Mathematics > Probability

Mantel's Theorem for random graphs

Bobby DeMarco, Jeff Kahn
(Submitted on 5 Jun 2012)
For a graph $\$ \mathrm{G} \$$, denote by $\$ \mathrm{t}(\mathrm{G}) \$$ (resp. $\$ \mathrm{~b}(\mathrm{G}) \$$) the maximum size of a triangle-free (resp. bipartite) subgraph of $\$ \mathrm{G} \$$. Of course $\$ \mathrm{t}(\mathrm{G}) \backslash \mathrm{geq} \mathrm{b}(\mathrm{G}) \$$ for any $\$ G \$$, and a classic result of Mantel from 1907 (the first case of Turl'an's Theorem) says that equality holds for complete graphs. A natural question, first considered by Babai, Simonovits and Spencer about 20 years ago is, when (i.e. for what $\$ p=p(n) \$$) is the "Erd\H\{o\}s-R\'enyi" random graph $\$ \mathrm{G}=\mathrm{G}$ $(n, p) \$$ likely to satisfy $\$ t(G)=b(G) \$$? We show that this is true if $\$ p>C n^{\wedge}\{-1 / 2\}$ $\log ^{\wedge}\{1 / 2\} \mathrm{n} \$$ for a suitable constant $\$ C \$$, which is best possible up to the value of $\$ C \$$.

Comments: 15 pages
Subjects: Probability (math.PR); Discrete Mathematics (cs.DM); Combinatorics (math.CO)
MSC classes: 05D40, 05C35, 05C80
Cite as: arXiv:1206.1016 [math.PR]
(or arXiv:1206.1016v1 [math.PR] for this version)

Submission history

From: Robert DeMarco [view email]
[v1] Tue, 5 Jun 2012 18:27:31 GMT (15kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

