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Abstract

In this paper we are concerned with substructuring methods for the second-order
elliptic problems in three-dimensional domains. We first design a simple and completely
explicit nearly harmonic extension for the constant-like basis function (i.e., the face basis
function), and then define a coarse subspace based on this nearly harmonic extension.
Own to the resulting coarse solver, we develop a kind of substructuring preconditioner
with inexact solvers. We show that the condition number of the preconditioned system
grows only as the logarithm of the dimension of the local problem associated with an
individual substructure, and is independent of possible jumps of the coefficient in the
elliptic equation. Numerical experiments confirms the theoretical results.
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1 Introduction

Non-overlapping domain decomposition methods (DDMs) have been shown to be pow-
erful techniques for solving partial differential equations, especially for the case with large
jump coefficients. One’s main task in non-overlapping DDMs is the construction of an effi-
cient substructuring preconditioner for discretization system associated with the underlying
partial differential equations. The construction of this preconditioner has been investigated
from various ways and to various models in literature, see, for example, [1]-[11], [13]-][18],
[20]-[24], [26]-[27], [29].

Most non-overlapping DDMs studied so far require exact subdomain solvers; we refer
[28] and [32] (and the references cited therein). Such a requirement severely degrade the
efficiency of the methods. There are only a few works studying substructuring methods
with inexact subdomain solvers [3], [4], [11] and [6]. The essential difficulty is that discrete
harmonic extensions on each subdomain are used in non-overlapping domain decomposition
methods. In [3], analysis and numerical experiments with inexact algorithms of Neumann-
Dirichlet type was done under the additional assumption of high accuracy of the inexact
solvers. In [4], the harmonic extension on a subdomain was replaced by a simple average
extension, and substructuring preconditioners with the average extension are constructed.
Because of such average extension, nearly optimal convergence can not be gotten for these
substructuring preconditioners. To avoid harmonic extensions, [11] considered so called ap-
proximate harmonic basis functions, which still involve high accuracy of the inexact solvers.
Another way to construct substructuring preconditioner with inexact solvers was consid-
ered in [6] (mainly for two dimensions). In this preconditioner, overlapping face subspaces
are used, and harmonic extension is used only in the definition of coarse subspace. How to
design nearly harmonic extensions involved in the coarse subspace is the core problem in
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the construction of such substructuring preconditioner. In the case with three dimensions,
the coarse subspace may consist of the edge basis and face basis, which are constant-like
functions. Then, one needs only to define suitable extensions for constant-like functions on
faces. Such extensions, which depend on the geometric shapes of the subdomains, was first
studied in [8].

In the present paper we introduce a new variant of substructuring preconditioner with
inexact solvers considered in [6] (see also [32]). The main contribution of the paper is the
design of a simple and completely explicit extension for the constant-like basis function.
This extension plays a key role in the substructuring preconditioner with inexact solvers.
We show that the new substructuring preconditioner possesses nearly optimal convergence,
which is independent of possible large jumps of the coefficient across the interface. For the
new method, no additional assumption is required.

The outline of the remainder of the paper is as follows. In Section 2, we introduce some
notation and our motive. In Section 3, we present an explicit extension of the constant-
like function. The results on the substructuring preconditioner with inexact solvers are
described in Section 4. In Section 5, we prove the stability of the extension of constant-like
function, which is used in Section 4. Some numerical results are reported in Section 6.

2 Preliminaries

2.1 Domain decomposition
Let Q be a bounded polyhedron in R3. Consider the model problem

{—div(wVU) =f, in Q,

u=0, on 09, (2.1)

where w € L*>(Q) is a positive function.

Let HZ(9Q) denote the standard Sobolev space, and let (-,-) denote the L?(£2)-inner
product. The weak formulation of (2.1) in Hg () is then given by the following.

Find u € HY(Q) such that

A(u,v) = (f,v) Yve HQ), (2.2)

where (-, ) is the scalar product in L?(€), and
A(u,v) = / wVu - Vudp.
Q

We will apply a kind of non-overlapping domain decomposition method to solving (2.2).
For simplicity of exposition, we consider only the case with matching grids in this paper.
Let 7, = {7} be a regular and quasi-uniform triangulation of  with 7/s being non-
overlapping simplexes of size h (€ (0,1]). The set of notes of 7} is denoted by N},. We then
define V() to be the piecewise linear finite element subspace of H}(Q2) associated with
Th:
Vi(Q) ={ve H}(Q): v|, € Py V1 €T},

where P; is the space of linear polynomials. Then the finite element approximation for
(2.2) is to find uy, € V3, () such that

A(Uh,’l)h) = (f, ’Uh), V’Uh S Vh(Q) (2.3)

Let €2 be decomposed into the union of N polyhedrons €21, - - -, Qn, which satisfy (;NQ; =
() when 7 # j. We assume that each 9 can be written as a union of boundaries of



elements in 7, and all ), are of size H in the usual sense (see [5] and [32]). Without loss of
generality, we assume that the coefficient w(p) is piecewise constant, then each subdomain
Q. is chosen such that w(p) equals to a constant wy in Q. Note that {Q;} may not
constitute a triangulation of €.

The common part of two neighboring subdomains €2; and €2; may be a vertex, an edge
or a face. In particular, we denote by I';; the common face of two neighboring subdomains
; and Q; (i.e., I';; = 09; N 0€;). The union of all I';; is denoted by I, which is called the
interface. In this paper, we choose Dirichlet data as the interface unknown.

Define the operator Ay : Vi, (Q2) — Vi (Q) by

N
(Apv, w) = A(v,w) = Zwk Vo - Vwdz, ve Vy(Q), Yw e V().
k=1 7%

The equation (2.3) can be written as
Apup = fn, up € Vh(Q) (2.4)

The goal of this paper is to construct a substructuring preconditioner for A, based on the
domain decomposition described above.

2.2 Notations

To introduce the new method, we need some more notations. Throughout this paper, a
subset G of ) are always understood as an open set.
e subdomain spaces

For subdomain €y, define

Vh(Qk) = {’U|Qk : Yo e Vh(Q)},

and
V() = {on € V() : supp v, C Q).
Set
Qij =Q; U Pij U Qj,
and define

VP(Qij) = {vn, € Vi(Q) : supp v, C Q45}.

e interface space and face spaces
As usual, we define the (global) interface space by

Wh(F) = {Q}’F : Yo e Vh(Q)}

For each 0§, set
Wh(aﬁk) = {U|an : Yo e Wh(F)}.

