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Abstract
The numerical integration of many geometric partial differential equations involves

discrete approximations of several first- and second-order geometric differential operators.
In this paper, we consider consistent discretized approximations of these operators based
on a quadratic fitting scheme. An asymptotic error analysis is conducted which shows that
the discrete approximations of the first- and second-order geometric differential operators
have the quadratic and linear convergence rates, respectively.

Key words: Geometric Differential Operators; Consistent discretized approximations; Tri-
angular Surface Mesh; Error Analysis.

1 Introduction

In many application areas, such as image processing, surface processing, computer graphics
and computer aided geometric design, discrete approximations of various geometric differen-
tial operators are often required. For instance, to solve geometric partial differential equations
(PDE) using a divided-difference-like method, discrete approximations of surface normal, gra-
dient, mean curvature, Gaussian curvature, Laplace-Beltrami and Giaquinta-Hildebrandt oper-
ators are prerequisite (see [33], [36]). Discrete schemes have been proposed individually for
each of these differential operators from different point of views (see [17], [21], [24], [22], [31]
for references). For Laplace-Beltrami operators, many discretization scheme have been pro-
posed including Taubin’s discretization (see [27], 1995; [28], 2000), Fujiwara’s discretization
(see [11], 1995), Desbrun et al’s discretization (see [6], 1999), Mayer’s discretization (see [20],
2001) and Meyer et al’s discretization (see [22],2002). All these discretizations are in the linear
form:

∆ f (xi) =
∑

j∈N(i)

wi j
[
f (x j) − f (xi)

]
, (1.1)

where xi and x j are the vertices of the surface triangulation M, N(i) is the index set of one-ring
neighbors of vertex xi, wi j are constants depending on the mesh vertices, independent of f . On
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the approximation of the mean curvature, there exist also several approaches, such as the ones
proposed by Chen, Hamann and Taubin to name a few [4, 14, 26]. But these approaches do not
yield the linear form (1.1).

For Gaussian curvature, there are also many disctretized approaches. One class of these
approaches is based on the local fitting techniques, such as paraboloid fitting (see [14, 16, 25]),
quadratic fitting (see [21, 31]) or higher order fitting (see [3]), circular fitting (see [4, 19]) and
implicit fitting by 3D a function (see [9]). The second class of methods is based on a theorem
for the Gauss map (see [21, 23]). For a given neighborhood of a surface point, the theorem
says that the Gaussian curvature at the surface point can be approximated by the ratio of the
area of the spherical image of the neighborhood and the area of the neighborhood itself. The
third class of approaches is based on the Gauss-Bonnet theorem (see [1, 10, 15, 21, 25]). The
derived scheme for triangulated surfaces is usually called angle deficit scheme or Gauss-Bonnet
scheme. Apart from these classes, there are some other approaches, e.g, Taubin’s approach [26]
based on the eigen-analysis, Watanabe and Belyaev’s approach (see [29]) based on the integral
formulas of the normal curvature and its square, Wollmann’s approach (see [30]) based on Euler
theorem (see [2], page 145) and Meusnier theorem (see [2], page 142). Using the theory of
normal cycles, Cohen-Steiner and Morvan derive an efficient and reliable curvature estimation
algorithm (see [5]). Error bound of the estimated curvature is given in the case restricted
Delaunay triangulations.

Since all these differential operators are individually dicretized based on various theorems
in differential geometry, they are not consistent in general, meaning they do not come from a
single surface. Furthermore, except for the schemes based on the interpolation or fitting, non
of these schemes converges without any restriction on the regularity of the meshes considered.
Finally, the semi-implicit discretization of the geometric PDEs require the discrete differential
operators to have a linear form, while the widely used discrete schemes, for instance the discrete
approximation of Gaussian curvature based on Gauss-Bonnet theorem (see [1]), are not in this
form. Therefore, it is desirable to use a fitting scheme so that resulted discrete differential
operators are consistent, convergent and have the required forms as well.

A quadratic fitting scheme is proposed in [31] based on local parametrization technique,
and it is frequently used afterward in solving geometric partial differential equations and yields
very desirable results (see [35, 36, 38]). Basing on an extensive numerical experiment, the
author of [31] claims that the approximate mean curvature computed from the parametric
quadratic fitting surface converges to the exact mean curvature. However, this fact has never
been formally proved. In this paper, several commonly used differential operators are consis-
tently approximated based on the parametric quadratic fitting algorithm. A asymptotic error
analysis on the quadratic fitting is conducted, which firmly support the claim made in [31]. We
prove that the obtained discrete approximations of the first- and second-order geometric differ-
ential operators from the quadratic fitting algorithm have the quadratic and linear convergence
rates, respectively.

