## Mathematics > Probability

## Padé approximants and exact twolocus sampling distributions

Paul A. Jenkins, Yun S. Song

(Submitted on 20 Jul 2011 (v1), last revised 2 May 2012 (this version, v2))
For population genetics models with recombination, obtaining an exact, analytic sampling distribution has remained a challenging open problem for several decades. Recently, a new perspective based on asymptotic series has been introduced to make progress on this problem. Specifically, closed-form expressions have been derived for the first few terms in an asymptotic expansion of the two-locus sampling distribution when the recombination rate \$lrho\$ is moderate to large. In this paper, a new computational technique is developed for finding the asymptotic expansion to an arbitrary order. Computation in this new approach can be automated easily. Furthermore, it is proved here that only a finite number of terms in the asymptotic expansion is needed to recover (via the method of Pad''\{e\} approximants) the exact twolocus sampling distribution as an analytic function of $\$$ rho\$; this function is exact for all values of $\$ 1 r h o l i n[0$, linfty $) \$$. It is also shown that the new computational framework presented here is flexible enough to incorporate natural selection.

Comments: $\quad$ Published in at this http URL the Annals of Applied Probability (this http URL) by the Institute of Mathematical Statistics (this http URL)
Subjects: Probability (math.PR); Populations and Evolution (qbio.PE)
Journal reference: Annals of Applied Probability 2012, Vol. 22, No. 2, 576-607
DOI:
10.1214/11-AAP780

Report number:
IMS-AAP-AAP780
Cite as:
arXiv:1107.3897 [math.PR]
(or arXiv:1107.3897v2 [math.PR] for this version)

## Download:

- PDF
- PostScript
- Other formats

Current browse context: math.PR
< prev | next >
new | recent | 1107
Change to browse by: math
q-bio
q-bio.PE
References \& Citations

- NASA ADS

Bookmark(what is this?)

## Submission history

From: Paul A. Jenkins [view email]
[v1] Wed, 20 Jul 2011 05:38:56 GMT (142kb,D)
[v2] Wed, 2 May 2012 12:16:54 GMT (203kb)

