Mathematics > Probability

Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields

Zakhar Kabluchko, Dmitry Zaporozhets

(Submitted on 2 Jun 2012)

Consider a \$dltimes d\$ matrix \$M\$ whose rows are independent centered non-degenerate Gaussian vectors $\$ 1 x i _1, \ldots, 1 x i _d \$$ with covariance matrices \$\Sigma_1,...,\Sigma_d\$. Denote by \$\mathcal\{E\}_i\$ the location-dispersion ellipsoid of \$|xi_i:\mathcal\{E\}_i=\{\mathbf\{x\}\in\mathbb\{R\}^d : \mathbf\{x\} ^\top\Sigma_i^\{-1\} \mathbf\{x\}\leqslant1\}\$. We show that $\$ \$ 1 m a t h b b\{E\} \backslash, \mid$ det M|=|frac\{d!\}\{(2|pi)^\{d/2\}\}V_d(\mathcal\{E\}_1,..,, \mathcal\{E\}_d), \$\$ where \$V_d (\cdot,..., \cdot)\$ denotes the $\{$ lit mixed volume $\}$. We also generalize this result to the case of rectangular matrices. As a direct corollary we get an analytic expression for the mixed volume of $\$ \mathrm{~d} \$$ arbitrary ellipsoids in $\$ \backslash m a t h b b\{R\}^{\wedge} d \$$. As another application, we consider a smooth centered non-degenerate Gaussian random field \$X=(X_1,...,X_k)^\top:\mathbb\{R\}^dlto\mathbb\{R\}^k\$. Using Kac-Rice formula, we obtain the geometric interpretation of the intensity of zeros of $\$ \mathbf{X}$ in terms of the mixed volume of location-dispersion ellipsoids of the gradients of \$X_i/sqrt\{\mathbf\{Var\} X_i\}\$. This relates zero sets of equations to mixed volumes in a way which is reminiscent of the well-known Bernstein theorem about the number of solutions of the typical system of algebraic equations.

Subjects: Probability (math.PR); Differential Geometry (math.DG)
MSC classes: Primary 60B20, 52A39, Secondary 60G15, 53C65
Cite as: arXiv:1206.0371 [math.PR]
(or arXiv:1206.0371v1 [math.PR] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.PR
 < prev | next > new | recent | 1206

Change to browse by: math
math.DG
References \& Citations

- NASA ADS

Bookmark(what is this?)

Submission history

From: Dmitry Zaporozhets [view email]
[v1] Sat, 2 Jun 2012 12:24:01 GMT (8kb)

Which authors of this paper are endorsers?