The rest of the paper is organized as follows: Section 2 introduces some used notations and
a set of geometric differential operators. Discretization schemes for these differential operators
are considered in Section 3. Convergence analysis of these discrete differential operators are
conducted in section 4. Section 5 concludes the paper.
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2 Geometric Differential Operators

In this section, we introduce the used notations and a set of geometric differential opera-
tors, including gradient, mean curvature, Gaussian curvature, Laplace-Beltrami operator and
Giaquinta-Hildebrandt operator.
Curvatures. Let S = {x(u, v), (u, v) ∈ Ω ⊂ R2} be a regular smooth parametric surface in R3.
For simplicity, we sometimes write (u, v) as (u1, u2). Let gαβ = 〈xuα , xuβ〉 (α, β = 1, 2) be the
coefficients of the first fundamental form of S with xuα = ∂x

∂uα . Set g = det([gαβ]), [gαβ] =

[gαβ]−1. Let bαβ = 〈n, xαβ〉 be the coefficients of the second fundamental form of S with
xuαuβ = ∂2x

∂uα∂uβ and n = (xu × xv)/‖xu × xv‖. Then the mean curvature H and the Gaussian
curvature K are given by

H =
b11g22 − 2b12g12 + b22g11

2g
, K =

b11b22 − b2
12

g
.

The mean curvature vector and Gaussian curvature vector are H = Hn and K = Kn, respec-
tively.

Tangential gradient operator. Let f ∈ C1(S). Then the tangential gradient operator ∇ acting
on f is given by (see [7], page 102)

∇ f = [ xu, xv ][ gαβ ][ fu, fv ]T ∈ R3

= g∇u fu + g∇v fv, (2.1)

where g∇u = 1
g (g22xu−g12xv) and g∇v = 1

g (g11xv−g12xu). Obviously, ∇ is a first-order differential
operator.

Second tangential operator. Let f ∈ C1(S). Then the second tangential operator ^ acting on
f is defined as (see [36])

^ f = [ xu, xv ][ K bαβ ][ fu, fv ]T ∈ R3

= g^u fu + g^v fv, (2.2)

where g^u = 1
g (b22xu − b12xv) and g^v = 1

g (b11xv − b12xu). It is easy to see that ^ f is of first
order with respect to the function f , but second-order with respect to the surface. Hence, we
classify it as a second-order operator.
Divergence operator. Let v be a C1 smooth vector field on S. Then the divergence of v is
defined by

div(v) =
1√
g

[
∂

∂u
,
∂

∂v

] [ √
g [ gαβ ] [xu, xv]T v

]
.

Laplace-Beltrami operator. Let f ∈ C2(S). Then ∇ f is a smooth vector field on S. The
Laplace-Beltrami operator (LBO) ∆ applying to f is defined by (see [8])

∆ f = div(∇ f ).
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From the definition of ∇ and div, it is easy to derive that

∆ f =
1√
g

[
∂

∂u
,
∂

∂v

] [ √
g [ gαβ ]

[
fu, fv

]T
]

= g∆
u fu + g∆

v fv + g∆
uu fuu + g∆

uv fuv + g∆
vv fvv, (2.3)

where

g4u = −[g11(g22g122−g12g222)+2g12(g12g212 − g22g112)+g22(g22g111−g12g211)]/g2,

g4v = −[g11(g11g222−g12g122)+2g12(g12g112 − g11g212)+g22(g11g211−g12g111)]/g2,

g4uu = g22/g, g4uv = −2g12/g, g4vv = g11/g,

and gαβδ = 〈xuα , xuβuδ〉. Obviously, ∆ is a second-order differential operator. It is well know
that ∆x = 2Hn.

Giaquinta-Hildebrandt Operator. Let f ∈ C2(S). Then the Giaquinta-Hildebrandt operator
(GHO) acting on f is given by

� f = div(^ f ).

