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Abstract

Distributed consensus and other linear systems with system stochastic matrices Wk emerge in various

settings, like opinion formation in social networks, rendezvous of robots, and distributed inference in

sensor networks. The matrices Wk are often random, due to, e.g., random packet dropouts in wireless

sensor networks. Key in analyzing the performance of such systems is studying convergence of matrix

products WkWk−1 · · ·W1. In this paper, we find the exact exponential rate I for the convergence in

probability of the product of such matrices when time k grows large, under the assumption that the Wk’s

are symmetric and independent identically distributed in time. Further, for commonly used random models

like with gossip and link failure, we show that the rate I is found by solving a min-cut problem and,

hence, easily computable. Finally, we apply our results to optimally allocate the sensors’ transmission

power in consensus+innovations distributed detection.

Keywords: Consensus, consensus+innovations, performance analysis, random network, convergence
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I. INTRODUCTION

Linear systems with stochastic system matrices Wk find applications in sensor [1], multi-robot [2],

and social networks [3]. For example, in modeling opinion formation in social networks [3], individuals

set their new opinion to the weighted average of their own opinion and the opinions of their neighbors.

These systems appear both as autonomous, like consensus or gossip algorithms [4], and as input-driven

algorithms, like consensus+innovations distributed inference [5]. Frequently, the system matrices Wk are

random, like, for example, in consensus in wireless sensor networks, due to either the use of a randomized

protocol like gossip [4], or to link failures–random packet dropouts. In this paper, we determine the exact

convergence rate of products of random, independent identically distributed (i.i.d.) general symmetric

stochastic1 matrices Wk, see Section III. In particular, they apply to gossip and link failure. For example,

with gossip on a graph G, each realization of Wk has the sparsity structure of the Laplacian matrix of a

one link subgraph of G, with positive entries being arbitrary, but that we assume bounded away from zero.

When studying the convergence of products WkWk−1...W1, it is well known that, when the modulus

of the second largest eigenvalue of E [Wk] is strictly less than 1, this product converges to J := 1
N 11>

almost surely [6] and, thus, in probability, i.e., for any ε > 0,

P (‖Wk · · ·W1 − J‖ ≥ ε)→ 0 when k →∞, (1)

where ‖ · ‖ denotes the spectral norm. This probability converges exponentially fast to zero with k [7],

but, so far as we know, the exact convergence rate has not yet been computed. In this work, we compute

the exact exponential rate of decay of the probability in (1).

Contributions. Assuming that the non-zero entries of Wk are bounded away from zero, we compute the

exact exponential decay rate of the probability in (1) by solving with equality (rather than lower and

upper bounds) the corresponding large deviations limit, for every ε > 0:

lim
k→∞

1

k
logP (‖Wk · · ·W1 − J‖ ≥ ε) = −I, (2)

where the convergence rate I ≥ 0. Moreover, we characterize the rate I and show that it does not depend

on ε. Our results reveal that the exact rate I is solely a function of the graphs induced by the matrices Wk

and the corresponding probabilities of occurrences of these graphs. In general, the computation of the

rate I is a combinatorial problem. However, for special important cases, we can get particularly simple

1By stochastic, we mean a nonnegative matrix whose rows sum to 1. Doubly stochastic matrices besides row have also column
sums equal to 1.
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expressions. For example, for a gossip on a connected tree, the rate is equal to | log(1− pij)|, where pij

is the probability of the link that is least likely to occur. Another example is with symmetric structures,

like uniform gossiping and link failures over a regular graph for which we show that the rate I equals

| log pisol|, where pisol is the probability that a node is isolated from the rest of the network. For gossip

with more general graph structures, we show that the rate I = | log(1− c)| where c is the min-cut value

(or connectivity [8]) of a graph whose links are weighted by the gossip link probabilities; the higher the

connectivity c is (the more costly or, equivalently, less likely it is to disconnect the graph) the larger

the rate I and the faster the convergence are. Similarly, with link failures on general graphs, the rate is

computed by solving a min-cut problem and is computable in polynomial time.

We now explain the intuition behind our result. To this end, consider the probability in (1) when ε = 12,

i.e., when the norm of
∏k
t=1Wk − J stays equal to 1. This happens only if the supergraph of all the

graphs associated with the matrix realizations W1, . . . ,Wk is disconnected. Motivated by this insight, we

define the set of all possible graphs induced by the matrices Wk, i.e., the set of realizable graphs, and

introduce the concept of disconnected collection of such graphs. For concreteness, we explain this here

assuming gossip on a connected tree with M links. For gossip on a connected tree, the set of realizable

graphs consists of all one-edge subgraphs of the tree (and thus is of size M ). If any fixed j < M

graphs were removed from this collection, the supergraph of the remaining graphs is disconnected; this

collection of the remaining graphs is what we call a disconnected collection. Consider now the event

that all the graph realizations (i.e., activated links) from time t = 1 to time t = k belong to a fixed

disconnected collection, obtained, for example, by removal of one fixed one-edge graph. Because there

were two isolated components in the network, the norm of
∏k
t=1Wk − J would under this event stay

equal to 1. The probability of this event is M(1−p)k, where we assume that the links occur with the same

probability p = 1
M . Similarly, if all the graph realizations belong to a disconnected collection obtained

by removal of j one-edge graphs, for 1 ≤ j < M , the norm remains at 1, but now with probability(
M
j

)
(1− jp)k. For any event indexed by j from this graph removal family of events, the norm stays at

1 in the long run, but what will determine the rate is the most likely of all such events. In this case, the

most likely event is that a single one-edge graph remains missing from time 1 to time k, the probability

of which is M(1 − p)k, yielding the value of the rate I = | log(1 − p)|. This insight that the rate I is

determined by the probability of the most likely disconnected collection of graphs extends to the general

2It turns out, as we will show in Section III, that the rate does not depend on ε. Remark also that, because the matrices Wk

are stochastic, the spectral norm of Wk · · ·W1−J is less or equal to 1 for all realizations of W1,. . . , Wk. Thus, the probability
in 1 is equal to 0 for ε > 1.
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matrix process.

Review of the literature. There has been a large amount of work on linear systems driven by stochastic

matrices. Early work includes [9], [10], and the topic received renewed interest in the past decade [11],

[12]. Reference [12] analyzes convergence of the consensus algorithm under deterministic time-varying

matrices Wk. Reference [4] provides a detailed study of the standard gossip model, that has been further

modified, e.g., in [13], [14]; for a recent survey, see [15]. Reference [6] analyzes convergence under

random matrices Wk, not necessarily symmetric, and ergodic – hence not necessarily independent in

time. Reference [16] studies effects of delays, while reference [17] studies the impact of quantization.

Reference [18] considers random matrices Wk and addresses the issue of the communication complexity

of consensus algorithms. The recent reference [19] surveys consensus and averaging algorithms and

provides tight bounds on the worst case averaging times for deterministic time varying networks. In

contrast with consensus (averaging) algorithms, consensus+innovations algorithms include both a local

averaging term (consensus) and an innovation term (measurement) in the state update process. These

algorithms find applications in distributed inference in sensor networks, see, e.g., [5], [20], [21] for

distributed estimation, and, e.g., [22], [23], [24], for distributed detection. In this paper, we illustrate the

usefulness of the rate of consensus I in the context of a consensus+innovations algorithms by optimally

allocating the transmission power of sensors for distributed detection.

