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Abstract. In this paper, we consider the cascadic multigrid method for a parabolic type equa-
tion. Backward Euler approximation in time and linear finite element approximation in space are
employed. A stability result is established under some conditions on the smoother. Using new and
sharper estimates for the smoothers that reflect the precise dependence on the time step and the
spatial mesh parameter, these conditions are verified for a number of popular smoothers. Optimal
error bounds are derived for both smooth and non-smooth data. Iteration strategies guaranteeing
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1. Introduction. The cascadic multigrid method presented by Deuflhard, Leinen
and Yserentant in [21] is a one-way multigrid method which may be viewed as a
multilevel method without the coarse mesh correction. The method dates back to
Wachspress’ pioneering work [47]. The basic idea of this method is to control the
iteration number over successively refined mesh as long as the algebraic error is below
the discretization error. The first algorithmic realization for two dimensional ellip-
tic problems was given in[21] while the three dimensional realizations and convincing
numerical results were reported in Bornemann, Erdmann and Kornhuber [10]. In Deu-
flhard [20], the use of a posteriori algorithmic control in combination with conjugate
gradient method was proposed, suggesting more iterations on coarser levels to be used
so as to perform less iteration on finer levels. Shaidurov [37] gave the first convergence
proof that provides a theoretical justification of the numerical performance. Based
on the cascade principle given in [21] that suggests the termination of the iteration
when the discretization error dominates the algebraic error, Bornemann and Deufl-
hard [9] extended the results to the case when other traditional iteration methods are
employed as smoothers. Optimal error bounds for the cascadic solution were derived
and the algorithm was shown to have the multigrid complexity [26]. Later, the cascadic
multigrid method was applied to the elliptic problems in domains with re-entrant cor-
ners [38], Stokes problem [12], some indefinite and semi-linear problems [39], some
mildly nonlinear problems [45, 28], and more recently it was extended to the Mortar
setting [13] and variational inequality [4]. In [40, 44], the cascadic algorithm with
non-conforming finite element discretization was considered, and in [42], the cascadic
algorithm with finite volume discretization has been studied. We refer to [43] for the
review of recent progress of this method.

Studies on the cascadic multigrid method for parabolic problems, have also been
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made during the last decade, see, e.g. [6, 41, 48]. With a discrete in time formulation,
cascadic multigrid methods can be directly applied to the resulting elliptic problems by
treating the time step size as a parameter. Though numerical experiments presented
in [6] indicate that the method behaves quite well for parabolic problems, a complete
mathematical analysis is not yet available. In fact, one important issue that has not
been addressed is how the choice of parameters would affect the interplay between
the stability of the algorithm and the iteration strategy. Moreover, it remains to
be studied whether the optimal error bounds can be rigorously derived and if the
algorithm is still of multigrid complexity. A key to the establishment of such results is
a careful investigation of the stability properties of the cascadic multigrid algorithm
when applied to parabolic problems with the time and space discretization. In turn,
this requires improved estimates on the various smoothers that reflect the intrinsic
spatial and temporal structures of the fully discrete approximations.

To put our work in a larger context, we note that there have been much interests
in the study of the effect of iterative solvers on the numerical solution of parabolic
equations with implicit-in-time discretizations [23]. Such studies are not only practi-
cally important but also theoretically interesting. In fact, it has been widely known
that, for implicit in time discretizations, it is often possible to gain computational
efficiency while preserving the order of accuracy through suitable approximations. To
give an illustrative example, an earlier work of Dawson, Du and Dupont [22] pro-
posed a coupled explicit/implicit domain decomposition algorithm as an alternative
to a fully implicit discretization of parabolic equations. The domain decomposition
algorithm may be seen as an approximation to the fully implicit scheme but with very
different stability properties. Here, we also face the issue of establishing new stability
estimates. Moreover, while the particular emphasis of our present paper is to give a
comprehensive analysis of the cascadic multigrid method for parabolic equations, the
framework and technical details may be useful in the study of other similar models
and methods as well.

For the purpose of illustration, we focus on a linear parabolic problem in two
dimensional space. We establish the stability of the cascadic algorithm under some
conditions on the smoothers. We also prove an optimal error bound in the L2 norm for
the cascadic solution of the parabolic problem in spite of the fact that it is impossible
to obtain such a bound when the cascadic algorithm is applied to a standard second
order elliptic problem with the linear finite element discretization [11]. It is also worth
mentioning that as addressed in [11], cascadic multigrid method is different from the
idea of incomplete iteration proposed in [15, 23] and [46, Ch. 11]. New techniques
are used in our discussion to obtain the desired estimates. In addition, our analytical
results provided here also give practical guidance on the choices of various parameters
in the implementation of the cascadic algorithms for both the smooth and non-smooth
initial data.

The rest of the paper is organized as follows: in § 2, we describe a Cascadic
Algorithm for parabolic problems. In § 3, we study the time stability of the algorithm
under some assumptions made on the smoothers. This is essential for the convergence
of the cascadic algorithm when applied to the time-dependent problems. Using new
estimates particularly suitable for parabolic type of problems, these assumptions are
verified in § 4 for smoothers such as Simple Jacobi, Symmetric Gauß-Seidel, and
Conjugate Gradient. Though many similar smoother estimates have been discussed
in the literature, they are not directly applicable in our setting to derive the optimal
results. Our improved estimates are generally sharper in their precise dependence
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on the mesh parameters and time steps. Error estimates are derived in § 5 for both
smooth and non-smooth initial data. The iteration strategies are addressed in § 6 and
some conclusion remarks are given in § 7.

Throughout this paper, C is always a generic constant and is independent of the
mesh size h and the time step τ .

2. Cascadic algorithm for a parabolic problem.

2.1. The model parabolic problem. We consider the following parabolic
problem





∂u

∂t
+ Au = f in Ω× (0, T ],

u(x, t) = 0 on ∂Ω× (0, T ],
u(x, 0) = u0(x) in Ω,

(2.1)

where Ω is a convex polygonal domain in R2 with boundary ∂Ω, and A is an elliptic
operator of the form:

Au = −
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ c(x)u.

A weak form of (2.1) is: Find u ∈ H1
0(Ω), with u(x, 0) = u0(x) in Ω and

(∂u

∂t
, v

)
+A(u, v) = (f, v) ∀v ∈ H1

0(Ω), ∀t ∈ [0, T ]. (2.2)

Here, H1
0(Ω) is the standard Sobolev space and the bilinear form A is defined as

A(v, w) =
2∑

i,j=1

∫

Ω

aij
∂v

∂xi

∂w

∂xj
dx +

∫

Ω

c(x)vw dx ∀v, w ∈ H1
0(Ω) ,

in particular, define ‖v‖2A: = A(v, v), and (f, v) =
∫
Ω

fv dx for v ∈ H1
0(Ω). The usual

assumption on the bilinear form A reads

(i) |A(v, w)| ≤ C‖v‖1‖w‖1 ∀v, w ∈ H1
0(Ω),

(ii) A(v, v) ≥ C‖v‖21 ∀v ∈ H1
0(Ω).

For the basic theory of parabolic equations and relevant function spaces, we refer
to [1, 32]. For the application of classical multigrid methods to parabolic equations,
see, for example, [3, 16, 17, 25, 33, 50] and [46, Ch. 11].