From the definition of ^ and div, it is easy to derive that (see [12], page 84)

� f =
1√
g

[
∂

∂u
,
∂

∂v

] [ √
g [ Kbαβ ]

[
fu, fv

]T
]

(2.4)

= g�u fu + g�v fv + g�uu fuu + g�uv fuv + g�vv fvv, (2.5)

where

g�u = −[b11(g22g122−g12g222)+2b12(g12g212 − g22g112)+b22(g22g111−g12g211)]/g2,

g�v = −[b11(g11g222−g12g122)+2b12(g12g112 − g11g212)+b22(g11g211−g12g111)]/g2,

g�uu = b22/g, g�uv = −2b12/g, g�vv = b11/g.

Differential operator � is introduced by Giaquinta and Hildebrandt (see [12], pages 82–85),
we therefore call it as Giaquinta-Hildebrandt operator. Since bi j involves the second order
derivatives of the surface considered, equation (2.4) implies that � f is a third order differential
operator at first glance. However, (2.5) shows that it is of second order, since the terms involv-
ing the third order derivatives are canceled fortunately. Similar to the relation ∆x = 2Hn, we
have �x = 2Kn (see [37]).

The differential operators introduced above are frequently used in defining various geo-
metric partial differential equations. Using them, a plenty of geometric differential partial
equations have been constructed (see [34]). For instance, to minimize a third order energy
functional

∫
S ‖∇ f (H,K)‖2dA, we obtain the following Euler-Lagrange equation (see [18])

∆s( fH∆ f ) + 2�( fK∆ f ) + 4KH fK∆ f + 4H2 fH∆ f − 2K fH∆ f

− 2H‖∇ f ‖2 + 2 〈∇s f ,^ f 〉 = 0.

It is easy yo see almost all the differential operators introduced above are involved in this
equation. However, it is still unclear that if these operators are sufficient to describe all the
geometric partial equations up to six order.
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3 Discretizations of Geometric Differential Operators

Discrete Surface, and M a triangulation of surface S. Let {xi}Ni=1 be the vertex set of S. For
vertex xi with valence n, denote by N(i) = {i1, i2, · · · , in} the set of the vertex indices of one-
ring neighbors of xi, and N1(i) = {i0, i1, i2, · · · , in} with i0 = i. We assume in the following that
these i1, · · · , in are arranged such that the triangles [xixik xik−1] and [xixik xik+1] are in S, and xik−1 ,
xik+1 opposite to the edge [xixik ].

We devote our attention to the discretization of geometric differential operators because
of the needs in solving various geometric partial differential equations. To solve the geometric
PDEs using a divided-difference-like method, discrete approximations of the gradient, the mean
curvature, Gaussian curvature, Laplace-Beltrami operator and Giaquinta-Hildebrandt operator
are required (see [36]). In order to use a semi-implicit scheme, the approximations of the
above mentioned differential operators require to have linear forms (see (3.3)–(3.7)). There
are several discretization schemes of Laplace-Beltrami operator and Gaussian curvature (see
[31, 32] for references). However, some of them are not in the required linear form and may
not consistent in the following sense.

Definition 3.1 A set of approximate geometric differential operators is said consistent if there
exists a C2 smooth surface S , such that the approximate operators coincide with the exact
counterparts of S .

If a set approximate differential operators are not consistent, some unexpected results may
obtained in the applications. For instance, if we compute the principal curvatures k1,2 = H ±√

H2 − K from the approximated H and K, there is the danger that H2 − K < 0. One may
brutely take H2 − K = 0 if H2 − K < 0. But this will yield discontinuous principal curvatures.

Here we use a quadratic fitting of the surface data and function data to calculate the ap-
proximate differential operators. The algorithm we adopted is from [31]. Let xi be a vertex of
M with valence n, x j be its neighbor vertices for j ∈ N(i).

Algorithm 3.1. Quadratic Fit

1. Local Parametrization. Compute angles

αk = cos−1 〈xik − xi, xik+1 − xi〉
‖xik − xi‖‖xik+1 − xi‖ , k = 1, · · · , n,

and then compute the angles

βk = 2παk/

n∑

j=1

α j, k = 1, · · · , n.

Set q0 = [0, 0]T , θ1 = 0 and qk = ‖xik − xi‖[cosθk, sinθk]T , θk = β1 + · · · + βk−1, k =

1, · · · , n.

2. Local Fitting. Take the basis functions

{Bl(u, v)}5l=0 = {1, u, v, 1
2

u2, uv,
1
2

v2},
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and determine the coefficient cl ∈ R3 of x(u, v) =
∑5

l=0 clBl(u, v) such that

5∑

l=0

clBl(qk) = xik , k = 0, · · · , n

in the least square sense. This system is solved by solving the normal equation. Let A =

(Bl(qk))n,5
k=0,l=0 ∈ R(n+1)×6, and let

C = (AT A)−1AT ∈ R6×(n+1), (3.1)

then [c0, · · · , c5] = [xi0 , · · · , xin]CT .