Products of random matrices appear also in many other fields that use techniques drawn from Markov

process theory. Examples include repeated interaction dynamics in quantum systems [25], inhomogeneous

Markov chains with random transition matrices [26], [25], infinite horizon control strategies for Markov

chains and non-autonomous linear differential equations [27], or discrete linear inclusions [28]. These

papers are usually concerned with deriving convergence results on these products and determining the

limiting matrix. Reference [25] studies the product of matrices belonging to a class of complex contraction

matrices and characterizes the limiting matrix by expressing the product as a sum of a decaying process,

which exponentially converges to zero, and a fluctuating process. Reference [27] establishes conditions

for strong and weak ergodicity for both forward and backward products of stochastic matrices, in terms

of the limiting points of the matrix sequence. Using the concept of infinite flow graph, which the authors

introduced in previous work, reference [26] characterizes the limiting matrix for the product of stochastic

matrices in terms of the topology of the infinite flow graph. For more structured matrices, [29] studies

products of nonnegative matrices. For nonnegative matrices, a comprehensive study of the asymptotic

behavior of the products can be found in [30]. A different line of research, closer to our work, is
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concerned with the limiting distributions of the products (in the sense of the central limit theorem and

large deviations). The classes of matrices studied are: invertible matrices [31], [32] and its subclass of

matrices of determinant equal to 1 [33] and, also, positive matrices [34]. None of these apply to our

case, as the matrices that we consider might not be invertible (Wk − J has a zero eigenvalue, for every

realization of Wk) and, also, we allow the entries of Wk to be zero, and therefore the entries of Wk − J

might be negative with positive probability. Furthermore, as pointed out in [35], the results obtained

in [31], [32], [33] do not provide ways to effectively compute the rates of convergence. Reference [35]

improves on the existing literature in that sense by deriving more explicit bounds on the convergence

rates, while showing that, under certain assumptions on the matrices, the convergence rates do not depend

on the size of the matrices; the result is relevant from the perspective of large scale dynamical systems,

as it shows that, in some sense, more complex systems are not slower than systems of smaller scale, but

again it does not apply to our study.

To our best knowledge, the exact large deviations rate I in (2) has not been computed for i.i.d.

averaging matrices Wk, nor for the commonly used sub-classes of gossip and link failure models. Results

in the existing literature provide upper and lower bounds on the rate I , but not the exact rate I . These

bounds are based on the second largest eigenvalue of E[Wk] or E[W 2
k ], e.g., [4], [36], [6]. Our result (2)

refines these existing bounds, and sheds more light on the asymptotic convergence of the probabilities

in (1). For example, for the case when each realization of Wk has a connected underlying support

graph (the case studied in [12]), we calculate the rate I to be equal +∞ (see Section III), i.e., the

convergence of the probabilities in (1) is faster than exponential. On the other hand, the “rate” that

would result from the bound based on λ2(E[W 2
k ]) is finite unless Wk ≡ J . This is particularly relevant

with consensus+innovations algorithms, where, e.g., the consensus+innovations distributed detector is

asymptotically optimal if I =∞, [37]; this fact cannot be seen from the bounds based on λ2(E[W 2
k ]).

The rate I is a valuable metric for the design of algorithms (or linear systems) driven by system matrices

Wk, as it determines the algorithm’s asymptotic performance and is easily computable for commonly used

models. We demonstrate the usefulness of I by optimizing the allocation of the sensors’ transmission

power in a sensor network with fading (failing) links, for the purpose of distributed detection with the

consensus+innovations algorithm [23], [24].

Paper organization. Section II introduces the model for random matrices Wk and defines relevant

quantities needed in the sequel. Section III proves the result on the exact exponential rate I of consensus.

Section IV shows how to compute the rate I for gossip and link failure models via a min-cut problem.
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Section V addresses optimal power allocation for distributed detection by maximizing the rate I . Finally,

section VI concludes the paper.

II. PROBLEM SETUP

Model for the random matrices Wk. Let {Wk : k = 1, 2, ...} be a discrete time (random) process where

Wk, for all k, takes values in the set of doubly stochastic, symmetric, N ×N matrices.

Assumption 1 We assume the following.

1) The random matrices Wk are independent identically distributed (i.i.d.).

2) The entries of any realization W of Wk are bounded away from 0 whenever positive. That is, there

exists a scalar δ, such that, for any realization W , if Wij > 0, then Wij ≥ δ. An entry of Wk with

positive value, will be called an active entry.

3) For any realization W , for all i, Wii ≥ δ.

Also, let W denote the set of all possible realizations of Wk.

Graph process. For a doubly stochastic symmetric matrix W , let G(W ) denote its induced undirected

graph, i.e., G(W ) = (V,E(W )), where V = {1, 2, . . . , N} is the set of all nodes and

E(W ) =

{
{i, j} ∈

(
V

2

)
: Wij > 0

}
.

We define the random graph process {Gt : t = 1, 2, . . .} through the random matrix process {Wk : k =

1, 2, ...} by: Gt = G(Wt), for t = 1, 2, . . .. As the matrix process is i.i.d., the graph process is i.i.d. as

well. We collect the underlying graphs of all possible matrix realizations W (in W) in the set G:

G := {G(W ) : W ∈ W} . (3)

Thus, the random graphs Gt take their realizations from G. Similarly, as with the matrix entries, if

{i, j} ∈ E(Gt), we call {i, j} an active link.

We remark that the conditions on the random matrix process from Assumption 1 are satisfied auto-

matically for any i.i.d. model with finite space of matrices W (δ could be taken to be the minimum

over all positive entries over all matrices from W). We illustrate with three instances of the random

matrix model the case when the (positive) entries of matrix realizations can continuously vary in certain

intervals, namely, gossip, d-adjacent edges at a time, and link failures.

Example 1 (Gossip model) Let G = (V,E) be an arbitrary connected graph on N vertices. With the

gossip algorithm on the graph G, every realization of Wk has exactly two off diagonal entries that are
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active: [Wk]ij = [Wk]ji > 0, for some {i, j} ∈ G, where the entries are equal due to the symmetry

of Wk. Because Wk is stochastic, we have that [Wk]ii = [Wk]jj = 1 − [Wk]ij , which, together with

Assumption 1, implies that [Wk]ij must be bounded (almost surely) by δ ≤ [Wk]ij ≤ 1 − δ. Therefore,

the set of matrix realizations in the gossip model is:

W Gossip =
⋃

{i,j}∈E

{
A ∈ RN×N : Aij = Aji = α, Aii = Ajj = 1− α, α ∈ [δ, 1− δ],

All = 1, for l 6= i, j, Aml = 0, for l 6= m and l,m 6= i, j
}
.

Example 2 (Averaging model with d-adjacent edges at a time) Let Gd = (V,E) be a d-regular con-

nected graph on N vertices, d ≤ N − 1. Consider the following averaging scheme where exactly 2d

off-diagonal entries of Wk are active at a time: [Wk]ij = [Wk]ji > 0, for some fixed i ∈ V and all

j ∈ V such that {i, j} ∈ E. In other words, at each time in this scheme, the set of active edges is the

set of edges adjacent to some node i ∈ V . Taking into account Assumption 1 on Wk, the set of matrix

realizations for this averaging model is:

Wd−adjacent =
⋃
i∈V

{
A ∈ RN×N : A = A>, Ai = v, v ∈ RN , vj = 0, if {i, j} /∈ E, 1>v = 1, v ≥ δ,

Ajj = 1−Aij , for {i, j} ∈ E,All = 1 andAil = 0, for {i, l} /∈ E
}
,

where Ai denotes the ith column of matrix A.

Example 3 (Link failure (Bernoulli) model) Let G = (V,E) be an arbitrary connected graph on N

vertices. With link failures, occurrence of each edge in E is a Bernoulli random variable and occurrences

of edges are independent. Due to independence, each subgraph H = (V, F ) of G, F ⊆ E, is a realizable

graph in this model. Also, for any given subgraph H of G, any matrix W with the sparsity pattern of

the Laplacian matrix of H and satisfying Assumption 1 is a realizable matrix. Therefore, the set of all

realizable matrices in the link failure model is

W Link fail. =
⋃
F⊆E

{
A ∈ RN×N : A = A>, Aij ≥ δ, if {i, j} ∈ F, Aij = 0, if {i, j} /∈ F, A1 = 1

}
.