For simplicity, we choose a Backward Euler scheme for the time discretization.
Given a time interval (0, T ), let τ be the time step size, n the total number of time
steps taken such that nτ = T . The semi-discrete in time scheme is

(uk − uk−1

τ
, v

)
+A(uk, v) = (fk, v) ∀v ∈ H1

0(Ω), k ≥ 1, (2.3)

with u(x, 0) = u0(x) and fk = f(x, tk).
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2.2. Finite element discretization. Given a nested family of triangulation
{Tj}`

j=0 with mesh parameter {hj}`
j=0. Throughout the paper, all triangulations are

assumed to be quasi-uniform such that there exists a positive constant C satisfying
C−1 ≤ 2jhj ≤ C. The family of continuous piecewise linear finite element spaces
X0 ⊂ X1 ⊂ · · · ⊂ X` are given by

Xj = {u ∈ H1
0(Ω) | u|K ∈ P1(K) ∀K ∈ Tj },

where P1(K) denotes the set of linear functions on the triangle K.
The fully discrete problem corresponding to (2.3) is defined as: Find un

j ∈ Xj(0 ≤
j ≤ `) such that

(un
j − un−1

j

τ
, v

)
+A(un

j , v) = (fn, v) ∀v ∈ Xj . (2.4)

Denote by Rhu ∈ X` the elliptic projection with respect to A, and Ph the L2 projec-
tion on X`. Define an auxiliary bilinear form as

Aτ (w, v) := τ−1(w, v) +A(w, v) ∀w, v ∈ H1
0(Ω),

We define the Cascadic Algorithm for solving 2.1 as follows:

CASCADIC ALGORITHM for problem (2.1).
Step 1: For n = 0, u0

∗ = Phu0.
Step 2: Once un−1

∗ is known, un
∗ is defined as follows: for j = 0, solve finite element

equations

Aτ (wn
0 , v) = (fn, v)−A(un−1

∗ , v) ∀v ∈ X0

exactly, and let wn,∗
0 = wn

0 .
For j = 1, · · · , `, let wn,∗

j = Cj,mj,nwn,∗
j−1 and wn

∗ = wn,∗
` . We then let un

∗ =
wn
∗ + un−1

∗ , where Cj,mj,n denotes the mj,n steps of a basic iteration applied
on level j at time step n.

Here, for simplicity, we have dropped the index ` for the un
∗ which always refers to

the Cascadic solution at time step tn and level `.
We call a cascadic multigrid algorithm optimal on level ` if the algebraic error is

commensurate with the discretization error, i.e.,

‖un
∗ − un

` ‖τ ≈ ‖un − un
` ‖τ ,

and with multigrid complexity if the amount of work on time step tn is O(n`), where
n` = dimX`.

2.3. Additional notations and technical lemmas. The following lemma
gives the regularity of the resulting elliptic problem, the proof is standard (see [24]).

Lemma 2.1. For a given g ∈ H−1(Ω), the problem

Aτ (w, v) = (g, v) ∀v ∈ H1
0(Ω)

has a unique solution w ∈ H1
0(Ω), and if g ∈ L2(Ω), then w admits the following

regularity estimate:

τ−1/2‖w‖1 + ‖w‖2 ≤ CR‖g‖0 , (2.5)
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for some constant CR.
Let us define the τ -norm by ‖v‖2τ : = Aτ (v, v), the τ -inner product by (v, w)τ : =

Aτ (v, w) for any v, w ∈ H1
0(Ω), and the orthogonal subspaces by

X⊥
j−1: = { v ∈ Xj | (v, w)τ = 0 ∀w ∈ Xj−1 }. (2.6)

For 0 ≤ j ≤ `, we define some linear operators Aτ,j :Xj → Xj by

(Aτ,jv, w): = Aτ (v, w) ∀v, w ∈ Xj .

Note that Aτ,j = τ−1I + Aj is positive definite with Aj defined by

(Ajv, w): = A(v, w) ∀v, w ∈ Xj .

In particular, we let Ah = A`. Denote by λ̂j and λ̂1 the largest and smallest eigenvalue
of Aτ,j and by κj the condition number of Aτ,j . We see that λ̂j = τ−1 + λj , with λj

the largest eigenvalue of Aj . It is well known that λj = O(h−2
j ).

As a convention, we let ‖B‖ be the matrix norm ‖B‖: = sup‖x‖=1 xTBx for any
matrix B, and ρ(B) be its spectra radius, and κ(B) be its condition number.

3. Stability. For the sake of clarity, we first present a new stability analysis of
the Cascadic Algorithm for the parabolic equations under some assumptions on the
smoothers. We assume that the smoothers satisfy: for j = 1, . . . , ` and k = 1, . . . , n,

‖Cj,mj,k
v‖τ ≤ ‖v‖τ ∀v ∈ Xj ,

‖Cj,mj,k
v‖τ ≤ γj,k‖v‖τ ∀v ∈ X⊥

j−1 .
(3.1)

Detailed derivation of the above estimates are presented later for some smoothers of
interests (see Theorem 4.2, Corollary 4.3 and Theorem 4.4).

Theorem 3.1. Under the condition

∑̀

j=1

γ2
j,k < 1 for k = 1, . . . , n, (3.2)

the Cascadic Algorithm is stable in the sense that the solution un
∗ satisfies

‖un
∗‖2A ≤ C‖u0‖2A +

n∑

k=1

τ‖fk‖20. (3.3)

Proof. For 1 ≤ k ≤ n and 1 ≤ j ≤ `, let u k
` be the solution of

Aτ (u k
` , v) = (fk, v) + τ−1(uk−1

∗ , v) ∀v ∈ X` . (3.4)

And we define w k
j ∈ Xj satisfying

Aτ (w k
j , v) = (fk, v)−A(uk−1

∗ , v) ∀v ∈ Xj .

Comparing with the algorithm, we have u k
` = w k

` + uk−1
∗ , thus uk

∗ − u k
` = wk

∗ − w k
`

and a bound on uk
∗ − u k

` can be found by getting a bound on wk
∗ − w k

` .
Similar to [9], we note that for any 1 ≤ k ≤ n and 1 ≤ j ≤ `,

wk,∗
j − wk

j = Cj,mj,k
(wk,∗

j−1 − w k
j )

= Cj,mj,k
(wk,∗

j−1 − w k
j−1) + Cj,mj,k

(w k
j−1 − w k

j ). (3.5)
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Invoking (3.1) as well as (3.5) yields

‖w k,∗
j − w k

j ‖τ ≤ ‖w k,∗
j−1 − w k

j−1‖τ + γj,k‖w k
j − w k

j−1‖τ .

A recursive application of the above inequality leads to

‖wk
∗ − w k

` ‖τ ≤
∑̀

j=1

γj,k ‖w k
j − w k

j−1‖τ . (3.6)

Using Cauchy-Schwartz inequality and ‖w k
j − w k

j−1‖2τ = ‖w k
j ‖2τ − ‖w k

j−1‖2τ , we get

‖wk
∗ − w k

` ‖τ ≤
(∑̀

j=1

γ2
j,k

)1/2(∑̀

j=1

‖w k
j − w k

j−1‖2τ
)1/2

=
(∑̀

j=1

γ2
j,k

)1/2(∑̀

j=1

‖w k
j ‖2τ − ‖w k

j−1‖2τ
)1/2

≤
(∑̀

j=1

γ2
j,k

)1/2

‖w k
l ‖τ .

In view of the assumption (3.2), we obtain

‖uk
∗ − uk

` ‖τ ≤ ‖uk
` − uk−1

∗ ‖τ ,

which implies

‖uk
∗‖2τ ≤ ‖uk−1

∗ ‖2τ + 2(uk
∗ − uk−1

∗ , uk
` )τ .

Notice that Aτ is symmetric and using (3.4), we have

(uk
∗ − uk−1

∗ , uk
` )τ = (uk

` , uk
∗ − uk−1

∗ )τ = (fk, uk
∗ − uk−1

∗ ) + τ−1(uk−1
∗ , uk

∗ − uk−1
∗ )

= (fk, uk
∗ − uk−1

∗ ) +
1
2τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20 − ‖uk
∗ − uk−1

∗ ‖20)

≤ τ

2
‖fk‖20 +

1
2τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20).