For a face F = I';;, define
Wh(F) = {¢n € Wir(I') : supp ¢» C F}.

e interpolation-type operator and constant-like basis
For a subset G of I, define the interpolation-type operator Ig : Wj,(I') — W,(T') as

[ nlp), ifpeN,NG,
(I?;%)(P)—{ h()’ iprNhg(F\G).



In particular, we have N
1, ifpe NG
0 _ ) p h
N0 ={0 it N (G

If G is an edge or a face generated by the domain decomposition, we call ¢g = .72;1 to be
constant-like basis function on GG, which will be used repeatedly.
e integration average and algebraic average

For a function ¢, € Wy(T'), let vg(¢n) denote the integration average of ¢p on G, and
let v, (p) denote the algebraic average of the values of ¢ on the nodes in G.
e sets of faces, edges, vertices and subdomains

For convergence, let Fr denote the set of all the faces I';;. Besides, let & and Vr denote
the set of the interior edges and the set of interior vertices generated by the decomposition

Q=

respectively. For an edge E € &r, let Qp denote the set of the indices k of the subdomains
Q. which contain E as an edge. Namely,

Or = {k:: EC@Qk}

Define
Op = U Qr, EE€é&p.
keQR

e face inner-products, scaling norm and interface norm

For a subset G of T', let (-,-)¢ denote the L? inner product on G. In particular, the
(-,-)r is abbreviated as (-,-). Let || - [|o, ¢ denote the norm induced from (-, -)g.

For a sub-faces G of I', let Hg denote the “size” of GG. Define the scaled norm

_ 1 1
oll1, &= (W; o T HGISIE, ¢)2. Vo € H2(G).

For convenience, define

N
1
[énller = - welonl} po,)?,  Von € Wi(D).
k=1

e discrete norms

Discrete norms (or semi-norms) of finite element functions will be used repeatedly in
this paper, since the discrete norms are defined on a set of nodes only, and do not depend
on the geometric shape of the underlying domain.

We first give definitions of two well known discrete norms (refer to [32]), which are
equivalent to their respective continuous norms. For v;, € V; (), the discrete H' semi-
norm is defined by

Lo =" > lop)—on(py),
Pis PjENKNQ

v,

where p; and p; denote two neighboring nodes. Similarly, the discrete L? norm on an edge
E of 0 is defined by
2 2
lonlls, e =h Y lon(@)*
peN,NE

1
e H, norms



For ¢y, € Wh(F) with F = I';;, define
2 _ 2 |on(z)[?
H(‘DhHHO%O(F) = ’SOh‘%’ F + F diSt(ﬂZ, aF) (.CC)
Hereafter, dist(x, OF) denotes the shortest distance from a point z € F to the boundary
OF. It is known that

~ 12 — |~

2 = = 2
H%HH(%O o~ |2nl1 o, T 10nl1 g,

where @, € Wy (T') denotes the zero extension of ¢p,. Moreover, we have
2 = [ _la@l®

The corresponding discrete semi-norm is defined by

— 2 Z len(p)[?

2 e —
lsenl dist(p, OF)’

1
’ 020(F) pENhﬂF
e spectrally equivalences

For simplicity, we will frequently use the notations < and Z. For any two non-negative
quantities x and y, z < y means that x < Cy for some constant C' independent of mesh

size h, subdomain size d and the related parameters.  Z y means z <y and y < z.

2.3 Motivation

We first recall the main ideas of the existing substucturing preconditioners.
Let Ej : Wi(09Q) — Vi(2%) be the discrete harmonic extension. Define the harmonic
subspace

VhF(Q) = {Uh € Vh(Q) : Uh|Qk = Ek(¢h|8ﬂk) (k = 1, s ,N) for some (Z)h c Wh(F)}

Then, we have the initial space decomposition

N
V(@) = > V() + Vi ().
k=1
Let Ay« VP(Q) — VP(Q) be the restriction of the operator Aj on the local space
VP (Q), and let By, r : ViF(Q) — VI(€2) be a symmetric and positive definite operator which
is spectrally equivalent to the restriction of the operator A; on the harmonic subspace
ViE(Q). Then, the classical substructuring preconditioner (refer to [5]) can be defined in
the rough form
N
Boa = _ Ani@ + By rQr, (25)
k=1
where @ and Qr denote the standard L? projectors into their respective subspaces. For
the preconditioner B4, we have (see [5])

cond(B,5Ap) < log?(H/h). (2.6)

In many applications, the subspaces V() still have high dimensions, so it is expensive
to use the exact solvers A}:}C



It was shown in [3] that substructuring preconditioners with inexact solvers B,:,lC still
possess nearly optimal convergence, if each By, has some spectrally approzimation to Ay, i,
(the usual spectrally equivalence is not enough). Hereafter, “inexact” means that By is
only spectrally equivalent to Ay, i, for example, By, , is a multigrid preconditioner for Ay, . It
seems difficult to design an efficient substructuring preconditioner with completely inexact
solvers Bh_7 ,16, instead of A,:}i itself or its approximation. In essence, one has to modify the
harmonic subspace VhF(Q) by replacing each harmonic extension Fj with another extension.

In [4], a substructuring preconditioner Bl;,h with inexact solvers was been designed by
replacing each harmonic extension Fj with a simple average extension. It has been shown
that the condition number of the resulting preconditioned system can be estimated by

cond(By\ Ap) < H/h. (2.7)

In [11], another substructuring preconditioner B,:hln with inexact solvers was been de-
signed by replacing each harmonic extension Ej with an approrimate harmonic extension.
If the approximate harmonic extension is exact enough, then

cond(By;}, Ap) < log?(H/h). (2.8)

The approximate harmonic extension can be defined by approximate harmonic basis func-
tions. It is not practical to compute all the approximate harmonic basis functions. Because
of this, an alternative method, which still require high accuracy of B}, ., was considered in
[11].

Another way to construct substructuring preconditioner with inexact solvers was con-
sidered in [6] (mainly for two dimensions).

