (e.g. iid noise) where updating is possible. A variety of clever ad hoc
procedures (e.g. simulated annealing, ICM) are currently being compared for
the computation of Bayes rules. It is a lively world, which can almost certainly
benefit from some more mathematics.

B. STATISTICAL GEODESY

A practical application of the methods outlined before has evolved in geode-
sists efforts to get good estimates of the force of gravity. We are all used to the
usual approximations — 32 ft/(sec)? or 9.8 m./(sec)?. These are useful only at
the earth’s surface, and even then are based on assumptions of a homogeneous
earth which are sufficiently false to demand correction for engineering projects
such as building a bridge (not to mention charting the course of a satellite).

There are a lot of data (millions of measurements) mostly taken at the sur-
face, and near large population centers. This raises the problem of interpolating
the potential field. The discussion below is based on work of Steffen Lauritzen
(1972, 1973, 1976).

Lauritzen approximates the earth as a sphere, and bases his analysis on the
physical assumption that the gravity potential U at a given longitude, latitude
and height is a harmonic function V2U = 0. There is a well known basis for the
harmonic functions in terms of harmonic polynomials. If the process is assumed
orthogonally invariant, there is an expansion in terms of spherical functions:

(o o]
U=E €j8;.
=0

For an unknown function U, it is natural to take the coefficients ¢; as
Gaussian with mean 0 and variance 0_72-, just as Poincare did. This puts a prior
on the harmonic functions.

Data consists of functionals of U such as the direction and length of grad
U at various points. The covariance function of the process U can be used to
build a reproducing kernel space. Interpolation at an unobserved value now
reduces to a well studied least squares problem.

Geodesists used a similar approach, without the probabilistic interpretation.
They used classical kernels such as Poissons, and were not particularly pleased
with the results.

Thinking probabilistically, and looking at the data, Lauritzen found error
variances o;‘-’ which matched observations, but allowed the covariance to be
summed into a closed form. This kernel has come into practical use among
Geodesists in Denmark, Germany, and the United States.
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The story has evolved since Lauritzen’s work. Geodesists have enough data
to approximate the projection of the process onto the space spanned by the first
30 or so spherical harmonics non-parametrically. The “tail” is handled using
Lauritzen’s approach.

C. YLVISAKER’S G-MAPS

Don Ylvisaker (1986) has developed a fascinating class of Gaussian priors
for use in very general problems such as combinatorial optimization problems.
To describe the construction, consider a finite set X. Let P(z,y) = P(y,z)
be the transition probability associated to a symmetric Markov chain on X.
Think of the chain running in continuous time (with exponential holds between
jumps). Let T be an independent exponential variable, say the chain is killed
at time T'.

To such a chain we can associate the Greens function — the expected num-
ber of times the chain hits y starting from =z

G(z,y) = /000 P(z,y)dt.

The Greens function is easily shown to be positive definite and thus can
serve as a covariance function for a Gaussian process Y, indexed by z € X.
There are many curious links between the original chain and the process Y.
One useful one: observing {Y,} s € S, the best predictor of ¥; is a linear
combination

E{Y|Y,, s € S} = Zw}(s)Y,.

The weights w] (s) can be computed as the hitting probabilities of the various
sites in S, starting from t.

Ylvisaker has proposed simulating the original chain to calculate weights,
or to give solutions to the design problem. For simple Markov-chains such
as random walk on groups or homogeneous spaces, analytic expressions and
approximations for first hit probabilities are obtainable.

The Bayesian interpretation goes as follows: Y, is taken as a prior distri-
bution for an unknown function on X. To estimate the total sum, interpolate
at a point, or search for the maximum, a Bayes approach can be based on this
prior.

Of course many things remain to be tried. The set of ideas, based on
previous work of Hammersley and Dynkin, is so rich it should keep many of us
busy for quite a while.



4. SOME OPEN PROBLEMS

A. STEIN ESTIMATION

By now, the decision theoretic community has accumulated a good deal
of wisdom on the properties of Bayes estimates. I have in mind the work of
Berger, Efron, Morris and many collaborators on Stein estimation. We have
all kinds of checks and balances — limited translation and various notions of
robustness as ways of thinking of Bayes estimates based on priors chosen for
computational convenience.

Many of these ideas can be carried to the infinite dimensional setting typical
of Bayesian numerical analysis. Lillestsl (1977) discusses Stein estimation for
time series as do Wolpert and Berger (1982).

One idea which is clearly understood in the statistical community but tends
to be lost to outsiders: there is a big difference between a prior distribution based
on experience and introspection and one based on mathematical convenience,
Integrals with respect to the first deserve to be taken seriously. Integrals with
respect to the second deserve to be treated skeptically. Users outside statistics
seem to accept the first measure they can compute with as “God given”, with
nary a mention that it might be supported on a tiny, strange, part of the space.

B. CONSISTENCY

Another hard won statistical lesson deserves to be remembered: it is hard
to think about putting priors on high-dimensional spaces. It is possible to
construct parametric families and priors supported on the entire parameter
space which yield inconsistent Bayes rules. Diaconis and Freedman (1983) do
this in the context of Bayesian numerical analysis. Diaconis and Freedman
(1986) give a survey of problems and available positive results for Bayes rules
in infinite dimensjonal parameter space.

All of the usual notions of frequentist statistics and their Bayesian coun-
terparts can be thought about in the present setting. It seems as if there are
surprises, and payoffs for doing so.

C. MORE EXAMPLES

What is really needed most of all is explicit computation with medium to
large scale examples in real settings. The constraints and intuition available
in real problems cannot be beat for suggesting new priors, and methods of
approximation. All of the recently accumulated experience by Bayesians (see
e.g. Bernardo et al. (1982) for a fine set of examples) should be useable and
extendable.

NOTE ADDED IN PROOF.
Since writing this article, several further papers which treat closely related



problems have come to my attention.

Ajne, B. and Dalenius, T. (1960). Nigra Tillimpningar Av Statistika Ideer
PA&numerisk Interration. Nordisk Math. Tidskrift Band 8, 145-152.
These authors derive the trapezoid rule and Gaussian quadrature starting
from statistical ideas.

Mochus, J. B. (1984). The Bayesian approach to Global optimization in Statis-
tics: Applications and New Directions. Proc. Indian Statist. Institute Golden
Jubilee International Conference. J. K. Ghosh, J. Roy (ed). Ind. Statist. In-
stitute, Calcutta, pp. 405-430.

A survey of Russian work on finding the minimum of a continuous function
using Bayes Methods.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach
to non-parametric regression curve fitting (with Discussion). Journ. Roy.
Statist. Soc. B 47, pp. 1-52.

A recent contribution emphasizing practical aspects of the approach. The
discussion points to further relevant literature.
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