A combination of the above two inequalities leads to

‖uk
∗‖2τ ≤ ‖uk−1

∗ ‖2τ + τ‖fk‖20 +
1
τ

(‖uk
∗‖20 − ‖uk−1

∗ ‖20),

which in turn implies

‖uk
∗‖2A ≤ ‖uk−1

∗ ‖2A + τ‖fk‖20.
Finally, a recursive application of the above inequality and using

‖u0
∗‖A = ‖Phu0‖A ≤ C‖u0‖A

yields (3.3).
Remark 3.1. By Theorem 3.1, we see that sufficiently many smoothing opera-

tions at each time step would not affect the stability of the marching algorithm, even
though the discrete solutions are only computed approximately. The condition (3.2)
allows us to quantitatively characterize the properties of the smoothers to guarantee
the stability in time. It will be shown later that efficient iteration strategies can be
developed for several popular smoothers so that both the stability property and the op-
timal multigrid complexity hold simultaneously. This in turn implies the convergence
of the cascadic algorithms with both optimal accuracy and optimal complexity.
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4. Smoothers. To avoid complicated notation, we focus on the smoother esti-
mate at a particular time step. Thus, we drop the subscript k used for indexing the
time steps. For example, we simply use Cj,mj

to denote the basic iterations applied
mj times on level j. As in [9], we call the basic iteration a smoother, if it satisfies

‖Cj,mj
v‖a ≤ ‖v‖a , ‖Cj,mj

v‖a ≤ C
h−1

j

mγ
j

‖v‖0 , ∀v ∈ Xj , (4.1)

where ‖·‖a is the energy norm corresponding to the basic iteration, that is, in our case,
‖ · ‖a = ‖ · ‖τ . It is known that γ = 1/2 for Simple Jacobi, Symmetric Gauß-Seidel,
SSOR [26] and γ = 1 for Conjugate Gradient iterations [9, 26, 36, 37, 38]. Notice
that in practice, it is expected that an increase in iteration number should lead to a
decrease of ‖Cj,mj

v‖a/‖v‖a ; similarly, the smaller κj is, the smaller ‖Cj,mj
v‖a/‖v‖a

and ‖Cj,mj v‖a/‖v‖0 ought to be. Unfortunately, such expected behaviors are not
reflected in (4.1). In addition, the dependence on h and τ is also not explicitly
revealed. In fact, the smoother estimates derived in the literature usually do not
make a clear and precise distinction on the effects of h and τ in the smoothing step.
We now derive some new estimates for the afore-mentioned smoothers with respect to
τ -norm. Two cases are discriminated, one for the usual symmetric iteration, another
for Conjugate Gradient iteration.

4.1. Symmetric iterations. For symmetric iterations, the iteration matrix
usually takes the form S = I − W−1B, with smoother Sm = Sm, m ∈ N. Here,
W and B are operators (matrices) from Xj to Xj , and I is the identity operator.
Denote the energy norm by ‖x‖a: = (Bx, x) for any x ∈ Xj .

For our discussion, we only consider the symmetric iterations satisfying the fol-
lowing general assumption: 1) B is symmetric and positive definite; 2)W is regular
with W = WT and 3) W ≥ B, i. e., W −B is positive definite.

The following theorems contain smoother estimates along the same spirits of
those obtained in [2, 37, 41]. We omit some technical derivations but emphasize on
the precise nature of the estimates particularly suitable to parabolic problems.

Theorem 4.1. Under the above assumptions, we have that for any v ∈ Xj,

‖Smv‖a ≤ ρ(I −W−1B)i

√
2(m− i)

‖W −B‖1/2‖v‖0 i ∈ [0,m),

‖Smv‖a ≤ ρ(I −W−1B)i

√
2(m− i) + 1

‖W‖1/2‖v‖0 i ∈ [0,m] .

(4.2)

Proof. Let C = W−1/2BW−1/2, we have 0 ≤ C ≤ I. Since I − W−1B =
W−1/2(I − C)W 1/2, we get Sm = (I −W−1B)m = W−1/2(I − C)mW 1/2 and

‖Smv‖2a = (BSmv,Smv) =
(
C(I − C)2mw, w

)
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with w = W 1/2v, Then for i ∈ [0,m),

‖Smv‖2a ≤ ρ(I − C)2i
(
C(I − C)2(m−i)w, w

)

=
(
(I − C)2m−2iw − (I − C)2m−2i+1w, w

)
ρ(I − C)2i

≤ ρ(I − C)2i

2(m− i)

(2m−2i∑

k=1

(I − C)kw − (I − C)k+1w, w
)

≤ ρ(I − C)2i

2(m− i)
(w − Cw, w) ≤ ρ(I −W−1B)2i

2(m− i)
‖W −B‖ ‖v‖20.

This gives (4.2)1. For (4.2)2, we note that for i ∈ [0,m],

‖Smv‖2a ≤
ρ(I − C)2i

2(m− i) + 1
(w, w) ≤ ρ(I −W−1B)2i

2(m− i) + 1
‖W‖ ‖v‖20 .

Applying (4.2)2 to the Simple Jacobi iteration gives

‖Cj,mj
v‖τ ≤

( λ̂j

2mj − 2i + 1

)1/2( λj

τ−1 + λj

)i

‖v‖0 , ∀v ∈ Xj , ∀i ∈ [0,mj ] . (4.3)

For the Symmetric Gauß-Seidel, the following lemma is given as a remark in [34].
A slightly weaker form valid for more general matrices and norm is given in [30].

Lemma 4.1. For any real n × n, m−band symmetric positive definite matrix B
with λmax(B) and the λmin(B) being the largest and smallest eigenvalues and L being
its lower triangular part, we have for some constant C and CL = C log 2m that

‖L‖ ≤ CL[λmax(B)− λmin(B)] . (4.4)

It is easy to see that (4.4) can be rewritten as

‖L‖ ≤ CLλmax(B)
(
1− 1/κ(B)

)
. (4.5)

The iteration matrix for the Gauß-Seidel is MGS = −(Dj +Lj)−1LT
j with Aτ,j =

Dj − Lj − LT
j , where Dj and Lj are the diagonal part and the lower triangular part

of Aτ,j . By [27], the Gauß-Seidel iteration admits the bound:

‖MGS‖2τ = 1− ‖A−1/2
τ,j (Dj + Lj)D

−1/2
j ‖−2. (4.6)

We now have the following theorem for the Symmetric Gauß-Seidel iteration.
Theorem 4.2. Assume the diagonal part of Aτ,j admits the following estimate

‖D−1/2
j ‖ ≤ CDλ̂

−1/2
j , (4.7)

then for any v ∈ Xj, the Symmetric Gauß-Seidel iteration satisfies, for i ∈ [0,mj),

‖Sj,mj
v‖τ ≤ CDCL

( λj

2mj − 2i

)1/2( λj

CGSτ−1 + λj

)i

‖v‖0, (4.8)

and for i ∈ [0,mj ],

‖Sj,mj
v‖τ ≤ (1 + C2

DC2
L)1/2

( λ̂j

2mj − 2i + 1

)1/2( λj

CGSτ−1 + λj

)i

‖v‖0 (4.9)
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with CGS = 1/(1 + CDCL)2.
Proof. By Theorem 4.1, we only need to estimate terms like ‖Wj − Aτ,j‖, ‖Wj‖

and ρ(I −W−1
j Aτ,j). Note that Wj −Aτ,j = LjD

−1
j LT

j , by Lemma 4.1, we get

‖Wj −Aτ,j‖ ≤ C2
D‖Lj‖2/λ̂j ≤ C2

DC2
L(λ̂j − λ̂1)2/λ̂j ≤ C2

DC2
Lλj , (4.10)

which together with the triangle inequality leads to

‖Wj‖ ≤ (1 + C2
DC2

L)λ̂j . (4.11)

We now turn to (4.8). Resorting to Lemma 4.1 once again, we obtain

‖(Dj + Lj)D
−1/2
j ‖ ≤ ‖D1/2

j ‖+ ‖Lj‖ ‖D−1/2
j ‖ ≤ λ̂

1/2
j + CDCL(λ̂j − λ̂1)λ̂

−1/2
j

≤ λ̂
1/2
j

(
1 + CDCL(1− 1/κj)

)
. (4.12)

A combination of (4.12) and (4.6) gives

‖MGS‖2τ ≤ 1− 1

κj

(
1 + CDCL(1− 1/κj)

)2 . (4.13)

A simple calculation yields

κj(1 + CDCL(1− 1/κj))2 ≤ κj + 2CDCL(κj − 1) + C2
DC2

L(κj − 1)

= 1 + (1 + CDCL)2(κj − 1). (4.14)

With CGS = 1/(1 + CDCL)2, it follows from (4.13) and (4.14) that

‖MGS‖2τ ≤
κj − 1

κj − 1 + CGS
.