Let WP (T') be a subspace of W;(T'), such that a function ¢ € W(T') equals a constant
CF at every nodes in each face F of I'. Define the coarse subspace

V2(Q) = {vn € Vi(Q) : vala, = Ei(dnlog,) (k=1,--,N) for some ¢), € Wy (I')}.

Then, we have the space decomposition

Let By : V2(Q) — V(Q) and Bj; : VP(Qi;) — VP(Qi;) be symmetric and positive
definite operators which are spectrally equivalent to the restrictions of the operator Ay on
the coarse subspace V2(Q) and the local subspace ViP(€Q;), respectively. Then, we can
define a substructuring preconditioner as (refer to [6] and [32])

By, = By'Qo+Y_ B;'Qij, (2.9)
Fij

where Qo and @;; denote the standard L? projectors into their respective subspaces. For
the preconditioner By, we have (refer to [6] and [32])

cond(Byr Ap) < log?(H/h). (2.10)

As pointed out in [32], the advantage of the preconditioner By, is that one can use
inexact solver Bj; for the restriction of Aj, on V/(£;;), but an inexact solver By is hard
to come by as harmonic extensions in the definition of V}?(Q) mean an exact solver. As an
alternate method, one can use a nearly harmonic extension to replace the exact harmonic
extension Fjy. However, the design of such approximate harmonic extension is also difficult



for the general case that either the subdomain € is a general polyhedron or 7 is a gen-
eral quasi-uniform triangulation (an attempt for two dimension is given in [19]). From the

~

definition of the coarse subspace V}?(Q), we know that one needs only to design such exten-
sion for functions in the subspace W,?(F) In essence, one needs only to define a suitable
extension for the constant-like basis function on each face of I'. This kind of extension was
first studied in [8]. For the purpose of applications, the definition of such extension would
be sufficiently simple, otherwise, the action of By g difficult to implement.

In this paper, we construct a completely explicit extension for the constant-like basis
function on each face of I'. As we will see, the implementation of the new extensions is very
convenient and cheap. We can define a new variant of the coarse subspace V,? (Q) based
on the extensions. Then, we use the new coarse subspace to construct a substructuring

preconditioner with inexact solvers.

2.4 Basic tools

In the analysis later, we will use some basic estimates on H 3 norms.
The following results are well-known (see, for example, [32]).

Lemma 2.1 Let E and F be an edge and a face of Q. Then,

1
[onllo.or S log2 (H/M)|[onll1 oo, Yén € Wa(0Q%), (2.11)
1
1Ronll1 o0, < log? (H/D)¢nll1 o0y, Yén € Wa(9) (2.12)
and
118onll 1 Slog(d/h)||onlls poys  Von € Wa(O%). (2.13)
HE (F) 2
O

The following result can be proved as in Lemma 6.2 in [18], together with the standard
technique.

Lemma 2.2 Let E be an edge of Q.. Then,

lén = h(0n)l13 o0, S log? (H/R)Iénls oa,:  Von € Wa(0%). (2.14)

3 Extensions for particular functions

As in Subsection 2.3, the desired coarse subspace of V() is always associated with an
interface coarse subspace. Let Ilgl and 11%1 denote the constant-like basis functions on the
face F and the coarse edge E, respectively (see Subsection 2.2). In this paper, we consider
the interface coarse subspace

W) = span{Ipl, 131, ¢,: F € Fr, B €&, p € Vr}.

Hereafter, ¢, denotes the nodal basis function on the node p € N} N Q.

In this section, we construct an approximation for the restriction of the discrete har-
monic extension Ej on W,? (I'). For convenience, let F denote a general face I';;, and let
op = I21 € W,(F) be the constant-like basis function on F.



3.1 An explicit extension of ¢y

In this subsection, we define a stable extension Ep¢p € VP (€2;;), which satisfies (Ep¢r)(p) =
¢r(p) when p € F.

For a node p in ;;\F, let p’ denote the projection of p on the plane containing . Besides,
when p’ € F, we use p” to denote a point on the boundary JF, such that [p'p”| = dist(p’, OF),
which is the shortest distance from p’ to the boundary 9F (see Figure 1).

P'Il

P.‘U‘
I

Figure 1: illustration for the notations

In short words, we define the extension Ep¢p such that the values (Ep¢r)(p) decrease
gradually when the lengths |pp/| increase, or the lengths |p'p”| decrease. Although this
property holds also for the extension designed in [8], we will use a different idea from [8].

For simplicity of exposition, we make an assumption:

Assumption 3.1: when p € 9Q;; with p’ € F, [pp'| > |p'p"|.

This assumption means that each subdomain €2 is not too thin. As we will see in
Appendix, we need only to revise slightly the definition of the extension for the general
situation without this assumption. To give the exact definition of Er¢r with F = I';;, we
set

Ap = {p e Ny (Qi\F) : p' € ¥, [pp'| < PP}

For a face F = I';;, define the extension Er¢r € V,f) (€2;5) as follows:

1, if per,
(Erdr)(p) = { 1- h‘j%" if p € Ap, (3.15)
0, otherwise.

In particular, we have (Er¢r)(p) = ¢r(p) when p € F.
For rectangular face F with uniform triangulation, the values of Er¢r at some nodes
are given in Figure 2.

0
0 |% 0
el
0.5 % 0.5 0 "
4 G S ) R
0, Iz ZaN vl
St T 1

F

Figure 2: extension of ¢p for particular case



Set

dp = dist(q, OF).
p = max dist(g,F)

It is clear that dg is just the radium of the largest circle contained in F, and dp = H.

It is easy to see that the extension operator Er possesses the properties:

(i) the support set Qp of Erp¢p is a simply connected domain with the size dp. In fact,
QF like a cone with the bottom F.

(ii) the calculation of Fr¢p possesses the optimal complexity O(ng) with np = (dp/h)3
being the number of the nodes in Q.

Besides, the extension Ey is stable in the following sense

Theorem 3.1 The extension Ew defined by (3.15) satisfies the stability condition

|Erdrlia,, ‘EF(bF‘%,Qj < Hlog(H/h) Z \¢F’2%(F) (F=T4). (3.16)
00

Since proof of the result is technical, we prove this theorem in Section 5.

Remark 3.1 The definition of the extension Egx not only is simple and completely explicit,
but also is identical to different geometric shape (tetrahedron, hexahedron or other polyhe-
drons) of the two subdomains containing ¥ as a face. Thus, the action of Ey is easy to
implement.