Supergraph of a collection of graphs and supergraph disconnected collections. For a collection of

graphs H on the same set of vertices V , let Γ(H) denote the graph that contains all edges from all graphs

in H. That is, Γ(H) is the minimal graph (i.e., the graph with the minimal number of edges) that is a
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supergraph of every graph in H:

Γ(H) := (V,
⋃
G∈H

E(G)), (4)

where E(G) denotes the set of edges of graph G.

Specifically, we denote by Γ(s, t)3 the random graph that collects the edges from all the graphs Gr

that appeared from time r = t+ 1 to r = s, s > t, i.e.,

Γ(s, t) := Γ({Gs, Gs−1, . . . , Gt+1}).

Also, for a collection H ⊆ G we use pH to denote the probability that a graph realization Gt belongs

to H:

pH =
∑
H∈H

P(Gt = H). (5)

We next define collections of realizable graphs of certain types that will be important in computing

the rate in (2).

Definition 4 The collection H ⊂ G is a disconnected collection of G if its supergraph Γ(H) is discon-

nected.

Thus, a disconnected collection is any collection of realizable graphs such that the union of all of its

graphs yields a disconnected graph. We also define the set of all possible disconnected collections of G:

Π(G) = {H ⊆ G : H is a disconnected collection on G} . (6)

We further refine this set to find the largest possible disconnected collections on G.

Definition 5 We say that a collection H ⊂ G is a maximal disconnected collection of G (or, shortly,

maximal) if:

i) H ∈ Π(G), i.e., H is a disconnected collection on G; and

ii) for every G ∈ G \ H, Γ(H ∪G) is connected.

In words, H is maximal if the graph Γ(H) that collects all edges of all graphs in H is disconnected, but,

adding all the edges of any of the remaining graphs (that are not in H) yields a connected graph. We

3Graph Γ(s, t) is associated with the matrix product Ws · · ·Wt+1 going from time t+1 until time s > t. The notation Γ(s, t)
indicates that the product is backwards; see also the definition of the product matrix Φ(s, t) in Section III.
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also define the set of all possible maximal collections of G:

Π?(G) = {H ⊆ G : H is a maximal collection on G} . (7)

We remark that Π?(G) ⊆ Π(G). We now illustrate the set of all possible graph realizations G, and its

maximal collections H with two examples.

Example 6 (Gossip model) If the random matrix process is defined by the gossip algorithm on the full

graph on N vertices, then G =
{

(V, {i, j}) : {i, j} ∈
(
V
2

)}
; in words, G is the set of all possible one-link

graphs on N vertices. An example of a maximal collection of G is

G \ {(V, {i, j}) : j = 1, . . . N, j 6= i} ,

where i is a fixed vertex, or, in words, the collection of all one-link graphs except of those whose link

is adjacent to i. Another example is

G \ ({(V, {i, k}) : k = 1, . . . N, k 6= i, k 6= j} ∪ {(V, {j, l}) : l = 1, . . . N, l 6= i, l 6= j}) .

Example 7 (Toy example) Consider a network of five nodes with the set of realizable graphs G =

{G1, G2, G3}, where the graphs Gi, i = 1, 2, 3 are given in Figure 1. In this model, each realizable

graph is a two-link graph, and the supergraph of all the realizable graphs Γ({G1, G2, G3}) is connected.

G1 G2 G3

Fig. 1. Example of a five node network with three possible graph realizations, each being a two-link graph

If we scan over the supergraphs Γ(H) of all subsets H of G, we see that Γ({G1, G2}), Γ({G2, G3}) and

Γ({G1, G2, G3}) are connected, whereas the Γ({G1, G3}), and Γ(Gi) = Gi, i = 1, 2, 3 are disconnected.

Therefore, Π(G) = {{G1}, {G2}, {G3}, {G1, G3}} and Π?(G) = {{G2}, {G1, G3}}.

We now observe that, if the graph Γ(s, t) that collects all the edges that appeared from time t+ 1 to

time s is disconnected, then all the graphs Gr that appeared from r = t + 1 through r = s belong to

some maximal collection H.
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Observation 8 If for some s and t, s > t, Γ(s, t) is disconnected, then there exists a maximal collection

H ∈ Π?(G), such that Gr ∈ H, for every r, t < r ≤ s.

III. EXPONENTIAL RATE FOR CONSENSUS

Denote Φ(s, t) := WsWs−1 · · ·Wt+1, and Φ̃(s, t) := Φ(s, t)−J , for s > t ≥ 0. The following Theorem

gives the exponential decay rate of the probability P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε).

Theorem 9 Consider the random process {Wk : k = 1, 2, . . .} under Assumption 1. Then:

lim
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε) = −I, ∀ε ∈ (0, 1]

where

I =

 +∞ if Π?(G) = ∅

| log pmax| otherwise
,

and

pmax = max
H∈Π?(G)

pH

is the probability of the most likely maximal disconnected collection.

To prove Theorem 9, we first consider the case when Π?(G) is nonempty, and thus when pmax > 0. In

this case, we find the rate I by showing the lower and the upper bounds:

lim inf
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε) ≥ log pmax (8)

lim sup
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε) ≤ log pmax. (9)

Subsection III-A proves the lower bound (8), and subsection III-B proves the upper bound (9).

A. Proof of the lower bound (8)

We first find the rate for the probability that the network stays disconnected over the interval 1, ..., k.

Lemma 10

lim
k→∞

1

k
logP (Γ(k, 0) is disconnected ) = log pmax.

Having Lemma 10, the lower bound (8) follows from the following relation:

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε) ≥ P
(∥∥∥Φ̃(k, 0)

∥∥∥ = 1
)

= P (Γ(k, 0) is disconnected ) ,
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that is stated and proven in Lemma 13 further ahead.

Proof of Lemma 10: If all the graph realizations until time k belong to a certain maximal collection

H, by definition of a maximal collection, Γ(k, 0) is disconnected with probability 1. Therefore, for any

maximal collection H, the following bound holds:

P (Γ(k, 0) is disconnected ) ≥ P (Gt ∈ H, ∀ t = 1, . . . , k) = pkH.

The best bound, over all maximal collections H, is the one that corresponds to the “most likely” maximal

collection:

P (Γ(k, 0) is disconnected ) ≥ pkmax. (10)

We will next show that an upper bound with the same rate of decay (equal to pmax) holds for

the probability of the network staying disconnected. To show this, we reason as follows: if Γ(k, 0) is

disconnected, then all the graph realizations until time k, G1, . . . , Gk, belong to some maximal collection.

It follows that

P (Γ(k, 0) is disconnected ) = P

 ⋃
H∈Π?(G)

{Gt ∈ H, for t = 1, . . . , k}


≤

∑
H∈Π?(G)

P (Gt ∈ H, for t = 1, . . . , k)

=
∑

H∈Π?(G)

pkH.

Finally, we bound each term in the previous sum by the probability pmax of the most likely maximal

collection, and we obtain:

P (Γ(k, 0) is disconnected) ≤ |Π?(G)| pkmax, (11)

where |Π?(G)| is the number of maximal collections on G.

Combining (10) and (11) we get:

pkmax ≤ P (Γ(k, 0) is disconnected) ≤ |Π?(G)| pkmax.

which implies

lim
k→∞

1

k
logP (Γ(k, 0) is disconnected) = log pmax.
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B. Proof for the upper bound in (9)

The next lemma relates the products of the weight matrices Φ(s, t) with the corresponding graph Γ(s, t)

and is the key point in our analysis. Recall that Φ̃(s, t) := Φ(s, t)− J.