Note that κj = (τ−1 + λj)(τ−1 + λ1)−1, we thus have

‖MGS‖2τ ≤
λj − λ1

CGS(τ−1 + λ1) + λj − λ1
≤ λj

CGSτ−1 + λj
.

By [27, Theorem 4.8.10], the spectral radius of the Symmetric Gauß-Seidel iteration
ρ(SGS) = ‖MGS‖2τ , using (4.10) and (4.11), we get (4.8) and (4.9), respectively.

4.2. Conjugate Gradient iterations. We now give an estimate for Conju-
gate Gradient (CG) iterations. The classical approach for estimating the convergence
rate of the CG-iteration is to exploit dominated polynomials that may yield different
bounds. Let Q̂k be the scaled Chebyshev polynomial defined as

Q̂k(x) = Ck(x/d)/Ck(1/d) for x ∈ [0, d].

Here, Ck(x) = cos(k arccos(x)) for x ∈ [−1, 1] is the kth degree Chebyshev polynomial
of the first kind. Let pk =

√
d/(2k + 1), the Lanczos polynomial [31] is defined as

√
xQk(x) = (−1)kpk cos

(
(2k + 1) arccos(

√
x/d)

)
for x ∈ [0, d].

For any i ∈ [0, k], define Si
k(x): = Q̂i(x)Qk−i(x). Qk and Si

k satisfy (see [29], [36,
§4.1], [38, Lemma 3.1] and [26, 35]):

Lemma 4.2. For interval [0, b], a ∈ [0, b], integers k, and i ∈ [0, k],
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1. For any k,

max
0≤x≤b

|Qk(x)| ≤ 1 and max
0≤x≤b

|√xQk(x)| ≤
√

b/(2k + 1) .

2. Si
k(0) = 1,

max
0≤x≤b

|Si
k(x)| ≤ 1, and max

a≤x≤b
|Si

k(x)| ≤ 2
(√b−√a√

b +
√

a

)i

.

3. For weight
√

x,

max
0≤x≤b

|√xSi
k(x)| ≤ 2

√
b

2(k − i) + 1

(√b−√a√
b +

√
a

)i

.

We now define a family of auxiliary operators by

Si
j,mj

:= Si
mj

(Aτ,j) ∀i ∈ [0,mj ], (4.15)

which dominate the error reduction operator Cj,mj
for the CG-method and they are

smoothers in the sense of (4.1).
Theorem 4.3. Define Si

j,mj
as in (4.15), then for any v ∈ Xj, there holds

‖Si
j,mj

v‖τ ≤ ‖v‖τ ,

‖Si
j,mj

v‖τ ≤
2λ̂

1/2
j

2(mj − i) + 1

( λj

4τ−1 + λj

)i

‖v‖0.

The proof of the above theorem is standard (see [38]) and we omit the details.

4.3. Smoother estimates on orthogonal subspaces. It is known that the
smoother on the level j actually only damps out the error components in some sub-
spaces rather than the entire space. To be more precise, we will translate our previous
estimate for the smoother Sj,mj

into one confined to the subspace X⊥
j−1 instead of

Xj , here X⊥
j−1 is defined as in (2.6). Such kind of refined estimate is crucial for the

convergence study of classical multigrid method [2, 14], while it is not yet exploited
in the present setting. We start from the following lemma which is actually a dual
estimate for the parabolic problem.

Lemma 4.3. Let uj ∈ Xj satisfy the following finite element approximation

Aτ (uj , v) = 0 ∀v ∈ Xj−1. (4.16)

Let CI be a constant in the following estimate

inf
v∈Xj−1

‖u− v‖τ ≤ CIλ
−1/2
j (τ−1/2‖u‖1 + ‖u‖2), (4.17)

and CR be defined in (2.5). We have for CB = max(1, CICR) that,

‖uj‖0 ≤ CBλ̂
−1/2
j ‖uj‖τ . (4.18)
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Proof. Resorting to the Aubin-Nitsche trick, we let w ∈ H1
0(Ω) satisfy

Aτ (v, w) = (uj , v) ∀v ∈ H1
0(Ω). (4.19)

By virtue of (2.5), we have

τ−1/2‖w‖1 + ‖w‖2 ≤ CR‖uj‖0. (4.20)

Take v = uj on the right-hand side of (4.19), let Πw ∈ Xj−1 be the Clément
interpolant of w [19], using (4.16), (4.17) and (4.20), we have

‖uj‖20 = Aτ (uj , w) = Aτ (uj , w −Πw)

≤ ‖uj‖τ‖w −Πw‖τ ≤ CICRλ
−1/2
j ‖uj‖τ‖uj‖0,

so ‖uj‖0 ≤ CICRλ
−1/2
j ‖uj‖τ . Together with the bound ‖uj‖0 ≤ τ1/2‖uj‖τ , we get

(τ−1 + λj)‖uj‖20 ≤ max(1, C2
I C2

R)‖uj‖2τ .

This in turn implies (4.18).
Combining Theorem 4.2, Theorem 4.3 and Lemma 4.3, we have:
Theorem 4.4. The Symmetric smoothers and the CG smoother Cj,mj

satisfy

‖Cj,mj
v‖τ ≤ γj(i)‖v‖τ ∀v ∈ X⊥

j−1 , (4.21)

where

γj(i) =
CSCB(

2(mj − i) + 1
)γ

( λj

C∗τ−1 + λj

)i

i ∈ [0,mj ],

with γ = 1/2 for the Symmetric smoothers and γ = 1 for the CG smoother; CB is
defined in Lemma 4.3; CS and C∗ are constants depending on the smoother, defined
as in previous theorems.

Remark 4.1. Note that in practice, we may allow mj to vary not only with the
spatial level j, but also with the temporal step k. Thus, in such case, mj and γj should
be replaced by mj,k and γj,k just like that in the previous section .

5. Convergence analysis. We now present the error estimate for our algorithm.
Discussions of convergence of other multigrid methods for parabolic problems have
been given, for example, in [33].

In simple matrix terms, the Backward Euler method is given by:

(I + τB)Un = Un−1 + τfn, for n ≥ 1, with U0 = v, (5.1)

where B is a positive definite self-adjoint operator in the Hilbert space H. Let |v| =
‖(I + τB)1/2v‖ where ‖ · ‖ is the norm in H. The corresponding dual norm and the
associated s-norms are defined by

|v|∗ = ‖(I + τB)−1/2v‖ , |v|s = ‖Bs/2v‖ and |v|∗,s = |Bs/2v|∗. (5.2)

In case of B = Ah, we use instead the notation |χ|−s,h = ‖A−s/2
h χ‖0.

First, we state some stability estimates for the Backward Euler scheme:
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Lemma 5.1. Let Un be the solutions of (5.1), ∂Un = τ−1(Un − Un−1), and
p ≥ 0. Then for n ≥ 1 and tn = nτ ,

tpn‖Un‖2 + τ
n∑

k=1

tpk|Uk|21 ≤ C(|v|2−p + τp‖v‖2) + Cτ
n∑

k=1

(|fk|2−p−1 + tpk|fk|2−1) , (5.3)

τ
n∑

k=1

tpk|∂Uk|2 ≤ C(τp−1|v|2 + |v|2∗,−p+1) + Cτ

n∑

k=1

(tpk|fk|2∗ + |fk|2∗,−p) , (5.4)

tpn|Un|21 ≤ C(τp−1|v|2 + |v|2∗,−p+1) + Cτ
n∑

k=1

(tpk|fk|2∗ + |fk|2∗,−p) . (5.5)

Proof. The estimates (5.3) and (5.4) are derived in [46, Lemma 10.3] and [46,
Lemma 11.1], respectively. To prove (5.5), by eigen-decomposition, it suffices to
consider the scalar case with B = µ > 0. For such a case, (5.5) reduces to

τpnpµ(Un)2 ≤ C(τp−1(1 + τµ) + µ−p+1(1 + τµ)−1)v2

+ Cτ
n∑

k=1

(1 + τµ)−1|fk|2(kpτp + µ−p) .