3.2 A nearly harmonic extension of ¢ € W)(T)

Let RY : Wy,(9Q%) — Vi(Q%) denote the zero extension operator in the sense that R)¢ = ¢
on 9y, and R)¢ vanishes at all internal nodes of €, for ¢ € Wy (9Q). For ¢» € W(T'),
we have

¥ = Yho0, () + Iy, (0 = Yoo, () + Y Yr® — o0, () dr, on 0.
FCoQ,

Hereafter, W, denotes the wire-basket set of (1, i.e., the union of all the edges of 2. Note
that v, p(¢¥ — vn00, (¥)) is just the (constant) value of 1) — 4 90, (1) at the interior nodes
of F. Then, we define on each €

Eotp = Ym0, (¥) + BRIy, (¥ = yho0, )]+ D e — o0, () Ergr.  (3.17)
FCo%,

It is easy to see that Egy = ¢ on I

The extension Ej is nearly harmonic in the following sense
Proposition 3.1 The global coarse extension Fy satisfies

N
> wilEodoli g, S log(H/R)|doll2p, Voo € Wi (D). (3.18)
k=1

Proof. By the definition of Ey, we have

|Eodolia, S |RRN, (90 — o0, (¢0)]1a,
_|_

> mr(@0 — o, (@0)? - [Erdr[i o,
FcoQy

l|po — %,aﬂk(%)ﬂg,wk

A



+ > (H2||$0 — Y00, (¢0) 15,00, - |EFoFlia,)- (3.19)
FCoQy

Using (2.11) and Friedrichs’ inequality, yields
160 — Ym0 (906, S log(H/R) ol o, - (3.20)
3
On the other hand, we deduce by (3.16) and Friedrichs’ inequality

H7%|lgo — o0, (00) .00, - 1Erdrlia, S H ™ 'log(H/h)|¢o — Yhoa. (o)
< log(H/h)|gol1 oo, -

2
0,09,

Substituting (3.20) and the above inequality into (3.19), we get (3.18).
(]

4 A substructuring method with inexact solvers

This section is devoted to construction of a substructuring preconditioner with inexact
solvers. The new preconditioner is based on the extension designed in the last section.
4.1 Space decomposition for V,(2)

In this subsection, we define a space decomposition of V().
For each subdomain €2;; containing I';;, let V}(€Q;;) be the subspace given in Subsection
2.2. Namely,
VP(Qij) = span{pp : p € Njy Nyt

For the extension Ey : W(T') — V() described in the last section, define
V) = {vp, € V() : v, = Eg¢ for some ¢, € WP (I)}.

For E € &r, define
Vi(Qr) = span{e, : p € ENN,}.

Then, we have the space decomposition

Vi(Q) = V() + D Vau(Qr) + > VE()).
Ecér T

Remark 4.1 Since the new extension Ey described in the last section is used in V2(€2),
the coarse subspace V,)(Q) is different from the one in [8].

4.2 A substructuring preconditioner

Based on the space decomposition in the last subsection, we can define a preconditioner in
the standard way.

Define symmetric and positive definite operators as follows:
e the global coarse solver By : V2(Q) — V2(Q) satisfies:

(Bovn, vn) = (Apvn,vp), Vo € Vi (Q); (4.1)
e the edge solver Bg : V,,(Qg) — V4 (QE) satisfies:

(Bevn,vp) < (Apon,vp),  Yop € Vi(Qg); (4.2)

10



e the interface solver B;; : VP (Q;;) — VP(€;) satisfies:
(Bijvn, vn) = (Apvp,vn),  Yop € VP (Q5). (4.3)

In applications, the interface solver B;; is usually chosen as a symmetric multigrid
preconditioner for the restriction of A, on VP(£2;;). Since all the subspaces V,2() and
V1 (2g) have low dimensions, the solvers By and Bg can be simply defined as the restriction
operators of Ay on their respective subspaces.

Now, the desired domain decomposition preconditioner for Ay, is defined as

Eeér z]
where Qo : V() — V2(Q), Qg : Vi() — Vu(QE) and Q;j : Vi(Q2) — VP (4;) denote L2
projectors.

4.3 Implementation

Before describing our algorithms, we give exact definitions of the edge solver Bg and
the coarse solver By.
e the edge solver

It is known that

IVoloa, < Ivloe, Vv e Vi(Qr) (EC Q).

Then,

(Apv, v) Z Y wilvllgr, Yo € Vi(Qg).
keQR

We can define Bg : V;(Qp) — V4 (QE) by

(Bgv,w) = ( Z wk) (v, w)g, Yw € Vi(QR).
keQg

The stiffness of Bg is just a scaling of the mass matrix associated with E.
e the coarse solver
As we will see in Section 5, we have

|Eodp|Tq, = Hlog(H/h).

As in Proposition 3.1, one can verify that

— Yho2 WG, + Hlog(H/h) > |y r(vh — o0, ()P, Yo € ViP(Q).
FCoQ,

Hence, we have for any v) € V()

+ Hlog(H/h) Z !’YhF( 7h89k(vh))‘2}‘
FCoQ,

Ahvha Uh Z Wk{””h Yh,08, (Ug) 5
This means that By can be defined as

(Bovhvwh) Z wk{( — Yh,09 (1)2),10 — Vh,00, (w2)>h Wi
+H10g(H/h) Z ’Yh F(h — Yh aﬂk( 2)) Vi, b (W) — Yh00, (WH))},
V2(Q), Y, € V().