Remark 3.1 The construction algorithm above may fail if the coefficient matrix of the normal
equation is singular or nearly singular. In this case, we look for a least square solution with
minimal normal. Let AT AX = b be the linear system in the matrix form. We find a least square
solution x such that ‖X‖2 = min. That is, we replace (AT A)−1 in (3.1) with (AT A)+, the Moore-
Penrose inverse. It is well known that (AT A)+ could be computed by the SVD decomposition
of AT A (see [13], Chapter 5). Let V = diag[σ1, · · · , σ6], where σ1 ≥ · · · ≥ σ6 ≥ 0 are the
singular value of AT A. If the computed singular value σi < 10−8, we regard this singular value
as zero (we use double precision arithmetic operations). In the practice, ‖xik − xi‖ may be
very small and the singular values are also small. Then the truncation of the singular values
mentioned above may be misleading. To overcome this difficulty, the matrix A is normalized by
multiplying a diagonal matrix diag[1, h−1, h−1, h−2, h−2, h−2] on the left, where h = maxk ‖xik −
xi‖.

Partial derivatives. Given discrete function values f (xik ), the fitting function is f (u, v) =∑5
l=0 dlBl(u, v) with [d0, · · · , d5]T = C[ f (xi0), · · · , f (xin)]T . We compute partial derivatives of

x(u, v) and f (u, v) at the origin up to the second order. Denote the second, third, fourth, fifth
and sixth rows of C as C1, C2, C11, C12 and C22, respectively, then we can see that

xuα = [xi0 , · · · , xin]CT
α , α = 1, 2,

∂ f
∂uα = [ f (xi0), · · · , f (xin)]CT

α , α = 1, 2,
xuαuβ = [xi0 , · · · , xin]CT

αβ, 1 ≤ α ≤ β ≤ 2,
∂2 f

∂uα∂uβ = [ f (xi0), · · · , f (xin)]CT
αβ, 1 ≤ α ≤ β ≤ 2.

(3.2)

Tangential gradient operator. Substituting (3.2) into (2.1), we get an approximation of tan-
gential gradient operator as follows:

∇ f (xi) ≈
∑

j∈N1(i)

w∇i j f (x j), w∇i,i j
= g∇u c( j)

1 + g∇v c( j)
2 ∈ R3. (3.3)

Here c( j)
α are the j-th component of Cα .

Second tangential operator. Substituting (3.2) into (2.2), we get an approximation of second
tangential operator as follows:

^ f (xi) ≈
∑

j∈N1(i)

w^
i j f (x j), w^

i,i j
= g^u c( j)

1 + g^v c( j)
2 ∈ R3. (3.4)
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Laplace-Beltrami operator. Substituting (3.2) into (2.3), we get an approximation of LBO as
follows:

∆ f (xi) ≈
∑

j∈N1(i)

w4i j f (x j), (3.5)

where w4i,i j
= g4u c( j)

1 + g4v c( j)
2 + g4uuc( j)

11 + g4uvc( j)
12 + g4vvc( j)

22 and c( j)
αβ are the j-th component of Cαβ.

Giaquinta-Hildebrandt operator. Substituting (3.2) into (2.5), we get an approximation of �
as follows:

� f (xi) ≈
∑

j∈N0(i)

w�i j f (x j), (3.6)

where w�i,i j
= g�u c( j)

1 + g�v c( j)
2 + g�uuc( j)

11 + g�uvc( j)
12 + g�vvc( j)

22 .

Mean curvature normal and mean curvature. Using the relation ∆x = 2H, we have

H(xi) ≈ 1
2

∑

j∈N1(i)

w4i jx j, H(xi) ≈ 1
2

∑

j∈N1(i)

w4i jn(xi)T x j, (3.7)

where n(xi) is the surface normal at xi, which is computed as (xu × xv)/‖xu × xv‖.
Gaussian curvature normal and Gaussian curvature. Using the relation �x = 2Kn, we have

K(xi)n(xi) ≈ 1
2

∑

j∈N1(i)

w�i jx j, K(xi) ≈ 1
2

∑

j∈N1(i)

w�i jn(xi)T x j.