Replacing τµ by λ and τfk by gk, we have

np(Un)2 ≤ C(1 + 1/λ + λ−p(1 + λ)−1)v2 +
C

λ(1 + λ)

n∑

j=1

g2j(jp + λ−p) , (5.6)

The proof of the above inequality can be made in two cases, first for gj = 0 with j ≥ 1
and v = 1, then for v = 0. The final results follow from the linearity of the equation.

In the first case we have by the defining equation, Un = (1 + λ)−n for n ≥ 0. It
is easy to see that there exists a constant C > 0 such that

np(1 + λ)−2n ≤ C(λ−p(1 + λ)−1 + 1 + 1/λ) ,

for any n, which implies (5.6).
In the second case we have

Un =
n∑

j=1

(1 + λ)−(n+1−j)gj for j ≥ 1.

Using the inequality

np ≤ C(p)(jp + (n− j)p) with C(p) = max(2p−1, 1),

we obtain that

np(Un)2 ≤ C(p)
(1 + λ)2

(n−1∑

j=0

(1 + λ)−j(jp/2 + (n− j)p/2)gn−j
)2

≤ C(p)
(1 + λ)2

n−1∑

j=0

(1 + λ)−2j
n∑

j=1

jpg2j +
C(p)

(1 + λ)2

n−1∑

j=0

(1 + λ)−2jjp
n∑

j=1

g2j

= :I1 + I2.
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I1 can be easily bounded as

|I1| ≤ C(p)
(1 + λ)2

1
1− (1 + λ)−2

n∑

j=1

jpg2j ≤ C(p)
λ(1 + λ)

n∑

j=1

jpg2j . (5.7)

Using the inequality
∞∑

j=1

jpxj ≤ Cx(1− x)−p−1 for 0 ≤ x < 1,

we have

1
(1 + λ)2

n−1∑

j=0

(1 + λ)−2jjp ≤ C(1 + λ)−4
(
1− (1 + λ)−2

)−p−1

= Cλ−p−1(1 + λ)2p−2(λ + 2)−p−1.

If λ ≥ 1, we have

(1 + λ)2p−2

λp+1(λ + 2)p+1
=

1
λ(1 + λ)

(
1 +

1
λ(2 + λ)

)p

≤
(

4
3

)p 1
6λ(1 + λ)

.

If 0 < λ < 1, we have

(1 + λ)2p−2

λp+1(λ + 2)p+1
=

1
λp+1(1 + λ)

(1 + λ)2p

(1 + λ)(2 + λ)p+1
≤ 2p−1λ−p−1(1 + λ)−1.

Combining the above two inequalities leads to

|I2| ≤ C1(p)
λ(1 + λ)

n∑

j=1

g2j(1 + λ−p) ≤ C1(p)
λ(1 + λ)

n∑

j=1

g2j(jp + λ−p), (5.8)

with C1(p) = C(p)max((4/3)p/6, 2p−1). A combination of (5.7) and (5.8) gives (5.6)
and thus (5.5).

5.1. Convergence for the smooth data. Note that for smooth data, whenever
the Backward Euler scheme is applicable in the time discretization, it is customary to
have τ ≥ Ch2

` with some positive constant C. Thus, a simple calculation shows that
there exists j0 ∈ [1, `] such that λj0 ≤ τ−1 < λj0+1. We express γj as follows,

γj =





CSCB

(
λj

C∗τ−1+λj

)mj

if j ∈ [0, j0 − 1];
CSCB

(2(mj−1)+1)γ

λj

C∗τ−1+λj
if j ∈ [j0, `] ,

(5.9)

where CB = max(1, CICR) as in the Lemma 4.3. The choice of constants C∗, CS and
γ depends on the particular smoother, such constants for several smoothers are listed
in the following table. We note that there is a mild dependence of CS on j (or `) in
our theoretical estimates (due to the dependence on the bandwidth as in Lemma 4.1)
for the Symmetric Gauß-Seidel smoother.

Let K =
∑`

j=1 γj with γj defined in (5.9). By Theorem 3.1, the Cascadic
Algorithm is stable if K < 1. Obviously, we have K < β by the expression of γj where

β: = CSCB

[j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

+
∑̀

j=j0

1
(2mj − 1)γ

]
. (5.10)
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Table 5.1
Constants in the estimate of smoother (5.9)

Smoother C∗ CS γ
Simple Jacobi 1 1 1/2

S-GS CGS (1 + C2
DC2

L)1/2 1/2
CG 4 2 1

Theorem 5.1. Let un
∗ be the solution of the Cascadic Algorithm, u is a smooth

solution of (2.1). If u1
∗ = u1

` , then there exists a positive constant δ < 1 such that for
K ≤ δ,

‖un
∗ − u(x, tn)‖0 ≤ C(T, u)(h2

` + βτ), for tn ≤ T . (5.11)

Proof. With un = u(x, tn), we have that

en = un
∗ − un = un

∗ −Rh un +Rh un − un = θn + ρn,

The estimate for ρn is standard, i. e.,

‖ρn‖0 ≤ C(u)h2
` . (5.12)

Define ∂θn = τ−1(θn− θn−1) and let un
` be defined by (3.4) and ωn = τ−1(un

∗ − un
` ).

Notice that AhRh = PhA, where Ph is the L2 projection onto X`, we get

∂θn +Ahθn = ∂un
∗ +Ahun

∗ − (AhRhun +Rh∂un)

= τ−1(un
∗ − un−1

∗ ) +Ah(un
∗ − un

` ) +Ahun
` − PhAun − ∂Rhun

= τ−1(un
∗ − un

` ) +Ah(un
∗ − un

` ) + Ph(fn −Aun)− ∂Rhun

= Ph∂tu
n − ∂Rhun + (I + τAh)ωn =: σn

1 + σn
2 ,

for n ≥ 1. Since ‖θ0‖0 ≤ Ch2
` , by (5.3) with p = 0, we have

‖θn‖20 ≤ Ch2
` + Cτ

n∑

k=1

(|σk
1 |2−1,h + |σk

2 |2−1,h) . (5.13)

Obviously, using standard techniques, we have

|σk
1 |−1,h ≤ C‖σk

1‖0 ≤ C‖∂tu
k − ∂uk‖0 + C‖(Ph −Rh)∂uk‖0

≤ Cτ1/2
(∫ tk

tk−1

‖utt‖20 dt
)1/2

+ Ch2
`τ
−1/2

(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

We also have |σk
2 |−1,h ≤ Cτ1/2‖ωk‖τ and using u1

∗ = u1
` , so we get the bound on the

right-hand side of (5.13):

‖θn‖20 ≤ C(u)(h2
` + τ)2 + Cτ2

n∑

k=2

‖ωk‖2τ . (5.14)

It remains to estimate τ2
∑n

k=2 ‖ωk‖2τ =
∑n

k=2 ‖uk
∗ − u k

` ‖2τ . By (3.6) and using

‖w k
j − w k

j−1‖τ ≤ inf
v∈Xj−1

‖w k
` − v‖τ ,
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we have

‖uk
∗ − u k

` ‖τ ≤
∑̀

j=1

γj inf
v∈Xj−1

‖w k
` − v‖τ .