11



Then, the stiffness matrix of By is calculated by Bg = (by;),x1, With

+H log(H/h) FC%:Q Y F (V2 = Y00, (V) - Yh,r (W) — o0, (7))}
' (Tvlzlv"'aLO)

N
by = (Bo(Eo?), Eo)) = k; wr{ (WY — Yh00, (WD), V) — Yh.o0, (VD)) hw,

Remark 4.2 Note that our coarse solver By is different from the one described in Algo-
rithm 6.10 of [8]. The coarse solver in [8] involves N extra unknowns (see also [5]), which
need to be solved by a special technique (see [32]). The coarse solver By is similar with the
one given in Subsection 4.3 of [7], in which stability of the coarse solver was not proved
(We do not know why the article [7] cited directly the stability result of the coarse solver in

[8))-

The action of B; ! can be described by the following algorithm
Algorithm 4.1. For g € V;,(2), the solution u, € V3(Q) satisfying

(Bhug,vh) = (g,vh), V’Uh c Vh(Q)

can be gotten as follows:
Step 1. Computing ug € V2(£2) by

(Bouo,vp) = (g,vp), Yo, € V;?(Q);
Step 2. Computing ug € V,,(Qg) in parallel by
(Bug,vn) = (g,vh), Yon € Via(QE);
Step 3. Computing ufj € VP(;) in parallel by
(Bijuly,vn) = (g,0n), Yo € Vi (Qij);

Step 4. Set

Ug = Ug + Z UE—FZUZ

EESF Fi]'

Remark 4.3 The efficiency of the preconditioner By, strongly depends on the action of the
coarse solver By. The face basis extensions Ep¢p play a key role in the definition of By.
This is why we focus on the design of the extension Eg in this paper.

In the rest of this subsection, we consider an acceleration of Algorithm 4.1 (see [16] for
the detailed discussion on this kind of acceleration). For convenience, set V = V},(€2), and
define

Vi=V2(Q)+> VP(Qy) and Va= > Vi(Qp).
Fij EGgr

Let VQJ- denote the orthogonal complement of V5 with respect to the inner product (Ap-,-).
It is clear that
V="+

Let Ag : Vi(Qg) — V4(Qg) denote the restriction of Ay, on Vi, (Qg). Define

By =B;'Qo + ZB»L-;IQ@-

12



The following algorithm can be viewed as a combination between the CG method and
the multiplicative Schwarz method with the above decomposition for solving (2.4).
Algorithm 4.2 (multiplicative Schwarz-CG) Let u; € V' be an initial guess such that the

error up — Uy € V2l (for example, u; can be chosen as u; = > Angth € V3). When an
Eeér
approximation u, € V has been gotten, we look for u, 1 € V as follows (n > 1):

Step 1. Solve ¢,1 € V4 by

en1 = By (fn — Anun).
If £,1 = 0, then the iteration is terminated; otherwise, goto Step 2:
Step 2. Compute ug € V() in parallel by

(Agug,v) = (fn — Ap(up + €n1),v), Yo € Vi(QE).

Define €,,2 € Vo by

En2 = Z Ug,

Eeér
and set
En = €nl + Ena.
Step 3. Compute
(€n, Apan—_1)

(e 77} Oé():()
lom i, ot (20 =0)

Qp = Ep —

and
(fn — Apun, an)

leen %,

Unp+1 = Up + n-

Remark 4.4 Step 1 in Algorithm 4.2 would be implemented by Step 1 and Step 3 in Algo-
rithm 4.1. Since each Vi, (Qg) has a very low dimension, which equals the number of nodes
in the coarse edge E, Step 2 in Algorithm 4.2 is also very cheap.

4.4 Convergence

The following result gives an estimate of cond(B;, * A4y).

Theorem 4.1 Let the extension be defined by Subsection 3.1. For the preconditioner By
defined in Subsection 4.3, we have

cond(B; ' Ay) < Clog?(H/h), (4.5)

where C is a constant independent of h, H and the jumps of the coefficient w across the
faces I';;.

The convergence of Algorithm 4.2 involves the subspace V. Define T* = (B 1Ah)|VQJ_.
It is clear that T™ is symmetric and positive definite with respect to the inner product

(Ah'a )
Theorem 4.2 10 Let the sequence upy1 be defined by Algorithm 4.2. Then

VE(T*) —1

l|up — Un+1||Ah < Q(W)n”uh - ulHAh? (4.6)

where k(T™*) denotes the condition number of the operator T*. Moreover, we have k(T™) <
cond(B; ' Ay).

13



Remark 4.5 Algorithm 4.2 is as cheap as PCG method for solving (2.4) with the precondi-
tioner By. However, Theorem 4.2 indicates that the former has a faster convergence speed
than the later.

Before proving Theorem 4.1, we need to derive a new estimate of the extension Ey. For
¢ € Wi(T), define ¢g € WP (T) by

do= Y Wmp@OIRL+ Y me@)Ipl+ Y 6(p)ep (4.7)

Ferr Eeér PEVDP

Lemma 4.1 Let ¢ € Wi(I), and let ¢g be defined by (4.7). Then,

190 = m00, (D)6, S 16— Yh002. (D)5, (4.8)

and

V.00 (B0 — Yh.00, @) S H 216 — vh,00, (0)115 00, - (4.9)

Proof. Since

1= Y Ipl+ Y Ipl+ Y, ¢ ondy,

FCoQ ECoQy pEILNVE
we have
Moo (@) = D oo (OIPL+ Y oo @RI+ > Yhoe.(d)ep on 0.
FCoQy ECoQy pEIQL NV
Then,
b0 — o0 (@) = D (mr(®) = Yoo, ORI+ D (mhe(d) — Yhoa,(0)IR1
FCog, ECoQy,
+ Y (8() = o (8)ep
e
= > mr@—moo@)Ipl+ D mE(d — oo, () Ip]
FCow, ECoQ,
+ > (6(p) = Yhoa(9)ep on O (4.10)
e

Furthermore, we get by the direct calculation and the inverse estimates

d0 — Moo, (@G, S H Y. 1meld — oo (@) + hllé — vho0. (D)5 .00,

B0,
< o= oo (@), (4.11)
and
160 — Yhoor (D00, S H® D @ — o0 (@) + A6 — 1,00, ()15 0000,
FcoQy
< Nld = o0 (@)13 00, - (4.12)

It can be verified that
.00 (B0 — Yh.00, (@) S H?(ld0 — .00, (@) ]16.00, -

which, together with (4.12), gives (4.9).
O
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Lemma 4.2 Let ¢ € Wi(T), and let ¢g be defined by (4.7). Then,

N
> wilBogolt g, S log(H/h)o%r- (4.13)
k=1

Proof. 1t suffices to estimate (3.19) more carefully. It is easy to see that
$0 — Vh,o2, (P0) = (G0 — Yh,00, () — Tho0, (G0 — Yn,00, (0))-
By the triangle inequality, we deduce