4 Convergence of Discrete Differential Operators

It is well known that for a given function f (x, y), the errors of the coefficients ci j of the
Lagrange interpolation polynomial

∑
i+ j≤n ci jxiy j of degree n versus the Taylor expansion of

f (x, y) around the origin are bounded by (see [3])

|ci j − fi j(0)/i! j!| ≤ Chn+1−(i+ j),

where fi j =
∂i+ j f
∂xi∂y j , C is a constant and h is the maximal distance of the interpolation nodes to the

origin. For approximation (the least square fitting), a similar result holds (see [3]). However,
these results do not imply explicitly the convergence for our quadratic fitting algorithm because
of the following two reasons. First, our fitting surface is in the parametric form. Second, the
nodes of the fitting are determined in a way that is different from the function case (see Step 1
of Algorithm 3.1). In the following, we analyze the asymptotic properties of the fitting surface
generated by Algorithm 3.1.

Definition 4.1 Let K :=
{
qi = [xi, yi]T ∈ R2

}n

i=0
, n ≥ 5. If the matrix

A(K) :=



1 x0 y0 x2
0/2 x0y0 y2

0/2
1 x1 y1 x2

1/2 x1y1 y2
1/2

· · · · · · · · · · · · · · · · · ·
1 xn yn x2

n/2 xnyn y2
n/2
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is full rank in column, then we say that the node set K is well-posed for the problem of the
quadratic fitting: Determining a bivariate polynomial G(x, y) =

∑
i+ j≤2 ai jxiy j/i! j! such that

G(qi) = f (qi), i = 0, 1, · · · , n, (4.1)

in the least square sense, for a given function f (x, y).

If the node set K is well-posed, then the quadratic fitting problem has unique solution.
In the following, we assume that q0,q1, · · · ,qn are mutual distinct and further assume that
q0 = [0, 0]T for simplicity.

Lemma 4.1 Let K = {qi}ni=0 be a well-posed node set for the quadratic fitting problem. Then
the node set K(h) := hK := {hqi}ni=0 is also well-posed for any h > 0. More general, let L ∈ R2×2

be a nonsingular matrix. Then the node set K(L) := {Lqi}ni=0 is well-posed.

Proof. Since h > 0 and

A(K(h)) = A(K)Λ, Λ = diag[1, h, h, h2, h2, h2], (4.2)

the first conclusion of the Lemma follows. To prove the second conclusion, let L = (ai j)2
i, j=1.

Then under the transform L,

A(K(L)) = A(K)diag

1, L,


a2

11 a11a21 a2
21

2a11a12 a11a22 + a12a21 2a21a22
a2

12 a12a22 a2
22



 .

It is not difficult to calculate that the determinant of the last 3×3 block matrix above is (a11a22−
a12a21)3 , 0, since det(L) = a11a22 − a12a21 , 0. Hence the lemma is proved. ^

Lemma 4.2 Suppose f (x, y) is a sufficiently smooth bivariate function in the neighborhood of
the origin q0. Let K = {qi}ni=0 be a well-posed node set, and

G(h)(x, y) =
∑

i+ j≤2

a(h)
i j xiy j/i! j!

the quadratic fitting function of f on the node set K(h) = hK, h > 0. Then
∣∣∣∣a(h)

i j − fi j(q0)
∣∣∣∣ ≤ ci j‖[A(K)T A(K)]−1A(K)‖h3−i− j, (4.3)

where ci j are constants depending on f , independent of K(h).

Proof. Let

X = [a(h)
00 , a

(h)
10 , a

(h)
01 , a

(h)
20 , a

(h)
11 , a

(h)
02 ]T , F = [ f (q0), f (hq1), · · · , f (hqn)]T .

Then from the fitting problem (4.1), we have

A(K(h))T A(K(h))X = A(K(h))T F,
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and, by (4.2),

A(K)T A(K)ΛX = A(K)T F. (4.4)

Since

f (hqi) = f (q0) + hqT
i ∇ f (q0) +

1
2

h2qT
i ∇2 f (q0)qi + O(h3),

we have

F = A(K)ΛF0 + O(h3),

where F0 = [ f (q0), f10(q0), f01(q0), f20(q0), f11(q0), f02(q0)]T . Substituting this into (4.4), we
have

A(K)T A(K)ΛX = A(K)T A(K)ΛF0 + A(K)T O(h3),

and

X = F0 + Λ−1[A(K)T A(K)]−1A(K)T O(h3).