Lemma 11 For any realization of matrices Wr ∈ W , r = t+ 1, . . . , s, s > t:4

1) if [Φ(s, t)]ij > 0, i 6= j, then [Φ(s, t)]ij ≥ δs−t;

2) for i = 1, . . . , N [Φ(s, t)]ii ≥ δs−t;

3) if [Φ(s, t)]ij > 0, i 6= j, then
[
Φ(s, t)>Φ(s, t)

]
ij
≥ δ2(s−t);

4) ‖Φ̃(s, t)‖ ≤
(
1− δ2(s−t)λF (L (Γ(s, t)))

) 1

2 ,

where L(G) is the Laplacian matrix of the graph G, and λF(A) is the second smallest eigenvalue (the

Fiedler eigenvalue) of a positive semidefinite matrix A.

Proof: Parts 1 and 2 are a consequence of the fact that the positive entries of the weight matrices

are bounded below by δ by Assumption 1; for the proofs of 1 and 2, see [38], Lemma 1 a), b). Part 3

follows from parts 1 and 2, by noticing that, for all {i, j}, i 6= j, such that [Φ(s, t)]ij > 0, we have:

[
Φ(s, t)>Φ(s, t)

]
ij

=

N∑
l=1

[Φ(s, t)]li[Φ(s, t)]lj

≥ [Φ(s, t)]ii[Φ(s, t)]ij

≥
(
δs−t

)2
.

To show part 4, we notice first that
∥∥∥Φ̃(s, t)

∥∥∥2
is the second largest eigenvalue of Φ(s, t)>Φ(s, t), and,

thus, can be computed as

∥∥∥Φ̃(s, t)
∥∥∥2

= max
q>q=1, q⊥1

q>Φ(s, t)>Φ(s, t)q

Since Φ(s, t)>Φ(s, t) is a symmetric stochastic matrix, it can be shown, e.g., [12], that its quadratic

form can be written as:

q>Φ(s, t)>Φ(s, t)q = q>q −
∑
{i,j}

[
Φ(s, t)>Φ(s, t)

]
ij

(qi − qj)2

≤ 1− δ2(s−t)
∑

{i,j}:[Φ(s,t)>Φ(s,t)]
ij
>0

(qi − qj)2 . (12)

4The statements of the results in subsequent Corollary 12 and Lemma 13 are also in the point-wise sense.
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where the last inequality follows from part 3. Further, if the graph Γ(s, t) contains some link {i, j}, then,

at some time r, t < r ≤ s, a realization Wr with [Wr]ij > 0 occurs. Since the diagonal entries of all the

realizations of the weight matrices are positive (and, in particular, those from time r to time s), the fact

that [Wr]ij > 0 implies that [Φ(s, t)]ij > 0. This, in turn, implies

{{i, j} ∈ Γ(s, t)} ⊆
{
{i, j} :

[
Φ(s, t)>Φ(s, t)

]
ij
> 0

}
.

Using the latter, and the fact that the entries of Φ(s, t)>Φ(s, t) are non-negative, we can bound the sum

in (12) over
{
{i, j} :

[
Φ(s, t)>Φ(s, t)

]
ij
> 0
}

by the sum over {{i, j} ∈ Γ(s, t)} only, yielding

q>Φ(s, t)>Φ(s, t)q ≤ 1− δ2(s−t)
∑

{i,j}∈Γ(s,t)

(qi − qj)2 .

Finally, minq>q=1, q⊥1

∑
{i,j}∈Γ(s,t) (qi − qj)2 is equal to the Fiedler eigenvalue (i.e., the second smallest

eigenvalue) of the Laplacian L(Γ(s, t)). This completes the proof of part 4 and Lemma 11.

We have the following corollary of part 4 of Lemma 11, which, for a fixed interval length s− t, and for

the case when Γ(s, t) is connected, gives a uniform bound for the spectral norm of Φ̃(s, t).

Corollary 12 For any s and t, s > t, if Γ(s, t) is connected, then∥∥∥Φ̃(s, t)
∥∥∥ ≤ (1− cδ2(s−t)

) 1

2

, (13)

where c = 2(1 − cos π
N ) is the Fiedler value of the path graph on N vertices, i.e., the minimum of

λF(L(G)) > 0 over all connected graphs on N vertices [39] .

Proof: The claim follows from part 4 of Lemma 11 and from the fact that for connected Γ(s, t):

c = minG is connected λF(L(G)) ≤ λF(L(Γ(s, t))).

The previous result, as well as part 4 of Lemma 11, imply that, if the graph Γ(s, t) is connected, then

the spectral norm of Φ̃(s, t) is smaller than 1. It turns out that the connectedness of Γ(s, t) is not only

sufficient, but it is also a necessary condition for
∥∥∥Φ̃(s, t)

∥∥∥ < 1. Lemma 13 explains this.

Lemma 13 For any s and t, s > t:∥∥∥Φ̃(s, t)
∥∥∥ < 1 ⇔ Γ(s, t) is connected.

Proof: We first show the if part. Suppose Γ(s, t) is connected. Then, λF (L (Γ(s, t))) > 0 and the

claim follows by part 4 of Lemma 11. We prove the only if part by proving the following equivalent
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statement:

Γ(s, t) is not connected⇒
∥∥∥Φ̃(s, t)

∥∥∥ = 1.

To this end, suppose that Γ(s, t) is not connected and, without loss of generality, suppose that Γ(s, t) has

two components C1 and C2. Then, for i ∈ C1 and j ∈ C2, {i, j} /∈ Γ(s, t), and, consequently, {i, j} /∈ Gr,

for all r, t < r ≤ s. By definition of Gr, this implies that the i, j-th entry in the corresponding weight

matrix is equal to zero, i.e.,

∀r, t < r ≤ s : [Wr]ij = 0,∀{i, j} s.t. i ∈ C1, j ∈ C2.

Thus, every matrix realization Wr from time r = t+ 1 to time r = s has a block diagonal form (up to

a symmetric permutation of rows and columns)

Wr =

 [Wr]C1
0

0 [Wr]C2

 ,
where [Wr]C1

is the block of Wr corresponding to the nodes in C1, and similarly for [Wr]C2
. This

implies that Φ(s, t) will have the same block diagonal form, which, in turn, proves that
∥∥∥Φ̃(s, t)

∥∥∥ = 1.

This completes the proof of the only if part and the proof of Lemma 13.

We next define the sequence of stopping times Ti, i = 1, 2, . . . by:

Ti = min{t ≥ Ti−1 + 1 : Γ(t, Ti−1) is connected}, for i ≥ 1, (14)

T0 = 0.

The sequence {Ti}i≥1 defines the times when the network becomes connected, and, equivalently, when

the averaging process makes an improvement (i.e., when the spectral radius of Φ̃ drops below 1).

For fixed time k ≥ 1, let Mk denote the number of improvements until time k:

Mk = max {i ≥ 0 : Ti ≤ k} . (15)

We now explain how, at any given time k, we can use the knowledge of Mk to bound the norm of the

“error” matrix Φ̃(k, 0). Suppose that Mk = m. If we knew the locations of all the improvements until

time k, Ti = ti, i = 1, . . . ,m then, using eq. (13), we could bound the norm of Φ̃(k, 0). Intuitively, since

for fixed k and fixed m the number of allocations of Ti’s is finite, there will exist the one which yields

the worst bound on
∥∥∥Φ̃(k, 0)

∥∥∥. It turns out that the worst case allocation is the one with equidistant

improvements, thus allowing for deriving a bound on
∥∥∥Φ̃(k, 0)

∥∥∥ only in terms of Mk. This result is given
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in Lemma 14.

Lemma 14 For any realization of W1,W2, . . . ,Wk and k = 1, 2, . . . the following holds:∥∥∥Φ̃(k, 0)
∥∥∥ ≤ (1− cδ2 k

Mk

)Mk
2

. (16)

Proof: Suppose Mk = m and T1 = t1, T2 = t2, . . . , Tm = tm ≤ k (Ti > k, for i > m, because

Mk = m). Then, by Corollary 12, for i = 1, . . . ,m, we have
∥∥∥Φ̃(ti, ti−1)

∥∥∥ ≤ (
1− cδ2(ti−ti−1)

) 1

2 .