Taking v = Pj−1(uk−1
∗ − uk−2

∗ ) in the above inequality, with Pj−1 defined by

Aτ (Pj−1u, v) = Aτ (u, v) ∀v ∈ Xj−1,

and using the obvious decomposition,

w k
` − Pj−1(uk−1

∗ − uk−2
∗ ) = u k

` − uk−1
∗ − Pj−1(uk−1

∗ − uk−2
∗ )

= u k
` − uk

∗ + (uk
∗ − 2uk−1

∗ + uk−2
∗ ) + (I − Pj−1)(uk−1

∗ − uk−2
∗ ),

we have

‖uk
∗ − u k

` ‖τ ≤
∑̀

j=1

γj‖uk
∗ − u k

` ‖τ +
∑̀

j=1

γj‖uk
∗ − 2uk−1

∗ + uk−2
∗ ‖τ

+
∑̀

j=1

γj‖(I − Pj−1)(uk−1
∗ − uk−2

∗ )‖τ =: I1 + I2 + I3. (5.15)

By the definition of K, I1 = K‖uk
∗ − u k

` ‖τ . Notice that

uk
∗ − 2uk−1

∗ + uk−2
∗ = τ2(∂

2
θk +Rh∂

2
uk)

= τ(∂θk − ∂θk−1) + τ2Rh∂
2
uk, (5.16)

and

Kτ2‖Rh∂
2
uk‖τ ≤ CKτ

3
2 ‖∂ 2

uk‖1 ≤ CKτ
3
2 ‖∂ 2

∫ tk

tk−2

(tk − s)utt(s) ds‖1

≤ CKτ
(∫ tk

tk−2

‖utt‖21 ds
)1/2

,

so we bound I2 by

|I2| ≤ Kτ(‖∂θk‖τ + ‖∂θk−1‖τ ) + CKτ
(∫ tk

tk−2

‖utt‖21 ds
)1/2

. (5.17)

Note that (I −Pj−1)Rh = (I −Pj−1)(Rh − I) + I −Pj−1, we decompose I3 into

I3 =
∑̀

j=1

γj

(
τ‖(I − Pj−1)∂θk−1‖τ + τ‖(I − Pj−1)Rh∂uk−1‖τ

)

≤ Kτ‖∂θk−1‖τ +
∑̀

j=1

γjτ‖(I −Rh)∂uk−1‖τ +
∑̀

j=1

γjτ‖(I − Pj−1)∂uk−1‖τ

=: I31 + I32 + I33.

where ‖(I − Pj−1)u‖τ ≤ ‖u‖τ is used in deriving the last inequality.
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The standard estimate for the Galerkin projection Rh gives us an bound on I32:

|I32| ≤ CK(h2
` + h`τ

1
2 )τ

1
2 ‖∂uk−1‖2 ≤ CK(h2

` + h`τ
1
2 )

(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

I33 can thus be estimated by

|I33| ≤
∑̀

j=1

γjh
2
j−1τ

1
2 ‖∂uk−1‖2 +

∑̀

j=1

γjhj−1τ‖∂uk−1‖2 =: B1 + B2 .

From the construction of γj , we see that B1 can be further decomposed into

B1 =
(j0−1∑

j=1

γjh
2
j−1 +

∑̀

j=j0

γjh
2
j−1

)
τ

1
2 ‖∂uk−1‖2.

Moreover, using λjh
2
j−1 ≤ C, we have

j0−1∑

j=1

γjh
2
j−1 ≤

CSCB

C∗

j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

τλjh
2
j−1

≤ C CSCBτ

j0−1∑

j=1

( λj

C∗τ−1 + λj

)mj−1

,

and

∑̀

j=j0

γjh
2
j−1 ≤ C

∑̀

j=j0

CSCB

(2mj − 1)γ
τλjh

2
j−1 = Cτ

∑̀

j=j0

CSCB

(2mj − 1)γ
.

Combining the above two, and using (5.10), we get a bound on B1:

|B1| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

. (5.18)

Repeating the above procedure and using λj ≤ C∗τ−1 + λj , we bound B2 as

|B2| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

,

which, in combination with (5.18), leads to a bound on I33:

|I33| ≤ Cβτ
(∫ tk

tk−1

‖ut‖22 dt
)1/2

.

Combining the estimates for I1, I2 and I3 together, we get
n∑

k=2

‖uk
∗ − uk

` ‖2τ ≤ C
( 2K

1−K
)2

τ2
n∑

k=2

‖∂θk‖2τ + C(h4
` + β2τ2)

∫ T

0

‖∂tu‖22 dt . (5.19)

Now, let K ≤ δ, for some δ to be specified later and let K/(1 − K) ≤ δ/(1 − δ) = ε,
then (5.14) and (5.19) yield

‖θn‖20 ≤ C(u)(h2
` + τ)2 + Cε2τ2

n∑

k=2

‖∂θk‖2τ + C(u)β2τ2 . (5.20)
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Applying (5.4) with p = 0, we are led to

τ2
n∑

k=1

‖∂θk‖2τ ≤ Cτ
n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) .

As above, we can get

τ
n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) ≤ C(u)(h2
` + τ)2 + Cτ2

n∑

k=1

‖ωk‖2τ

≤ C(u)(h2
` + τ)2 + Cε2τ2

n∑

k=1

‖∂θk‖2τ + C(u)β2τ2

≤ C(u)(h2
` + τ)2 + Cε2τ

n∑

k=1

(|σk
1 |2∗ + |σk

2 |2∗) + C(u)β2τ2 . (5.21)

Taking ε suitably small (thus, δ suitably small), we have

τ2
n∑

k=1

‖∂θk‖2τ ≤ Cτ
n∑

k=1

|σk|2∗ ≤ C(u)(h2
` + τ)2 + C(u)β2τ2 . (5.22)

A combination of (5.20) and (5.22) gives (5.11).
An error bound in the energy norm is given below:
Theorem 5.2. Under the same assumption of Theorem 5.1, we have

‖un
∗ − u(x, tn)‖1 ≤ C(u, T )(h` + βτ). (5.23)

Proof. Following the argument given in Theorem 5.1, we have en = θn + ρn with

‖ρn‖1 ≤ Ch`‖un‖2 . (5.24)

To estimate ‖θn‖1, since ‖θ0‖1 ≤ Ch`, instead of (5.3), we have by (5.5) with p = 0
that

‖θn‖21 ≤ Ch2
` + Cτ

n∑

k=1

|σk
1 |2∗ + Cτ

n∑

k=1

|σk
2 |2∗.

In view of (5.21), we have

‖θn‖1 ≤ C(u, T )(h` + βτ),

which, together with (5.24), yields (5.23).

5.2. Convergence for nonsmooth data. In the remaining part of this section,
we consider the homogeneous equation with nonsmooth initial data. Recall that the
Backward-Euler satisfies

‖un
l − u(x, tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0 . (5.25)

We show that our Cascadic Algorithm can be designed so that the above type of error
bound remains valid.
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We define the semi-discrete in space approximation by:

uh,t +Ahuh = 0, for t > 0, with uh(0) = Phu0, (5.26)

then the solution of (5.26) satisfies

‖uh(t)− u(x, t)‖0 ≤ Ch2
` t
−1‖u0‖0, for t > 0. (5.27)

By virtue of [46, Theorem 3.4], we have

‖∂t

(
uh(t)− u(x, t)

)‖0 ≤ Ch2
` t
−2‖u0‖0, (5.28)

the above estimate together with the inverse inequality [18] leads to

‖∂t

(
uh(t)− u(x, t)

)‖1 ≤ Ch−1
` ‖∂t

(
uh(t)−Rhu

)‖0 + ‖∂t

(Rhu− u(x, t)
)‖1

≤ Ch−1
`

(
‖∂t

(
uh(t)− u(x, t)

)‖0 + ‖∂t

(Rhu− u(x, t)
)‖0

)

+ C‖∂t

(Rhu− u(x, t)
)‖1

≤ Ch`t
−2‖u0‖0 + Ch`‖∂tu‖2 ≤ Ch`t

−2‖u0‖0 . (5.29)

Here, we have used ‖∂su‖2 ≤ Cs−2‖u0‖0 in the last step [46].
To more effectively resolving the initial layer, we allow the iteration strategies to

vary with respect to time. Thus, to emphasize on the dependence on the time steps,
we introduce the subscript k for the time step tk and define αk :=

∑`
j=1 γj,k and

βk := CSCB

[j0−1∑

j=1

( λj,k

C∗τ−1 + λj,k

)mj,k−1

+
∑̀

j=j0

1
(2mj,k − 1)γ

]
, (5.30)

where γj,k’s are the constants in the smoother estimates mj,k are the iteration number
used in the smoothers.