[P0 — Yn,004 (¢0)”(2),Wk S ldo — %,mk(@”am + [1vh,00, (¢0 — ’Yh,aﬂk(ﬁb))ﬂg,wk
< g0 = vmo0, (D)o, + Hlvno, (d0 — o0, (8))1%,

and

[P0 — ’Yh,aﬂk(@Hg,an + |[vh,00, (D0 — Yh00, (¢))] (2),6Qk

<
< Ndo = Ymow (D) 16.00, + H [ Vho0. (G0 — Yho0, (0))]*.

l|po — ’Yh,aﬂk(%)ug,agk

Substituting (4.8)-(4.9) and (4.12) into the above two inequalities, yields

0 — Y00 (30) 15w, S 16— Yh000 @5, + H ¢ — o0, (D)5 .00, (4.14)
and
[0 — Y00, (20) 11500, < 16— Yh.00, (@)]5.00, - (4.15)
Combining (4.14) with (2.11), leads to
o — Yh,o0, (G5, S log(H/h)H |6 — ’7h78§2k(¢)”2%739k' (4.16)

Plugging (4.16) and (4.15) in (3.19), and using Friedrichs’ inequality, leads to (4.13).

O
Proof of Theorem 4.2. The idea of the proof is standard. But, for readers’ convenience,
we still give a complete proof of this theorem below. One needs to establish a suitable
decomposition for v, € V3 (Q2)

vy, = vo + Z UE+Zvija (4.17)

Eeér Fij

with
vy € V;?(Q), vp € Vi(Q2p) and wv;; € V,f(Qij).

This decomposition should satisfy the stability condition

(BQUO7 Uo) =+ Z (BEUE, UE) + Z(Bijvij, Uij) 5 logZ(H/h) (Ahvh, Uh). (4.18)
EEEF Fij

Set ¢, = vp|r, and define ¢ € WP(T') as in (4.7). For E € & and ¥ = T;; € Fr, set
o5 = Ip[dn — (o)), and ¢y = IR[dn — yhr(dn))-

It is clear that ¢ € Wi,(E) and ¢;; € Wj,(F). Tt is easy to see that

dh=co+ Y, dE+ Y Pij. (4.19)

Eeér Fij
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Let vg be the zero extension of ¢, and set vg = Eg¢g. Then,
VR € Vh(QE) and vy € V;?(Q)

Let Ug € VP(€;) be defined such that vg Ir,; = ¢ij, and v{j is discrete harmonic on 2; and
Qj. Set

= —v0— Y vE— Y vi)la,. (4.20)
Eegr‘ F,‘j

Then, we have v, € V() by (4.19). For each k, let my, be the number of faces that
belong to 0€2. Define
v = Ug +of fmi +f Jmj.

It suffices to verify (4.18) for the functions defined above. For convenience, set

G(un) = (Bovo,vo) + Y (Beve, ve) + »_(Biyvi,vil).
EEEF Fij

Using (4.1), (4.13) and the trace Theorem, we get
(Bovo, vo) < log(H/h)(Apvn, vn). (4.21)

Moreover, we have by (4.2), (2.12) and (2.14)

(BEUE, UE) S ||UE||3,E 5 logQ(H/h) Z wk/ﬂ |Vvh|2dp. (4.22)
keQr k

Here, we have used the discrete norm to derive the first inequality for vg vanishing at all
nodes outside E. Besides, we deduce by (4.3), the definition of vg and (2.13)

(Bijvij,vi) S (it wi)llogl , S log*(H/h)(wilvali o, +wjlonlig,)- (4.23)

oo\t ij

This, together with (4.21) and (4.22), leads to
G(vn) < log?(H/h)(Anvn, vn)- (4.24)
On the other hand, it follows by (4.20) that

‘Ui‘i()k S ”Uh’%,ﬂk + ’UO‘%,Qk + Z \UE’%,Qk + Z \véf\i Q-

Eeér Tij
Combing this with (4.1)-(4.3), yields
N
> wilv}lf o, S (Apvn,va) + Glop).
k=1

This, together with (4.24), leads to
N
D (Bij(vf fmi 405 fmg), of fmi 4+ 08 fmj) S wilvpli o, < log®(H/R)(Anvs, vp)-
Ty, k=1
By the definition of v;;, (4.23) and the above inequality, we further get

> (Bijuij,vij) S log*(H/h)(Apvn, vp).

Now, (4.18) is a direct consequence of the above inequality, together with (4.24).
O
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5 Analysis for the stability of the extension Ep

This section is devoted to verification of the stability condition (3.16), which has been used
in Lemma 4.2. Since quasi-uniform meshes are considered, the analysis is a bit technical.
Our basic idea is to introduce a suitable “approximate” extension of Fr. This auxiliary
extension is defined by positive integers, so that its stability can be verified more easily by
estimating two finite sums associated with the discrete H! semi-norm.

5.1 An auxiliary extension

For face F = I';; and a node in €, let p’, p”, dp and Ag be defined as in Subsection 4.1.
Without loss of generality, we assume that A < min{|pp’| : p € N},N(;\F)}. For a positive

number z, let [x] denote the integer part of z. Set np = [dTF] For any node p € Q;;\F with
p’ € F, define
/| / //|

_(lpp P'p
p =[] )
To understand the meaning of the integers m, and n, more intuitively, we image that the
segments pp’ and p'p” are divided into some smaller segments with the size h. Then, m,,
and n, can be viewed roughly as the numbers of the division points on the segments pp’
and p'p”, respectively.

By the definition of the set A, it is easy to see that the positive integers m, and n,
possess the properties:

Property A. For each node p € Ap, we have 1 < m, <n, < ng;

Property B. For two integers r and k satisfying 1 < r < k < np, there are at most
O(np) nodes p € A, such that these nodes p define the same m, = r and n, = k;

Property C. For an integer k satisfying 1 < k < np, there are at most O(m,np) nodes
p € Ap, such that these nodes p define the same n, = k.

For the constant-like basis function ¢p = Igl, define the auxiliary extension

and n, =

1, if per,
(E{Tqu)(p) = 1- %7 1fp € AF7 (51)
0, otherwise.

For the verification of the stability (3.16), one needs to prove the following two inequalities
[(Er — Ep)¢rli g, S dr log(dp/h) (5.2)

and
|Exop|f o, S drlog(de/h). (5.3)

5.2 Auxiliary results

In this subsection, we estimate two finite sums, which will be used to verify the inequality
(5.3).