Combining this with submultiplicativity of the spectral norm, we get:∥∥∥Φ̃(k, 0)
∥∥∥ =

∥∥∥Φ̃(k, tm)Φ̃(tm, tm−1) · · · Φ̃(t1, 0)
∥∥∥ (17)

≤
∥∥∥Φ̃(k, tm)

∥∥∥∥∥∥Φ̃(tm, tm−1)
∥∥∥ · · ·∥∥∥Φ̃(t1, 0)

∥∥∥
≤

m∏
i=1

(
1− c δ2(ti−ti−1)

) 1

2

.

To show (16), we find the worst case of ti’s, i = 1, . . . ,m by solving the following problem:

max
{
∑m
i=1 ∆i≤k,∆i≥1}

m∏
i=1

(
1− c δ2∆i

)
= max
{∑m

i=1 βi≤1,βi∈{ 1

k
, 2
k
,...,1}}

m∏
i=1

(
1− c δ2βik

)
≤ max

{
∑m
i=1 βi≤1,βi≥0}

m∏
i=1

(
1− c δ2βik

)
(18)

(here ∆i should be thought of as ti− ti−1). Taking the log of the cost function, we get a convex problem

equivalent to the original one (it can be shown that the cost function is concave). The maximum is

achieved for βi = 1
m , i = 1, . . . ,m. This completes the proof of Lemma 14.

Lemma 14 provides a bound on the norm of the “error” matrix Φ̃(k, 0) in terms of the number of

improvements Mk up to time k. Intuitively, if Mk is high enough relative to k, then the norm of Φ̃(k, 0)

cannot stay above ε as k increases (to see this, just take Mk = k in eq. (16)). We show that this is indeed

true for all random sequences G1, G2, . . . for which Mk = αk or higher, for any choice of α ∈ (0, 1];

this result is stated in Lemma 15, part 1. On the other hand, if the number of improvements is less than

αk, then there are at least k − αk available slots in the graph sequence in which the graphs from the

maximal collection can appear. This yields, in a crude approximation, the probability of pk−αkmax for the

event Mk ≤ αk; part 1 of Lemma 15 gives the exact bound on this probability in terms of α. We next

state Lemma 15.

Lemma 15 Consider the sequence of events {Mk ≥ αk}, where α ∈ (0, 1], k = 1, 2, . . .. For every

α, ε ∈ (0, 1]:
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1) There exists sufficiently large k0 = k0(α, ε) such that

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk ≥ αk
)

= 0, ∀k ≥ k0(α, ε) (19)

2)

lim sup
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε, Mk < αk

)
≤ −α logα+ α log |Π?(G)|+ (1− α) log pmax. (20)

Proof: To prove 1, we first note that, by Lemma 14 we have:{∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε} ⊆ {(1− cδ2 k

Mk

)Mk
2 ≥ ε

}
. (21)

This gives for fixed α, ε:

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk ≥ αk
)
≤ P

((
1− cδ2 k

Mk

)Mk
2 ≥ ε, Mk ≥ αk

)

=

k∑
m=dαke

P
((

1− cδ2 k

Mk

)Mk
2 ≥ ε, Mk = m

)

=

k∑
m=dαke

P
(
g(k,m) ≥ log ε

k
, Mk = m

)
, (22)

where g(k,m) := m
2k log

(
1− cδ2 k

m

)
, for m > 0, and dxe denotes the smallest integer not less than x.

For fixed k, each of the probabilities in the sum above is equal to 0 for those m such that g(k,m) < log ε
k .

This yields:
k∑

m=dαke

P
(
g(m) ≥ log ε

k
, Mk = m

)
≤

k∑
m=dαke

s(k,m), (23)

where s(k,m) is the switch function defined by:

s(k,m) :=

 0, if g(k,m) < log ε
k

1, otherwise

Also, as g(k, ·) is, for fixed k, decreasing in m, it follows that s(k,m) ≤ s(k, αk) for m ≥ αk. Combining

this with eqs. (22) and (23), we get:

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk ≥ αk
)
≤ (k − dαke+ 1)s(k, αk).
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We now show that s(k, αk) will eventually become 0, as k increases, which would yield part 1 of

Lemma 15. To show this, we observe that g has a constant negative value at (k, αk):

g(k, αk) =
α

2
log
(

1− cδ
2

α

)
.

Since 1
k log ε→ 0, as k →∞, there exists k0 = k0(α, ε) such that g(k, αk) < 1

k log ε, for every k ≥ k0.

Thus, s(k, αk) = 0 for every k ≥ k0. This completes the proof of part 1.

To prove part 2, we observe that

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk < αk
)
≤ P (Mk < αk) =

dαke−1∑
m=0

P (Mk = m) . (24)

Recalling the definition of Mk, we have {Mk = m} = {Tm ≤ k, Tm+1 > k}, for m ≥ 0; this, by further

considering all possible realizations of Ti, i ≤ m, yields

P (Mk = m) =
∑

1≤t1≤...≤tm≤k
P (Ti = ti, for 1 ≤ i ≤ m, Tm+1 > k) , (25)

where the summation is over all possible realizations Ti = ti, i = 1, . . . ,m. Next, we remark that, by

definition of stopping times Ti, supergraph Γ(Ti− 1, Ti−1) is disconnected with probability 1, for i ≤ m

(Ti is defined as the first time t after time Ti−1 when the supergraph Γ(t, Ti−1) becomes connected);

similarly, if Tm+1 > k, then Γ(k, Tm) is disconnected. Fixing the realizations Ti = ti, i ≤ m, this implies

P (Ti = ti, for i ≤ m, Tm+1 > k) ≤ P (Γ(ti − 1, ti−1) is disconnected, for i ≤ m+ 1)

=

m+1∏
i=1

P(Γ(ti − 1, ti−1) is disconnected) (26)

where tm+1 := k + 1 and the equality follows by the independence of the graph realizations. Recalling

Observation 8 and the definition of pmax, we further have, for i ≤ m+ 1,

P(Γ(ti − 1, ti−1) is disconnected) = P(
⋃

H∈Π?(G)

{Gt ∈ H, ti−1 < t < ti}) ≤ |Π?(G)|pti−ti−1−1
max

which, combined with (26), yields:

P (Ti = ti, for i ≤ m, Tm+1 > k) ≤ |Π?(G)|m+1pk−mmax . (27)

The bound in (27) holds for any realization Ti = ti, 1 ≤ t1 ≤ . . . ≤ tm ≤ k, of the first m stopping

times. Since the number of these realizations is
(
k
m

)
≤
(
ke
m

)m
(see eq. (25)), we obtain the following
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bound for the probability of the event Mk = m, where m ≤ dαke − 1:

P (Mk = m) ≤
(
ke

m

)m
|Π?(G)|m+1pk−mmax . (28)

Finally, as function h(m) :=
(
ke
m

)m |Π?(G)|m+1pk−mmax , that upper bounds the probability of the event

Mk = m, is increasing for m ≤ k, combining (24) and (28), we get

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk < αk
)
≤
dαke−1∑
m=0

h(m) ≤ dαke
(

ke

dαke − 1

)dαke−1

|Π?(G)|dαkepk−(dαke−1)
max .