Then (4.3) follows. ^

Corollary 4.1 Suppose f is a sufficiently smooth bivariate function in the neighborhood of the
origin. Let K = {qi}ni=0 be a well-posed node set. Let G(h) be the quadratic fitting function of f
on the node set K(h). Then we have

‖n(G(h)) − n( f )‖ ≤ C0h2, |ki(G(h)) − ki( f )| ≤ Cih, i = 1, 2,

where n( f ) and ki( f ) denote the normal and the principal curvatures of f at q0, respectively.

Remark 4.1 The corollary says that the normal n(G(h)) has quadratic convergence rate, cur-
vatures have linear convergence rate. These conclusions match Meek and Walton’s results (see
[21], Lemma 4.1).

Lemma 4.3 Let K = {qi}ni=0 be a well-posed node set. Then for any B > ‖[A(K)T A(K)]−1

A(K)‖, there exists an ε > 0, such that

(i). q0 < Ωi, Ωi ∩Ω j = ∅, i , j, i, j ≥ 1, where Ωi = {q ∈ R2 : ‖q − qi‖ < ε}.
(ii). For any node set R := {ri ∈ Ωi}ni=0, we have ‖[A(R)T A(R)]−1A(R)‖ < B.

(iii). For this ε, let Ω
(h)
i = {q ∈ R2 : ‖q − hqi‖ < εh} (h > 0). Then the quadratic fitting

problem on the node set R(h) := {ri ∈ Ω
(h)
i }ni=0 has unique solution

G(h)(x, y) =
∑

i+ j≤2

a(h)
i j xiy j/i! j!

and
∣∣∣∣a(h)

i j − fi j(q0)
∣∣∣∣ ≤ ci jBh3−i− j, i + j ≤ 2, (4.5)

where ci j are constants depending on f , independent of R(h).
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Proof. Since K is a well-posed node set, qi are distinct. It is obvious that there exists an ε1 > 0
such that (i) holds. Notice that the elements of the matrix A(R) are continuous functions of
r0, · · · , rn. Hence the inverse of A(R)T A(R) exists in the neighborhood of q0, · · · ,qn. Then
there exists an ε ≤ ε1 such that (ii) holds. Similar to the proof of Lemma 4.2, (4.5) can be
derived. ^

Lemma 4.4 Suppose f (x, y) is a smooth function around the origin q0, satisfying f (q0) = 0
and ∇ f (q0) = 0. Let q ∈ R2 be a point in the neighborhood of the origin. Then there exists a
constant C, such that

√
‖q − q0‖2 + f (q)2 − ‖q − q0‖ ≤ C‖q − q0‖3.

Proof. Since

f (q) = f (q0) + (q − q0)T∇ f (q0) + O(‖q − q0‖2) = O(‖q − q0‖2),

we have
√
‖q − q0‖2 + f (q)2 =

√
‖q − q0‖2 + O(‖q − q0‖4) = ‖q − q0‖ + O(‖q − q0‖3).

^

Lemma 4.5 Let f (x, y) be a smooth function around the origin q0, satisfying f (q0) = 0 and
∇ f (q0) = 0. Let q1,q2 ∈ R2 be two points in the neighborhood of the origin, and qi , 0. Set

θ = cos−1 〈q1,q2〉
‖q1‖‖q2‖ , θ

(h)
f = cos−1 〈x1, x2〉

‖x1‖‖x2‖ ,

where xi = [hqT
i , f (hqi)]T , i = 1, 2. Then there exists a constant C, such that

|θ(h)
f − θ| ≤ Ch2.

Proof. Since

f (hqi) = f (q0) + hqT
i ∇ f (q0) +

1
2

h2qT
i ∇2 f (q0)qi + O(h3)

=
1
2

h2qT
i ∇2 f (q0)qi + O(h3),

‖xi‖ = ‖qi‖h + O(h3), 〈x1, x2〉 = 〈q1,q2〉h2 + O(h4),

we have

θ(h)
f = cos−1 〈x1, x2〉

‖x1‖‖x2‖ = cos−1 〈q1,q2〉 + O(h2)
‖q1‖‖q2‖ + O(h2)

= cos−1 〈q1,q2〉
‖q1‖‖q2‖ + O(h2)

= θ + O(h2).