In the rest of this section, p; and py always denote two neighboring nodes. Since
the triangulation 7, is quasi-uniform, there exists a (fixed) positive integer ko, such that
|p1p2| < koh for any two neighboring nodes p; and py. Then, it can be verified, by the
definitions of m,, and n,, that

[myp, — mp2‘7 ‘npl - nm\ < ko+1 (5.4)
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Lemma 5.1 Let Ag be the set of nodes p, at which the extension Ep¢p vanish. Namely,

A2 ={peN,NQij: p&F, pgAr}.

Then,

YOS -E2)? <y (5.5)

p1 GA% p2EAR "'p2

Note that p1 and py above denote two neighboring nodes.

Proof. For a node pa € A, there are at most finite nodes p; € Ag, such that p; and po are
neighboring each other. Then,

h Z Z mp2 2 <h Z mpz (56)

p1eAY P2€AR "p2 p2€AR p2
where
={p € Ap : thereis p, € Ag such that p and p, are neighboring}.

For p € AF, let p. € Al‘? denote a neighboring node with p, and let p, be the projection of
P« on the plane containing F. Set

A ={pehe: pier} and AP ={pelr: p,¢rh

Then,
Re = AV URD.

It is easy to see that the set [\%2 ) contains O(nr) nodes at most. It follows by (5.6) that

D S D S LI

pr1EAY P2EAR p2 peAll) " peAl? P
< k) 2 4 dp. (5.7)
pEA(l) P

Letp € /N\g). From the definition of A2, we know that either p, € 99;;\0F or |p.pl| > [pLpY],
where p/ is defined as in Subsection 3.1. By Assumption 3.1, we have m,, > n,, in any
case. Then, we deduce, by (5.4), that

my > mp, — (ko +1) > ny,, — (ko +1) > np —2(ko + 1).

This implies that
max{1l, n, —k*} <mp, <n,, Vpe 1~\(1),

with £* = 2(kg + 1). Thus, we have from Property A and Property B

k* k*
S (-2 g nF{z S (- mp>+ 2 z <—mp>2}

pej\g) "p np=1mp=1 np=k*+1 mp=n,—k* "p

A

ng np
F{<k*>2+ DS <—mp>2}. (5.8)

np=k*+1mp=np—k* "p

18



It is easy to see that

np Np

k* 1

S oa-Tepe ¥ - Kol
n n n

mp=np—k* P mp=np—k* P P

Plugging this in (5.8), and note that k* is a constant, leads to

hY < dp ((k*)2+(k*)3 i‘ ng) < d.

pedd) np=k*+1

Combining (5.7) with the above inequality, gives the desired result.
O

Lemma 5.2 The following inequality holds for two neighboring nodes p1 and po

he S (P T2 < g tog(de /h). (5.9)
p17p26AF pl np2

Proof. For p; € Ay, define
Ar ,, = {p € Ap : p is neighboring with p; }.

Let ko be defined by (5.4). Then, we have from Property A and Property B

Npy
D D e Z Yoy (G Tep
~Y
n n
p1,p2€AF pl P2 "Pl =1 mp, =1 pZEAF 1 P P2
ko+1 7Tpy m
_ p1 op2\2
= de > > > )
nplflmplfpoEAFp p2

ng ko

D SIED DD DRIk

n n
np1:k0+2 mp; =1 p2€AR - 1 D2

Npy

I S S S

np, =ko+2 myp, =ko+1p2€AR 1 P1 Mpy
= Il+I2+13 (510)

It is clear that I} < dp. When my,, < ko, we deduce from (5.4) that m,, < 2kg + 1 for

~

p2 € App,. Note that kg is a constant, we get

I, < dp Z > 74'7)

2
np, =ko+2 p2 eAF Ty Npy
ng
1 1

< dp Z <+> < dp. (5.11)

np, =ko+2 n72’1 (npl — ko — 1)2

It follows by (5.4) that
Tpy ko+1 ko+1 2
Mp, My, +7
wxa oy 3N (b

np, =ko+2 mp, =ko+1 k=—ko—1r=—ko—1 \ ""P1 P
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Tipy ko+1 ko+1 kmpl ~ rnp, 2
SRR MDY > Qm%+m>

Tlpl—ko-l—Qmplfko—‘rlkf—ko 1lr=—ko—1

Npy 2 2
ms. +n
< P1 P1
S dr Z Z n2, (ny, — ko — 1)2
npl—ko-i-Q Mp, =ko+1 P1
ng

< Z L S < dwl
~ F F logng.

—1)2 ~
Np, =ko+2 (npl ]{70 1)

Plugging (5.11) and the above inequality in (5.10), leads to

heoSD (B - Tey2 < gilog(dp /).

n n
p1,p2€AR Pl p2

O

5.3 Proof of Theorem 4.1
It suffices to verify that

|Erdr|iq,,

20, S dplog(dp/h) = |¢F|Z%(F). (5.12)
00

Let EL¢r be the auxiliary extension defined by Subsection 5.1.
Step 1. Verify the inequality (5.2)
Let p € Ap. Then, we have

/ //|

'l el lp
(Bror — Bpor) ()] =12 = (1101 (513)
e A bl ) (L )
1) < <
LR 1) < (PP < (PP vy,
we get,
| _ [Ipp’l]/[!p’ ”I] lpp/| + A
" [+h " R h I
Plugging this in (5.13), leads to
(Brér — Bpor)p)] < e < (5.14)
FQPF — LEpQPF > — .
|p/pll| np
By the inverse estimate and the discrete L?-norm, we get
|(Br — Ep)drlio, < h721(Er — Ex)orlio,
= h Y (Erdr — Epér)*(p).
pGAF
This, together with (5.14), yields
1
|(Br — Ep)orlio, S h Z — (5.15)
eAp P
By Property A and Property C, we get
1 &
Z FZ—<nFZ p<nFlognF
pEAR > 1 o1 T
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Plugging this in (5.15), gives (5.2).

Step 2. Verify the inequality (5.3)

For simplicity of exposition, let A} denote the set of neighboring node paring (p1,p2),
which satisfies (ERor)(p1) — (EL¢r)(p2) # 0. By the discrete H! semi-norm, we have

|Erdrlio, Th Y. [(Eror)(p1) — (Bpor)(p2)|*. (5.16)
(p1, p2)EAL

For ease of notation, define
Ar p={peN,NF: p closes OF}.