(29)

Taking the log and dividing by k, and taking the lim supk→∞ yields part 2 of Lemma 15:

lim sup
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε, Mk < αk

)
≤ α log

e

α
+ α log |Π?(G)|+ (1− α) log pmax. (30)

To complete the proof of the upper bound (9), it remains to observe the following:

P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε) = P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk < αk
)

+ P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk ≥ αk
)

= P
(∥∥∥Φ̃(k, 0)

∥∥∥ ≥ ε, Mk < αk
)
, for k ≥ k0(α, ε),

where the last equality follows by part 1 of Lemma 15. Thus,

lim sup
k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε) = lim sup

k→∞

1

k
logP

(∥∥∥Φ̃(k, 0)
∥∥∥ ≥ ε, Mk < αk

)
≤ −α logα+ α log |Π?(G)|+ (1− α) log pmax. (31)

Since, by part 2 of Lemma 15, inequality (31) holds for every α ∈ (0, 1], taking the infα∈(0,1] yields

the upper bound (9). This completes the proof of Theorem 9 for the case when Π?(G) is nonempty. We

now consider the case when Π?(G) = ∅. In this case each realization of Gt is connected (otherwise,

Π(G) would contain at least this disconnected realization). Applying Corollary 12 to successive graph

realizations (i.e., for s = t+ 1) we get that∥∥∥Φ̃(k, 0)
∥∥∥ ≤ (1− cδ2

) k
2 .

For any ε > 0, there will exists k1 = k1(ε) such that the right hand side is smaller than ε for all k ≥ k1.

This implies that, for any k ≥ k1, the norm
∥∥∥Φ̃(k, 0)

∥∥∥ is smaller than ε with probability 1, thus yielding

the rate I =∞ in Theorem 9 for the case when Π?(G) = ∅. This completes the proof of Theorem 9.
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IV. COMPUTATION OF THE EXPONENTIAL RATE OF CONSENSUS VIA MIN-CUT: GOSSIP AND LINK

FAILURE MODELS

Motivated by the applications of averaging in sensor networks and distributed dynamical systems, we

consider two frequently used types of random averaging models: gossip and link failure models. For a

generic graph G = (V,E), we show that pmax for both models can be found by solving an instance

of a min-cut problem over the same graph G. The corresponding link costs are simple functions of the

link occurrence probabilities. In this section, we detail the relation between the min-cut problem and

computation of pmax.

We now state Lemma 16 on the computation of pmax that holds for the general random graph process

that later will help us to calculate pmax for the gossip and link failure models. Lemma 16 assures that pmax

can be found by relaxing the search space from Π?(G) – the set of maximally disconnected collections,

to Π(G) – the set of all disconnected collections.

Lemma 16

pmax = max
H∈Π(G)

pH (32)

Proof: Since Π?(G) ⊆ Π(G), to show (32) it suffices to show that for any H ∈ Π(G) there exists

H′ ∈ Π?(G) such that pH′ ≥ pH. To this end, pick arbitrary H ∈ Π(G) and recall Observation 8. Then,

there exists H′ ∈ Π?(G) such H ⊆ H′, which implies that

pH =
∑
G∈H

P (Gt = G) ≤
∑
G∈H′

P (Gt = G) = pH′ .

and proves (32).

Before calculating the rate I for gossip and link failure models, we explain the minimum cut (min-cut)

problem.

Minimum cut (min-cut) problem. Given an undirected weighted graph G = (V,E,C) where V is the

set of N nodes, E is the set of edges, and C = [cij ] is the N ×N matrix of the edge nonnegative costs;

by convention, we set cii = 0, for all i, and cij = 0, for {i, j} /∈ E. The min-cut problem is to find the

sub-set of edges E′ such that G′ = (V,E \E′) is disconnected and the sum
∑
{i,j}∈E′ cij is the minimal

possible; we denote this minimal value, also referred to as the connectivity, by mincut(V,E,C). The

min-cut problem is easy to solve, and there exist efficient algorithms to solve it, e.g., [40], [8].

A. Gossip model

Consider the network of N nodes, collected in the set V and with the set E ⊆
(
V
2

)
defining

communication links between the nodes, such that if {i, j} ∈ E then nodes i,j ∈ V can communicate. In
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the gossip algorithm, only one link {i, j} ∈ E is active at a time. Let pij be the probability of occurrence

of link {i, j} ∈ E:
pij = P (Gt = (V, {i, j})) . (33)

We note that
∑
{i,j}∈E pij = 1.

Lemma 17 Consider a gossip model on a graph G = (V,E) with link probabilities pij , {i, j} ∈ E.

Construct a mincut problem instance with the graph G and the cost assigned to link {i, j} equal pij .

Then:

pGossip
max (V,E, P ) = 1−mincut(V,E, P ) (34)

IGossip(V,E, P ) = − log(1−mincut(V,E, P )), (35)

where P is the symmetric matrix that collects link occurrence probabilities, Pij = pij , {i, j} ∈ E,

Pii = 0, for i = 1, . . . , N and Pij = 0, {i, j} /∈ E.

Proof: For the gossip model, the set of all possible graph realizations GGossip is the set of all one-link

subgraphs of (V,E):

GGossip = {(V, {i, j}) : {i, j} ∈ E} . (36)

Also, there is a one to one correspondence between the set of collections of realizable graphs and the set of

subgraphs of G: a collection H ⊆ G corresponds to the subgraph H of G if and only if H = Γ(H). Thus,

if we assign to each link in G a cost equal to pij , then searching over the set Π(G) of all disconnected

collections to find the most likely one is equivalent to searching over all disconnected subgraphs of G

with the maximal total cost:

pGossip
max = max

H∈Π(G)
pH

= max
E′⊆E, (V,E′) is disc.

∑
{i,j}∈E′

pij . (37)

Using the fact that
∑
{i,j}∈E pij = 1, eq. (37) can be written as:

max
E′⊆E, (V,E′) is disc.

∑
{i,j}∈E′

pij = max
F⊆E, (V,E\F ) is disc.

1−
∑
{i,j}∈F

pij (38)

= 1− min
F⊆E, (V,E\F ) is disc.

∑
{i,j}∈F

pij . (39)

The minimization problem in the last equation is the min-cut problem mincut(V,E, P ).
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Gossip on a regular network. We now consider a special case of the uniform gossip model on a

connected regular graph with degree d, d = 2, ..., N − 1, and the uniform link occurrence probability

p := pij = 2
Nd . It can be easily seen that the value of the min-cut is p times the minimal number of

edges that disconnects the graph, which equals pd = 2/N ; this corresponds to cutting all the edges of a

fixed node, i.e., isolating a fixed node. Hence,

pmax = P (node i is isolated) = 1− 2/N

I = − log(1− 2/N).

Note that the asymptotic rate I is determined by the probability that a fixed node is isolated; and the

rate I does not depend on the degree d.

B. Link failure model

Similarly as with the gossip model, we introduce a graph G = (V,E) to model the communication

links between the nodes. In contrast with the gossip model, the link failure model assumes that each

feasible link {i, j} ∈ E occurs independently from all the others links in the network. Let again pij denote

the probability of occurrence of link {i, j} ∈ E. (Remark that, due to the independence assumption, we

now do not have any condition on the link occurrence probabilities pij .)

Lemma 18 Consider a link failure model on a graph G = (V,E) with link probabilities pij , {i, j} ∈ E.

Construct a mincut problem instance with the graph G and the cost of link {i, j} equal to − log(1−pij).

Then:

pLink fail.
max (V,E, P ) = e−mincut(V,E,− log(1−P )) (40)

ILink fail.(V,E, P ) = mincut(V,E,− log(1− P )), (41)

where P is the symmetric matrix that collects the link occurrence probabilities, Pij = pij , {i, j} ∈ E,

Pii = 0, for i = 1, . . . , N and Pij = 0, {i, j} /∈ E and logX denotes the entry wise logarithm of a

matrix X .

Proof: Since the links occur independently, any subgraph H = (V,E′) of G can occur at a given

time, therefore yielding that the collection of realizable graphs GLink fail. is the collection of all subgraphs

of G:

GLink fail. =
{

(V,E′) : E′ ∈ 2E
}

; (42)
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here 2E denotes the power set of E, i.e., the collection of all possible subsets of the set of feasible links E.

