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Abstract

In this paper, we present a generalized Peierls-Nabarro model for curved dislo-

cations. In the generalized Peierls-Nabarro model, the anisotropic elastic energy is

obtained efficiently by solving the elasticity system associated with the disregistry

across the slip plane using the Fast Fourier Transform (FFT) method, and the gen-

eralized stacking fault energy is used for the interplanar potential across the slip

plane. Simulation results are reported on the core structures and the activation en-

ergies of dislocation loops in Al and Cu, incorporating both the elastic anisotropy

and the full disregistry vector in the slip plane.
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1 Introduction

To model dislocations, the long-ranged elastic field of a dislocation is very well described by

the continuum elasticity theory outside a small region surrounding the dislocation, which

is the core region of the dislocation; inside the core region, the heavily distorted atomic

structure requires atomistic models, and strongly influences the dislocation mobility and

the mechanical behavior of the materials [1]. The Peierls-Nabarro model [1–3] is a hybrid

model that incorporates the atomic features into the continuum framework.

In the framework of the Peierls-Nabarro model, the solid is divided by the slip plane of

the dislocation into two half-space linear elastic continua, which have a disregistry (misfit)

relative to each other and are connected by a nonlinear potential force. In the classical

Peierls-Nabarro model [1–3], isotropic linear elasticity is used in the two half-space elastic

continua, and the interplanar potential is approximated by the simple Frenkel sinusoidal

function [4]. The analytical solution of the classical Peierls-Nabarro model gives qualitative

descriptions for the dislocation core profile as well as the energy barrier (Peierls energy)

and the critical stress (Peierls stress) for the motion of dislocations.

The Peierls-Nabarro model has been improved greatly in the subsequent work, especially

with the introduction of the generalized stacking fault energy for the atomic interaction

across the slip plane [5] and the availability of the accurate results based on ab ini-

tio calculations [6–11]. It has been argued in these references that using the generalized

stacking fault energy obtained from ab inito calculations, the Peierls-Nabarro model can

give more reliable results than the atomistic simulations using empirical potentials. Using

the generalized stacking fault energy, no analytical solution of the Peierls-Nabarro model

is available, and several numerical solution methods were proposed to obtain the dislo-

cation profile, such as the arctangent type basis functions [7,12,13] and the semidiscrete

Peierls-Nabarro model [9]. Another improvement of the Peierls-Nabarro model is to in-

clude the full elastic anisotropy [12,14,15], which is important for materials with strong

anisotropic effect (e.g. Cu) [1]. Other efforts to improve the Peierls-Nabarro model can

be found on incorporating the discreteness of the crystal lattices [9,16,17], the nonlocal

effect near the slip plane [18], and the disregistry normal to the slip plane (opening) [9].

The major limitation of the Peierls-Nabarro model lies in the underlying assumption that

the nonlinear interaction is restricted to the slip plane, which makes this model work well

only for dislocations with planar cores such as those in FCC materials. Several attempts

2



have been made to generalize the Peierls-Nabarro model to the nonplanar core of screw

dislocations in BCC materials [19] and cross-slip of screw dislocations to different slip

planes in FCC materials [20].

All these Peierls-Nabarro models mentioned above are for straight dislocations. In reality,

dislocations are curved and commonly form loops inside crystalline materials. Only a few

attempts have been made to study the core structure and detailed dynamics of curved

dislocations within the framework of the Peierls-Nabarro models. In [21], a variational

boundary integral method [22,23] was used to study the homogeneous nucleation of dis-

location loops under stress. In this model, the elastic energy was obtained by treating

the displacement discontinuity on the slip plane as a continuous distribution of disloca-

tion loops [1,24]; the interplanar misfit energy was obtained using Rice’s modification of

the Frenkel relation for dislocations nucleated from the crack tips [25]; and the result-

ing singular integral equation was solved by a finite element based method [22]. In [26],

two-dimensional lattice models were introduced to study the motion of a dislocation kink.

In [27], a hybrid model incorporating the Peierls-Nabarro framework into a dislocation

dynamics model was proposed, in which N dislocation loops (about 20 in their examples)

were used to represent the core structure of one single loop. The elastic energy of a dislo-

cation loop was calculated by summing the interaction between each segment pairs on all

N loops; and the restoring force due to the generalized stacking fault energy obtained from

ab initio calculations [11] was calculated by representing disregistry across the slip plane

using step function approximation. However, although elastic anisotropy was included in

the formulation in some of these models, their simulations were all performed in isotropic

media. Besides, in the simulations in [21,27], the disregistry across the slip plane was re-

stricted in the direction of the Burgers vector (the constrained path approximation [25]),

thus the dissociation of dislocations into partials was not included.