It is easy to see that the set Af, can be decomposed into several groups: (a) p1 € Apj and
p2 € OF; (b) p1 € F and py € Ap; (¢) p1 € Ag and ps € Ap; (d) p1,p2 € Ap. It is certain
that one can also consider the inverse situation with exchanging the positions of p; and po,
but this will not affect the result.

It follows by (5.16) that

Bporlo, = h S S (1-02+r Y 3 (Br2y

P1EAFR , p2€OF p1EF p2 EAF p2
m m
FEY Y a-Tmpey Y (MnoTmp Gy
pr1EAY P2EAR p1,p2€AR "y P2

It is clear that the set Ap, contains only O(np) nodes. Then, we get for two neighboring

nodes p; and po
dp
h — 2 < .
E g (1 h- 7 = dp. (5.18)
p1€AR |, p2€0F

When ps € Ap is neighboring with some p; € F, we have
p2 < |p2ph|/h < [p1pa|/h < ko.

Besides, for any ps € Ap, there are at most finite nodes p; € F, such that p; and py are
neighboring each other. Thus, we deduce by Property A and Property B

ko "F
P Y R EY Y RS (5.19)

preF pochp P2 I=1npy—1 "'P2

Substituting (5.18)-(5.19), (5.5) and (5.9) into (5.17), yields (5.3).
Step 3. Prove the desired result (5.12)
Combining (5.2) and (5.3), yields

|Exorli o, S drlog(dp/h).
In the same way, we can prove that
|Erdr|i o, S drlog(dp/h).
On the other hand, it can be verified, by the discrete semi-norm in Subsection 2.2, that

|pp|? 1~ drlog(dp/h).
HE(F)
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6 Numerical experiments

In this section, we give some numerical results to confirm our theoretical results described
in section 4.

Consider the elliptic problem (2.1) with Q being the cube Q = [0, 1]2, and the coefficient
a(x,y, z) being defined by

a(z,y,z) = 107°, if x,y<0.5 or z,y>0.5;

a(l’,y, Z) = ]-a otherwise.

The source function f is chosen in a suitable manner.

Let 2 be decomposed into N cube subdomains with the edge length H. To illustrate wide
practicality of the new method, we consider tetrahedron elements instead of hexahedron
elements. Let each subdomain be divided into tetrahedron elements with the size h in the
standard way, and use the usual P, finite element approximate space.

We solve the algebraic system associated with the equation (2.4) by PCG iteration with
the preconditioner Bj, defined in Section 4 or Algorithm 4.2. Here, each local solver B;; is
chosen as the symmetric multigrid preconditioner for the restriction of Aj; on the subspace
V2(€;). The iteration terminates when the relative remainder is less than 1.0D — 5. The
iteration counts are listed as the following tables.

Table 6.1
iteration counts for PCG with By,

H/h |H=1/A| H=1/6 | H=1/8
8 29 32 32
16 40 42 42
32 50 51 52
Table 6.2

iteration counts for Algorithm 4.2

H/h |H=1/A| H=1/6 | H=1/8
8 24 26 26
16 31 33 33
32 39 A1 A1

These numerical results indicates that the convergence of the new preconditioner is
stable with the subdomain number N, and depends slightly on the ratio H/h. These are
just predicted by Theorem 4.1 and Theorem 4.2. Besides, the numerical results show that
Algorithm 4.2 is indeed more efficient than the standard PCG.

7 Appendix

In this Appendix, we revise the definition of the extension Fg for the general case without
Assumption 3.1.
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Let op € F denote the center of the largest circle? contained in F. Then, op satisfies
dist(op,0F) = dp. Through the center op, we draw the perpendicular line L of F. Let
09, 4§ € 0€);; denote the two intersection points of L with 0€;;. Set

sp = min{opq7|, lopg3|}.

Set rp = dp/sp. Since §; and €; are regular and convex domains, the ratio rp is uniformly
bounded for every F. With the same notations in Subsection 3.1, set

Ap ={p e NN (;\F) : p €F, rplpp| < [p'D"]}.

For a face F = I';;, we revise the extension Ef as :

1, if per,
(Eror)(p) = 4 1 - B if p e Ap, (7.1)
0, otherwise.

For such revision, the proof of Theorem 3.1 is almost the same with that in Section 5.
We revise the definition of the positive integer m,, for p € Q;;\F (p/ € F) as

. T‘F’pp/’
mp _[ h ]7

but reserve the definition of the auxiliary extension Ef, given in (5.1). We need only to
revise slightly the proof of Lemma 5.1. Below is the changes needed to make.
The inequality (5.4) now becomes to be

|mp1 - mp2| < rpko+ 1, ‘npl - npz‘ < ko+1, (7'2)

for two neighboring nodes p; and ps.

Let A‘g and Ap be defined in Lemma 5.1. For p € Ap, let p, € A‘g be some neighboring
node with p. When p, € 99;;, we deduce that rp|p.p| > |p,p”| by the definition of rr and
the convexity of €; and ;. Then, we have m,, > n,, for p, € Ag. For p € Ap, we get by
(7.2)

my > my, — (rpko +1) > ny,, — (rpko + 1) > np — (rp + 1)k — 2.
This implies that ~
max{l, n, —k*} <mp <np,, Vpe€Ap,

with £* = (rp + 1)ko + 2.

Remark 7.1 It is easy to see that the above revision is needed only for the case with rp > 1,
since rp < 1 implies that Assumption 3.1 is satisfied. When rg < 1, the use of the original
definition of Ex (see Subsection 3.1) can reduce the cost for calculating Exor.

8 Conclusions

We have developed a kind of simple nearly harmonic extension for the constant-like basis
function. This extension is used to define a coarse subspace, and then is applied to construct
a substructuring preconditioner with inexract subdomain solvers. The simplicity of the
extension guarantees that the resulting preconditioner is easy to implement.

2If F possesses two parallel edges, then there may exist infinite largest circles contained in F. For this
case, one needs to consider two such circles, which are tangent with three or more edges of F. Besides, the
point or can be also chosen as any “central” point of F. Different choices of op will result in different values
of the constant in the right side of (5.5).
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