^
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Lemma 4.6 Let f be a smooth function around the origin q0, satisfying ∇ f (q0) = 0. Let
K = {qi}ni=0 be a well-posed node set, and

G(h)(x, y) =
∑

i+ j≤2

a(h)
i j xiy j/i! j!

the quadratic fitting function generated by Algorithm 3.1 using the sampling data [hqT
i , f (hqi)]T

∈ R3. Then for any given B > ‖[A(K)T A(K)]−1A(K)‖, there exists a h0 > 0, such that
∥∥∥∥a(h)

i j − Fi j(q0)
∥∥∥∥ ≤ Ci jBh3−i− j, i + j ≤ 2, as 0 ≤ h < h0, (4.6)

where Ci j are constant depending on f , F(x, y) = [x, y, f (x, y)]T and Fi j = ∂i+ jF
∂xi∂y j .

Proof. Without loss of generality (WLG), we may assume f (q0) = 0. Let q′i
(h) be the fitting

nodes defined by Algorithm 3.1, using the sampling data [hqT
i , f (hqi)]T . Let

qi
(h) = qih = ri

(h)[cos θi
(h), sin θi

(h)]T , q′i
(h)

= r′i
(h)[cos θ′i

(h), sin θ′i
(h)]T .

Then by Lemma 4.4 and Lemma 4.5, we have

|ri
(h) − r′i

(h)| < Ch3, |θi
(h) − θ′i (h)| < Ch2.

Notes that, ri
(h) = O(h), r′i

(h) = O(h). Hence

‖q′i (h) − qi
(h)‖ ≤ Ch3.

Therefore, when h is small enough, q′i
(h)∈ Ω

(h)
i . Then by Lemma 4.3, (4.5) holds for the third

component of the vector-valued function F(x, y) = [x, y, f (x, y)]T . Similarly, (4.5) holds for the
first and second components of F(x, y). Therefore, (4.6) holds. ^

Lemma 4.6 is for the sampling data of a function. Next we consider the sampling data of
a parametric surface. Let x(u, v) be a smooth parametric surface in the xyz-space R3. Let q0,
q1 ∈ R2, and q0 = 0, q1 , 0. Suppose x(q0) = 0. First we define a linear map σq1(u, v) from
uv-plane to the tangent plane of x(u, v) at q0, which is defined as follows. In the xyz-space, take
another Descartes coordinate system XYZ, such that the origin of the system is x(q0), the unit
Z, X and Y-direction are

e3 =
xu(q0) × xv(q0)
‖xu(q0) × xv(q0)‖ , e1 =

[xu(q0), xv(q0)]q1

‖[xu(q0), xv(q0)]q1‖ and e2 = e1 × e3,

respectively. Obviously, XY-plane is the tangent plane of x(u, v) at q0. Define

σq1(u, v) : (u, v)→ (X,Y) such that [e1, e2][X,Y]T = [xu(q0), xv(q0)][u, v]T .

That is

σq1(u, v) = [e1, e2]T [xu(q0), xv(q0)][u, v]T .
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Now let us define another map σ(u, v) from uv-place to XY-plane as follows

σ(u, v) : (u, v)→ (X,Y) such that [X,Y]T = [e1, e2]T x(u, v).

That is, σ(u, v) = [e1, e2]T x(u, v), which is of nonlinear in general. Since the Jacobian matrix
[xu, xv]T [e1, e2] of σ(u, v) is nonsingular around q0, σ(u, v) is an invertible map in a neighbor-
hood of q0. It is not difficult to see that, σ(u, v) is the coordinate of the projection point of
x(u, v) on XY-plane. Using maps σq1(u, v) and σ(u, v), we can prove the following result.

Theorem 4.1 Let x(u, v) ∈ R3 be a smooth parametric surface around the origin q0, K =

{qi}ni=0 a well-posed node set on the uv-plane. Let

G(h)(X,Y) =
∑

i+ j≤2

s(h)
i j XiY j/i! j!

be the quadratic fitting surface generated by Algorithm 3.1 using the sampling data x(hqi).
Then we have

∣∣∣∣s(h)
i j − xi j(q0)

∣∣∣∣ ≤ Ci jBh3−i− j, i + j ≤ 2, (4.7)

where Ci j are constants depending merely on x(u, v), B is a given constant as in Lemma 4.6.

xi j(q0) =
∂i+ jx(σ−1(X,Y))

∂Xi∂Y j

∣∣∣∣∣∣
(X,Y)=[0,0]T

.