Theorem 5.3. For the fully discrete method (2.4) with f = 0, j = ` and u0,h =
Phu0, let uk

∗ = u k
` for k = 1, 2, and let mk,j be the iteration number on the j-th level

at the time step tk. If for some suitably small constant ε ∈ (0, 1), we have that

βk

1− βk
≤ ε min(t2k, 1), (5.31)

then there exists a constant C > 0 such that

‖un
∗ − u(x, tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0 for n ≥ 3 and tn ≤ T. (5.32)

Proof. With ωn = (un
∗ − un

` )/τ , ϑn = ∂uh(tn) − uh,t(tn), and en = un
∗ − uh(tn),

we have, as in Theorem 5.1, the error equation

∂en +Ahen = −ϑn + (I + τAh)ωn = :σn . (5.33)

since e0 = 0, an application of (5.3) with p = 2 gives

t2n‖en‖20 ≤ Cτ
n∑

k=1

(t2k|σk|2−1,h + |σk|2−3,h).
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Since Ah is positive definite and tn is bounded,

t2k|(I + τAh)ωk|2−1,h + |(I + τAh)ωk|2−3,h ≤ C|(I + τAh)ωk|2−1,h

≤ C‖(I + τAh)
1
2 ωk‖20 = Cτ‖ωk‖2τ . (5.34)

Since ω1 = ω2 = 0 by assumption, we thus have

t2n‖en‖20 ≤ Cτ
n∑

k=1

(t2k|ϑk|2−1,h + |ϑk|2−3,h) + Cτ2
n∑

k=3

‖ωk‖2τ . (5.35)

The next step is to show that

τ
n∑

k=1

(t2k|ϑk|2−1,h + |ϑk|2−3,h) ≤ Cτ2‖u0‖20 . (5.36)

Let s = 1 or 3. By the definition of ϑk, we get

|ϑk|2−s,h ≤ Cτ

∫ tk

tk−1

|uh,tt(y)|2−s,h dy.

Then, for k > 1 when s = 1 and k ≥ 1 when s = 3, we have

τt3−s
k |ϑk|2−s,h ≤ Cτ2

∫ tk

tk−1

y3−s|uh,tt(y)|2−s,h dy.

By the eigen-decomposition of the operator Ah, we have

∫ ∞

0

y3−s|uh,tt(y)|2−s,h dy ≤
∫ ∞

0

y3−s

nj∑
m=1

λ4−s
m exp−2λmy(Phu0, φl)2 dy

≤ C

nj∑
m=1

(Phu0, φl)2 = C‖Phu0‖20 ≤ C‖u0‖20. (5.37)

Consequently, we obtain (5.36) except for the terms related to k = 1 and s = 1. For
these terms we have

τ t21|ϑ1|2−1,h = τ3|∂uh(t1)− uh,t(t1)|2−1,h ≤ Cτ3(|∂uh(t1)|2−1 + |uh,t(t1)|2−1)

≤ Cτ2

∫ τ

0

|uh,t|2−1 dt + Cτ3|uh(τ)|21 ≤ Cτ2‖Phu0‖20 ≤ Cτ2‖u0‖20. (5.38)

So, (5.35) together with (5.36) gives

t2n‖en‖20 ≤ Cτ2‖u0‖20 + Cτ2
n∑

k=3

‖ωk‖2τ . (5.39)

As in the proof of Theorem 5.1, we can bound the second term in the above sum as

τ‖ωk‖τ = ‖uk
∗ − uk

` ‖τ ≤
∑̀

j=1

γj,k

(‖uk
∗ − u k

` ‖τ + ‖uk
∗ − 2uk−1

∗ + uk−2
∗ ‖τ

+ ‖(I − Pj−1)(uk−1
∗ − uk−2

∗ )‖τ

)
=: J1 + J2 + J3. (5.40)
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By using similar estimates on J1 and J2 as that in Theorem 5.1 and

αk

1− αk
≤ βk

1− βk
≤ εt2k, (5.41)

we may recast (5.40) as
n∑

k=3

‖uk
∗ − uk

` ‖2τ ≤ 8ε2τ2
n∑

k=3

t4k‖∂ek‖2τ + Cτ4
n∑

k=3

t4k‖∂
2
uh(tk)‖2τ

+ Cτ2
n∑

k=3

1
(1− αk)2

(∑̀

j=1

γj,k‖(I − Pj−1)∂uh(tk)‖τ

)2

= :I1 + I2 + I3. (5.42)

We estimate I2 and I3 firstly. For k ≥ 3, we have

t3k‖∂
2
uh(tk)‖20 ≤ Ct3k‖∂

2(∫ t

tk−2

(t− s)uh,tt(s) ds
)
t=tk

‖20 ≤ Cτ−1

∫ tk

tk−2

s3‖uh,tt(s)‖20 ds,

t4k‖∂
2
uh(tk)‖21 ≤ Ct4k |

(
∂

2
∫ t

tk−2

(t− s)uh,tt(s) ds
)
t=tk

|21≤ Cτ−1

∫ tk

tk−2

s4|uh,tt(s)|21 ds.

For bounded tn, using the above two inequalities, we may bound I2 as

|I2| ≤ C
n∑

k=3

(
τ3t3k‖∂

2
uh(tk)‖0 + τ4t4k‖∂

2
uh(tk)‖21

)

≤ Cτ2

∫ ∞

0

s3‖uh,tt(s)‖20 ds + Cτ3

∫ ∞

0

s4|uh,tt(s)|21 ds .

As given in (5.37), the above inequality is estimated as

|I2| ≤ Cτ2‖u0‖20.
Note that I3 can be further decomposed into two terms

I3 ≤ C
n∑

k=3

τ2

(1− αk)2
(∑̀

j=1

γj,k‖(I − Pj−1)∂(uh(tk)− u(x, tk))‖τ

)2

+ C
n∑

k=3

τ

(1− αk)2
(∑̀

j=1

γj,k‖(I − Pj−1)∂u(x, tk)‖τ

)2

= :I31 + I32.

In view of (5.28) and (5.29),

‖∂(uh(tk)− u(x, tk))‖2τ ≤ C
(
(h4

`/τ2 + h2
`/τ)

∫ tk

tk−1

ds

s4

)
‖u0‖20.

Notice that ‖I − Pj−1‖τ ≤ 1 and (5.41), we see that I31 is bounded:

|I31| ≤ C
n∑

k=3

τ2

(1− αk)2
(∑̀

j=1

γj,k‖∂(uh(tk)− u(x, tk))‖τ

)2

≤ Cε2(h4
` + h2

`τ)
n∑

k=3

∫ tk

tk−1

t4k
t4

dt ‖u0‖20 ≤ Cε2(h4
` + h2

`τ)‖u0‖20. (5.43)
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Similar to the estimation on I33 in Theorem 5.1, we have

∑̀

j=1

γj,k‖(I − Pj−1)∂u(tk)‖τ ≤ Cβkτ
1
2 ‖∂u(tk)‖2 . (5.44)

In view of (5.44) and (5.41), we bound I32 as

|I32| ≤ Cτ2
n∑

k=3

β2
k

(1− αk)2

∫ tk

tk−1

‖∂su‖22 ds ≤ Cτ2
n∑

k=3

β2
k

(1− βk)2

∫ tk

tk−1

‖∂su‖22 ds

≤ Cε2τ2
n∑

k=3

t4k

∫ tk

tk−1

‖∂su‖22 ds ≤ Cε2τ2
n∑

k=3

∫ tk

tk−1

t4k
s4

ds‖u0‖20 ≤ Cε2τ2 ‖u0‖20.

Summing up the estimate for I2 and I3, notice that tn is bounded, we conclude that
for any ε > 0, there holds

τ2
n∑

k=3

‖ωk‖2τ ≤ C(h2
` + τ)2‖u0‖20 + Cετ

n∑

k=3

t3k|∂ek|2 .

Invoking Lemma 5.1 once again, we obtain

τ
n∑

k=3

t3k|∂ek|2 ≤ Cτ
n∑

k=3

(t3k|ϑk|2∗ + |ϑk|2∗,3) + Cτ2
n∑

k=3

‖ωk‖2τ

≤ Cτ2‖u‖20 + Cτ2
n∑

k=3

‖ωk‖2τ .