This implies that for any fixed set F ⊆ E of edges that disconnect G = (V,E) we can find a

disconnected collection H ⊆ G such that Γ(H) = (V,E \F ) (recall that Γ(H) is the minimal supergraph

of all the graphs contained in H). On the other hand, any disconnected collection will map by Γ to one

disconnected subgraph of G. Therefore, in order to find pLink fail.
max we can split the search over disconnected

collections H as follows:

pLink fail.
max = max

H⊆G Γ(H)is disc.
pH

= max
F⊆E, F disconnects (V,E)

max
H⊆G Γ(H)=(V,E\F )

pH. (43)

Next, we fix a disconnecting set of edges F ⊆ E and consider all H ⊆ G such that Γ(H) = (V,E\F ). We

claim that, among all such collections, the one with maximal probability isHF := {(V,E′) : E′ ⊆ E \ F}.

To show this, we observe that if H = (V,E′) ∈ H, then E′ ∩ F = ∅, thus implying:

pH =
∑
H∈H

P (Gt = H) ≤
∑

H=(V,E′):E′⊆E′∩F=∅

P (Gt = H) = pHF .

Therefore, the expression in (43) simplifies to:

max
F⊆E, F disconnectsG=(V,E)

pHF .

We next compute pHF for given F ⊆ E:

pHF = P (E(Gt) ∩ F = ∅)

= P ({i, j} /∈ E(Gt), for all {i, j} ∈ F )

=
∏
{i,j}∈F

(1− pij),

where the last equality follows by the independence assumption on the link occurrence probabilities. This

implies that pLink fail.
max can be computed by

pLink fail.
max = max

F⊆E, F disconnectsG=(V,E)

∏
{i,j}∈F

(1− pij)

= e−minF⊆E, F disconnects (V,E)

∑
{i,j}∈F − log(1−pij)

= e−minF⊆E, F disconnects (V,E)−mincut(V,E,− log(1−P )).
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Regular graph and uniform link failures. We now consider the special case when the underlying graph

is a connected regular graph with degree d, d = 2, ..., N−1, and the uniform link occurrence probabilities

pij = p. It is easy to see that pmax and I simplify to:

pmax = P (node i is isolated) = (1− p)d

I = −d log(1− p).

V. APPLICATION: OPTIMAL POWER ALLOCATION FOR DISTRIBUTED DETECTION

We now demonstrate the usefulness of our Theorem 9 by applying it to consensus+innovations dis-

tributed detection in [24], [23] over networks with symmetric fading links. We summarize the results

in the current section. We first show that the asymptotic performance (exponential decay rate of the

error probability) of distributed detection explicitly depends on the rate of consensus | log pmax|. Further,

we note that | log pmax| is a function of the link fading (failure) probabilities, and, consequently, of the

sensors’ transmission power. We exploit this fact to formulate the optimization problem of minimizing the

transmission power subject to a lower bound on the guaranteed detection performance; the latter translates

into the requirement that | log pmax| exceeds a threshold. We show that the corresponding optimization

problem is convex. Finally, we illustrate by simulation the significant gains of the optimal transmission

power allocation over the uniform transmission power allocation.

A. Consensus+innovations distributed detection

Detection problem. We now briefly explain the distributed detection problem that we consider. We

consider a network of N sensors that cooperate to detect an event of interest, i.e., face a binary hypothesis

test H1 versus H0. Each sensor i, at each time step t, t = 1, 2, ..., performs a measurement Yi(t). We

assume that the measurements are i.i.d., both in time and across sensors, where under hypothesis Hl,

Yi(t) has the density function fl, l = 0, 1, for i = 1, . . . , N and t = 1, 2, . . .

Consensus+innovations distributed detector. To resolve between the two hypothesis, each sensor i

maintains over time k its local decision variable xi,k and compares it with a threshold; if xi,k > 0, sensor i

accepts H1; otherwise, it accepts H0. Sensor i updates its decision variable xi,k by exchanging the decision

variable locally with its neighbors, by computing the weighted average of its own and the neighbors’
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variables, and by incorporating its new measurement through a log-likelihood ratio Li,k = log f1(Yi,k)
f0(Yi,k) :

xi,k =
∑
j∈Oi,k

Wij,k

(
k − 1

k
xj,k−1 +

1

k
Lj,k

)
, k = 1, 2, ..., xi,0 = 0. (44)

Here Oi,k is the (random) neighborhood of sensor i at time k (including i), and Wij,k is the (random)

averaging weight that sensor i assigns to sensor j at time k.

Let xk = (x1,k, x2,k, ..., xN,k)
> and Lk = (L1,k, ..., LN,k)

>. Also, collect the averaging weights Wij,k

in the N ×N matrix Wk, where, clearly, Wij,k = 0 if the sensors i and j do not communicate at time

step k. Then, using the definition of Φ(k, t) at the beginning of Section III, writing (44) in matrix form,

and unwinding the recursion, we get:

xk =
1

k

k∑
t=1

Φ(k, t− 1)Lt, k = 1, 2, ... (45)

Equation (45) shows the significance of the matrices Φ(k, t) to the distributed detection performance,

and, in particular, on the significance of how much the matrices Φ(k, t) are close to J . Indeed, when

Φ(k, t) = J , the contribution of Lt to xi,k is [Φ(k, t)Lt]i = 1
N

∑N
i=1 Li,t, and hence sensor i effectively

uses the local likelihood ratios of all the sensors. In the other extreme, when Φ(k, t) = I , [Φ(k, t)Lt]i =

Li,t, and hence sensor i effectively uses only its own likelihood ratio. In fact, it can be shown that, when

I exceeds a certain threshold, then the asymptotic performance (the exponential decay rate of the error

probability) at each sensor i is optimal, i.e., equal to the exponential decay rate of the best centralized

detector. Specifically, the optimality threshold depends on the sensor observations distributions f1 and f0

and is given by5 (see also Figure 2):

I ≥ I? (f1, f0, N) . (46)

Remark. Reference [24] derives a sufficient condition for the asymptotic optimality in terms of λ2(E[W 2
k ])

in the form: | log λ2(E[W 2
k ])| ≥ I? (f1, f0, N), based on the inequality lim supk→∞

1
k logP(Φ̃(k, 0) >

ε) ≤ log λ2(E[W 2
k ]); this inequality holds for arbitrary i.i.d. averaging models and it does not require

the assumption that the positive entries of Wk are bounded away from zero. The sufficient condition

| log λ2(E[W 2
k ])| ≥ I? (f1, f0, N) is hence readily improved by replacing the upper bound log λ2(E[W 2

k ])

with the exact limit −I , whenever the matrix process satisfies Assumption 1.

5See [24] for the precise expression of the threshold.
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B. Optimal transmission power allocation

Equation (46) says that there is a sufficient rate of consensus I? such that the distributed detector is

asymptotically optimal; a further increase of I above I? does not improve the exponential decay rate of

the error probability. Also, as we have shown in subsection IV-B, the rate of consensus I is a function

of the link occurrence probabilities, which are further dependent on the sensors’ transmission power. In

summary, (46) suggests that there is a sufficient (minimal required) transmission power that achieves

detection with the optimal exponential decay rate. This discussion motivates us to formulate the optimal

power allocation problem of minimizing the total transmission power per time k subject to the optimality

condition I ≥ I?. Before presenting the optimization problem, we detail the inter-sensor communication

model.
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Fig. 2. Lower bound on the exponential decay rate of the maximal error probability across sensors versus the rate of consensus
I for Gaussian sensor observations f1 ∼ N (m,σ2) and f0 ∼ N (0, σ2).