Proof. WLG, we may assume x(q0) = 0. Using the linear map σq1(u, v), the well-posed node
set K = {qi}ni=0 on the uv-plane is mapped to another well-posed node set K′ = {q′i}ni=0 on
the XY-plane. Using map σ(u, v), we can identify the parametric surface x(q) as the graph
[X,Y, f (X,Y)]T of a function f (X,Y) on the XY-plane, where f (X,Y) is defined as follows.

For any point x(q) on the parametric surface, its independent variable on the XY-plane is
the projection of the point. Denoting the projection point as P(x(q)), we have ,

P(x(q)) = [e1, e2][X,Y]T , [X,Y]T = σ(u, v).

The function value f (X,Y) at P(x(q)) is eT
3 [x(q) − P(x(q))] = eT

3 x(q). Hence

x(q) = [e1, e2, e3]
[
X,Y, f (X,Y)

]T . (4.8)

Since

P(x(hqi)) = [xu(q0), xu(q0)][gαβ]−1[xu(q0), xu(q0)]T x(hqi)

= [xu(q0), xu(q0)][gαβ]−1[xu(q0), xu(q0)]T
[
[xu(q0), xu(q0)]hqi + O(h2)

]

= [xu(q0), xu(q0)]hqi + O(h2),

and

q′i = [xu(q0), xu(q0)]qi,
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we have

‖σ(hqi) − σq1(hqi)‖ = ‖hq′i − P(x(hqi))‖ = O(h2).

Therefore, x(hqi) can be regarded as the sampling of f (X,Y) on the XY-plane. The difference
of the sampling points {P(x(hqi))}ni=0 and the well-posed node set {hq′i}ni=0 on the XY-plane are
bounded by O(h2). Hence, by Lemma 4.3 we know that, if h is small enough, {P(x(hqi))}ni=0 is
also a well-posed node set on the XY-plane. In Lemma 4.6, take the function f (x, y) as f (X,Y),
and let

∑
i+ j≤2 a(h)

i j XiY j/i! j! be the fitting surface, then (4.6) holds. Let

s(h)
i j = [e1, e2, e3]a(h)

i j .

From (4.8), we have

[e1, e2, e3]Fi j(X,Y) =
∂i+ j[e1, e2, e3]F(X,Y)

∂Xi∂Y j

=
∂i+ jx(u, v)
∂Xi∂Y j =

∂i+ jx(σ−1(X,Y))
∂Xi∂Y j ,

Therefore, (4.7) holds. ^
Theorem 4.1 says that the first-order partial derivatives of the fitting surface have quadratic

convergence rates, the second-order partial derivatives have linear convergence rates. There-
fore, we have the following corollary.

Corollary 4.2 Under the conditions of Theorem 4.1, the discretized first- and second-order
geometric differential operators have the quadratic and linear convergence rates, respectively.

It should be pointed out that except for the tangential gradient operator, which is a first-
order geometric differential operator, all the other geometric differential operators introduced
in section 2 are the second-order.

Remark 4.2 The numerical experiments conducted in [31] show that for certain type domain
triangulations, the discrete approximation of the mean curvature, derived from the quadratic
fitting algorithm, have quadratic convergence rate. This convergence rate is one order higher
(super-convergence) than what we obtained from the theoretical analysis. Therefore, an open
problem left is what is the necessary and sufficient condition for domain triangulation, under
which the super-convergence happens for any smooth parametric surface to be sampled. We
believe that if n = 2m, m > 2, and the node set K = {qi}ni=0 satisfies

qi+m + qi = 0, i = 1, · · · ,m,

then the quadratic fitting surface, obtained from the sampling data of a smooth parametric
surface on the node set Kh = hK, will have super-convergence property.

Remark 4.3 In Algorithm 3.1, the local parametrization step is crucial to the quality of the
fitting surface. Here an interesting problem worth further study is: what is any other local
parametrization technique which yields even better fitting surface?
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5 Conclusions

In the literature, many approximate schemes on geometric differential operators have been pro-
posed. Except for the schemes based on the interpolation or fitting, non of these schemes con-
verges without any restriction on the regularity of the meshes considered. It has been claimed
in [31] that the mean curvature computed from a parametric quadratic fitting surface converges.
However, this fact has never been formally proved. In this paper, several commonly used dif-
ferential operators are approximated based on a parametric quadratic fitting. We have proved
that under very mild conditions, these approximated differential operators are convergent in
the linear (for the second-order operators) or quadratic (for the first-order operators) rates with
respect to the mesh size.
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