Combining the above two and choosing a sufficiently small ε gives

τ2
n∑

k=3

‖ωk‖2τ ≤ C(h2
` + τ)2‖u0‖20, (5.45)

which together with (5.39) implies

‖un
∗ − uh(tn)‖0 ≤ C(h2

` + τ)t−1
n ‖u0‖0. (5.46)

Combining with (5.27), the classical error bound for uh, we get

‖uh(tn)− u(x, tn)‖0 ≤ Ch2
` t
−1
n ‖u0‖0 , (5.47)

we get the desired result (5.32).
An error bound in the energy norm is given below:
Theorem 5.4. Under the same assumption of Theorem 5.3, we have

‖un
∗ − u(x, tn)‖1 ≤ C(u)(h`t

−1
n + (h2

` + τ)t−3/2
n )‖u0‖0. (5.48)

Proof. Following the argument given in Theorem 5.3, we still have the error
equation (5.33). Since e0 = 0, instead of (5.4) we have by (5.5) with p = 3 that

t3n‖un
∗ − uh(tn)‖21 ≤ Cτ

n∑

k=1

(t3k|σk|2∗ + |σk|2∗,−3),
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with σk = ϑk + (I + τAh)ωk. As in (5.36), we have

Cτ
n∑

k=1

(t3k|ϑk|2∗ + |ϑk|2∗,−3) ≤ Cτ2‖u0‖20.

And as in (5.34), we get

t3k|(I + τAh)ωk|2∗ + |(I + τAh)ωk|2∗,−3 ≤ Cτ‖ωk‖2τ .

Combining the above three estimates and (5.45) leads to

‖un
∗ − uh(tn)‖1 ≤ C(h2

` + τ)t−3/2
n ‖u0‖0.

As that in (5.29), we have

‖uh(tn)− u(x, tn)‖1 ≤ Ch`‖u(x, tn)‖2 ≤ Ch`t
−1
n ‖u0‖0.

A combination of the above two gives (5.48).
Remark 5.1. Notice that if we assume u0 ∈ H1

0(Ω), the error estimate in (5.48)
can be improved to O(h` + τ)/tn since we may use (5.5) with p = 2 in such a case.

Remark 5.2. We require that u0 ∈ H1
0(Ω) in the stability estimate (cf. Theo-

rem 3.1), which is not realistic for the nonsmooth initial data. However, we assume
that u1

∗ = u1
` in Theorem 5.3, hence for the case when u0 ∈ L2(Ω) and f = 0, the

stability estimate can be modified as

‖un
∗‖2A ≤ ‖u1

∗‖2A ≤
1
2τ
‖u0‖20.

6. Iteration Strategy. For achieving good performance for the Cascadic Algo-
rithms in practice, parameter tuning is an important issue in their actual implemen-
tation. The theoretical analysis of the Cascadic Algorithm made in this paper can be
useful in practice as a guide for assigning values to the various parameters used in the
algorithm. We now make some discussions on this issue.

Since the constraint on the iteration number for achieving the optimal error
bounds is generally tighter than that for stability, we only consider how the itera-
tion number is selected so as to give the optimal error bounds.

In view of Theorem 5.1, 5.2, 5.3 and Theorem 5.4, the following three conditions
are required for the Cascadic Algorithm to be of optimal complexity for parabolic
equations: for each k,

1. β < 1 (or βk < 1).
2. β/(1− β), or βk/(1− βk), is sufficiently small.
3. The overall computing cost (complexity) is of the order O(n`), i.e.,

∑̀

j=1

mjnj ≈ O(n`) .

To achieve the optimal complexity for smooth data, we have the following choice
for the iteration number mj .

mj =

{
mj0 0 ≤ j ≤ j0,

b(ml − 1
2 )2

2(l−j)
γ+1 + 1

2c j = j0 + 1, · · · , `.
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Define dj : = λj/(C∗τ−1+λj). Noting λj < λj+1, we thus define ĉ: = max1≤j≤j0 λj/λj+1,
which in turn implies that for any 1 ≤ j ≤ j0 − 1:

dj

dj+1
=

(λj/λj+1)C∗τ−1 + λj

C∗τ−1 + λj
≤ ĉC∗τ−1 + λj

C∗τ−1 + λj

≤ ĉC∗ + 1
C∗ + 1

= :c < 1, (6.1)

where we have used τλj ≤ τλj0 ≤ 1. In view of (6.1), we obtain

dj = dj0

j0−1∏

k=j

dk

dk+1
≤ cj0−jdj0 ≤

cj0−j

C∗ + 1
,

since dj0 ≤ 1/(C∗ + 1). We then get

β ≤ CSCB

(1− cmj0−1)

( c

1 + C∗

)mj0−1

+
CSCB

(2m` − 1)γ

1
1− 2−2γ/(γ+1)

≤ ε ,

which can be smaller than some suitable constant ε. It is easy to verify that β is
bounded uniformly for such mj .

It remains to estimate the overall computing cost on each time level. Notice that
4j/c∗ ≤ dimXj ≤ c∗4j , a simple calculation yields that

∑̀

j=1

mjnj ≤ c2
∗
(
mj0n`(22(j0−`) − 2−2`)/3

+ (m` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+

2
3
n`(1− 22(j0−`−1))

)
.

Notice that mj0 ≤ mj0+1, we thus have

mj0(2
2(j0−`) − 2−2`) ≤ (m` − 1/2)

(
2

2γ
γ+1 (j0−`)− 2

γ+1 − 2
−2(γ`+1)

γ+1
)

+ 22(j0−`)−1 − 2−2`−1.

A combination of the above two estimates leads to

∑̀

j=1

mjnj ≤ c2
∗/3

(
(m` − 1/2)n`(2

2γ
γ+1 j0 − 1)2

−2(γ`+1)
γ+1

+ 3(m` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+ n`

)
. (6.2)

As to the nonsmooth data, the strategy is basically the same, except when k is
small. For the initial transient period, i. e., small k, we let mj depend on the index
k, that is, mj = mk,j so that it becomes large for small k. The rationale behind the
choice is due to the fact that, in this case, we need

βk ≤ CSCB

(1− c
mj0−1

k )

( c k

1 + C∗

)mj0−1

+
CSCB

(2mk,` − 1)γ

1
1− 2−2γ/(γ+1)

≤ εt2k ,

for some suitably small constant ε, where

c k: =
ĉkC∗ + 1
C∗ + 1

with ĉk: = max
1≤j≤j0

λk,j/λk,j+1.
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Such a scenario is as expected when an initial transient layer needs to be resolved.
As above, the overall computing cost on time level k is

∑̀

j=1

mk,jnj ≤ c2
∗/3

(
(mk,` − 1/2)n`(2

2γ
γ+1 j0 − 1)2

−2γ`
γ+1 − 2

γ+1

+ 3(mk,` − 1/2)n`
1− 2

2γ
γ+1 (j0−`−1)

1− 2−2γ/(γ+1)
+ n`

)
. (6.3)

In the cases of Jacobi smoother and the CG iteration, mj(mk,j)’s are taken to
be suitably large but independent of j and ` and we thus have optimal multigrid
complexity. In the case of the symmetric Gauß-Seidel smoother, we may need to let m`

be proportional to some (say, quadratic) power of log(2m) (m being the bandwidth).
For most equations and discretizations considered in this paper here, we typically
expect that log(2m) is on the order of the level index `, thus the complexity of the
Cascadic Algorithm is nearly optimal in the sense that the total work is on the order
of O(n` log2(n`)).

7. Conclusion. In this paper, a comprehensive analysis of a cascadic multigrid
algorithm for an implicit in time discretization of some parabolic equations is pre-
sented. New and sharper estimates on smoothers are established to reflect the spatial
and temporal structure of the discrete approximation to the parabolic equations. The
stability of the algorithm is established based on these smoother estimates. Complete
error estimates for both smooth and nonsmooth data are provided. We also combine
with a complexity analysis to provide guidance on some optimal choices of various
parameter values. Moreover, the general framework and the technical derivations pro-
vide a basis for studying the applications of cascadic multigrid algorithms to other
time dependent equations.
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