Inter-sensor communication model. We adopt a symmetric Rayleigh fading channel model, a model

similar to the one proposed in [41] (reference [41] assumes asymmetric channels). At time k, sensor j

receives from sensor i:

yij,k = gij,k

√
Sij
dαij

xi,k + nij,k,

where Sij is the transmission power that sensor i uses for transmission to sensor j, gij,k is the channel

fading coefficient, nij,k is the zero mean additive Gaussian noise with variance σ2
n, dij is the inter-

sensor distance, and α is the path loss coefficient. We assume that the channels (i, j) and (j, i) at time

k experience the same fade, i.e., gij,k = gji,k; gij,k is i.i.d. in time; and gij,t and glm,s are mutually

independent for all t, s. We adopt the following link failure model. Sensor j successfully decodes the
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message from sensor i (i.e., the link (i, j) is online) if the signal to noise ratio exceeds a threshold, i.e.,

if: SNR =
Sijg2ij,k
σ2
nd
α
ij

> τ , or, equivalently, if g2
ij,k >

τσ2
nd
α
ij

Sij
:= Kij

Sij
. The quantity g2

ij,k is, for the Rayleigh

fading channel, exponentially distributed with parameter 1. Hence, we arrive at the expression for the

probability of the link (i, j) being online:

Pij = P
(
g2
ij,k >

Kij

Sij

)
= e
−Kij
Sij . (47)

We constrain the choice of transmission powers by Sij = Sji
6, so that the link (i, j) is online if and

only if the link (j, i) is online, i.e., the graph realizations are undirected graphs. Hence, the underlying

communication model is the link failure model, with the link occurrence probabilities Pij in (47) that

are dependent on the transmission powers Sij .

With this model, the rate of consensus I is given by (40), where the weight cij associated with link

(i, j) is:

cij(Sij) = − log
(

1− e−Kij/Sij
)
.

We denote by {Sij} the set of all powers Sij , {i, j} ∈ E.

Lemma 19 The function I ({Sij}) = mincut(V,E,C), with cij = − log(1− e−Kij/Sij ), for {i, j} ∈ E,

and cij = 0 else, is concave.

Proof: Note that the function I ({Sij}) = mincut(V,E,C) can be expressed as

min
E′⊂E:G′=(V,E′) is disconnected

∑
{i,j}∈E\E′

cij(Sij).

On the other hand, cij(Sij) is concave in Sij for Sij ≥ 0, which can be shown by computing the

second derivative and noting that it is non-positive. Hence, I ({Sij}) is a pointwise minimum of concave

functions, and thus it is concave.

Power allocation problem formulation. We now formulate the optimal power allocation problem as the

problem of minimizing the total transmission power used at time k, 2
∑
{i,j}∈E Sij , so that the distributed

detector achieves asymptotic optimality. This translates into the following optimization problem:

minimize
∑
{i,j}∈E Sij

subject to I ({Sij}) ≥ I?.
. (48)

6We assumed equal noise variances σ2
n = Var(nij,k) = Var(nji,k) so that Kij = Kji, which implies the constraint Sij = Sji.

Our analysis easily extends to unequal noise variances, in which case we would require Kij
Sij

=
Kji
Sji

; this is not considered here.
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The cost function in (48) is linear, and hence convex. Also, the constraint set {{Sij} : I ({Sij}) ≥ I?} =

{{Sij} : −I ({Sij}) ≤ −I?} is convex, as a sub level set of the convex function −I ({Sij}). (See Lemma

19.) Hence, we have just proved the following Lemma.

Lemma 20 The optimization problem (48) is convex.

Convexity of (48) allows us to find a globally optimal power allocation. The next subsection demonstrates

by simulation that the optimal power allocation significantly improves the performance of distributed

detection over the uniform power allocation.

C. Simulation example

We first describe the simulation setup. We consider a geometric network with N = 14 sensors. We place

the sensors uniformly over a unit square, and connect those sensors whose distance dij is less than a radius.

The total number of (undirected) links is 38. (These 38 links are the failing links, for which we want to

allocate the transmission powers Sij .) We set the coefficients Kij = 6.25dαij , with α = 2. For the averaging

weights, we use Metropolis weights, i.e., if link {i, j} is online, we assign Wij,k = 1/(1+max{di,k, dj,k}),

where di,k is the degree of node i at time k and Wij,k = 0 otherwise; also, Wii,k = 1−
∑

j∈Oi,kWij,k.

For the sensors’ measurements, we use the Gaussian distribution f1 ∼ N (m,σ2), f0 ∼ N (0, σ2), with

m = 0.0447, and σ2 = 1. The corresponding value I? = (N − 1)N m2

8σ2 = 0.0455., see [24].

To obtain the optimal power allocation, we solve the optimization problem (48) by applying the

subgradient algorithm with constant stepsize β = 0.0001 on the unconstrained exact penalty reformulation

of (48), see, e.g., [42], which is to minimize
∑
{i,j}∈E Sij + µmax {0,−mincut(V,E,C) + I?}, where

C = [cij ], cij = − log(1− e−Kij/Sij ), for {i, j} ∈ E, and zero else; and µ is the penalty parameter that

we set to µ = 500. We used the MATLAB implementation [43] of the min-cut algorithm from [40].

Results. Figure 3 plots the detection error probability of the worst sensor maxi=1,...,N P
e
i (k) versus time

k for the optimal power allocation {S?ij} (solid blue line), and the uniform power allocation Sij = S

across all links, such that the total power per k over all links 2
∑
{i,j}∈E Sij = 2

∑
{i,j}∈E S

?
ij =: S. We

can see that the optimal power allocation scheme significantly outperforms the uniform power allocation.

For example, to achieve the error probability 0.1, the optimal power allocation scheme requires about

550 time steps, hence the total consumed power is 550S; in contrast, the uniform power allocation needs

more than 2000S for the same target error 0.1, i.e., about four times more power. In addition, Figure 3

plots the detection performance for the uniform power allocation with the total power per k equal to

sr×S, sr = 2, 3, 3.4. We can see, for example, that the scheme with sr = 3.4 takes about 600 time steps
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to achieve an error of 0.1, hence requiring about 600 × 3.4 × S = 2040S. In summary, for the target

error of 0.1, our optimal power allocation saves about 75% of the total power over the uniform power

allocation.
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Fig. 3. Detection error probability of the worst sensor versus time k for the optimal and uniform power allocations, and
different values of sr = total power per k for uniform allocation

total power per k for optimal allocation
.

VI. CONCLUSION

In this paper, we found the exact exponential decay rate I of the convergence in probability for products

of i.i.d. symmetric stochastic matrices Wk. We showed that the rate I depends solely on the probabilities

of the graphs that underly the matrices Wk. In general, calculating the rate I is a combinatorial problem.

However, we show that, for the two commonly used averaging models, gossip and link failure, the rate

I is obtained by solving an instance of the min-cut problem, and is hence easily computable. Further,

for certain simple structures, we compute the rate I in closed form: for gossip over a spanning tree,

I = | log(1 − pij)|, where pij is the occurrence probability of the “weakest” link, i.e., the smallest-

probability link; for both gossip and link failure models over a regular network, the rate I = | log pisol|,

where pisol is the probability that a node is isolated from the rest of the network at a time. Intuitively, our

results show that the rate I is determined by the most likely way in which the network stays disconnected

over a long period of time. Finally, we illustrated the usefulness of rate I by finding a globally optimal

allocation of the sensors’ transmission power for consensus+innovations distributed detection.
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[33] É. Le Page, “Théorèmes limites pour les produits de matrices aléatoires,” Probability Measures on Groups (Oberwolfach,

1981), Lecture Notes in Mathematics, vol. 928, pp. 258–303, 1982.

[34] H. Hennion, “Limit theorems for products of positive random matrices,” The Annals of Probability, vol. 25, no. 4, pp.

1545–1587, 1997.

[35] V. Kargin, “Products of random matrices: dimension and growth in norm,” The Annals of Probability, vol. 20, no. 3, pp.

890–906, 2010.
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