In this paper, we use a generalized Peierls-Nabarro model to study the core structures and

properties of dislocation loops in Al and Cu, incorporating both the elastic anisotropy and

the full disregistry vector in the slip plane, which to our knowledge has never been done

in simulations within the framework of Peierls-Nabarro model in the literature. In the

generalized Peierls-Nabarro model, the distribution of the dislocations is represented by

the disregistry across the slip plane that is allowed to be in any direction [21–23,26,29,33].

The anisotropic elastic energy is obtained by solving the elasticity system associated with

the disregistry using the Fast Fourier Transform (FFT) method. The generalized stacking
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fault energy is used for the interplanar potential across the slip plane. The resulting

nonlinear equations for the distribution of the dislocations are solved by minimizing the

total energy.

Compared with the finite element formulation in [21], besides the usual advantages of

efficiency and simplicity in formulation and programming that the FFT methods have

over the finite element methods, our FFT based method also avoids the singularities in

calculating the stress field associated with dislocations that all formulations in physical

space have [1,24] including the finite element formulation in [21]. The efficiency for a

two dimensional Peierls-Nabarro model is crucial, especially when computing the core

structure of dislocation loops in a crystal such as Cu, in which the two partials in a

dislocation loop have large separation thus large simulation cells are required. Compared

with the interaction summation over small segments on dislocation loop arrays in the

hybrid model in [27], our FFT method is simpler and describes the dislocation structure

more accurately. Besides, the hybrid model in [27] works only under the constrained path

approximation for curved dislocations.

Note that the purpose of our method is different from that of the phase field models

in [28,29], which aimed at the dynamics of dislocation ensembles, and in which the in-

terplanar potentials were used only for regularization. The three dimensional phase field

model in [28] has also been generalized to study the dislocation dissociation in FCC crys-

tals incorporating the generalized stacking fault energy [30]. However, when applied to the

dislocation core structures in a particular slip plane, it is not as accurate as the classical

Peierls-Nabarro model. In particular, their model contains a gradient energy term that is

not included in the classical Peierls-Nabarro model, and which has been shown to change

the dislocation core profile [30]. Besides, they do not directly use the disregistry across

the slip plane to represent dislocations, and it is not easy to incorporate the opening in

their model.

2 The generalized Peierls-Nabarro model

In this section, we present the formulation for the generalized Peierls-Nabarro model.

Suppose that the slip plane of the dislocation is located at z = 0, and the disregistry of

the upper half crystal relative to the lower half is (φ(x, y), ψ(x, y), 0). The total energy in
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the framework of the Peierls-Nabarro models [1–3] can be written as

E = Eelastic + Emisfit. (1)

The energy Eelastic is the elastic energy in the two half-space linear elastic continua,

Eelastic =
∫

R3

3∑

i,j=1

1

2
σijεijdxdydz, (2)

where {σij} and {εij} are the stress and strain tensors, respectively, and σij =
3∑

k,l=1

Cijklεkl,

for i, j = 1, 2, 3, where {Cijkl} is the elastic constant tensor. Using the dislocation density

tensor {aij} [31–33], which in this problem is

{aij} =




φy(x, y)δ(z) ψy(x, y)δ(z) 0

−φx(x, y)δ(z) −ψx(x, y)δ(z) 0

0 0 0




, (3)

the stress can be expressed using Mura’s formula in Fourier space [33]:

σ̂mn(k1, k2, k3) =
3∑

j,l,p,q,r,s,t=1

εjstCmnjlCpqrsikq
Nlp(k1, k2, k3)

D(k1, k2, k3)
âtr(k1, k2, k3), (4)

where (k1, k2, k3) are the frequencies in Fourier space, σ̂ij and âij are the Fourier transform

of σij and aij, respectively, D(k1, k2, k3) is the determinant of the matrix





3∑

m,n=1

Cimjnkmkn





and {Nij(k1, k2, k3)} is its adjoint matrix. The nonsingularity of the stress field in the above

formulation is guaranteed by the fact that the matrix





3∑

m,n=1

Cimjnkmkn



 is positive def-

inite [39]. The average of the stress in a simulation cell is determined by the applied

field.

The energy Emisfit is the misfit energy due to the nonlinear atomic interaction across the

slip plane

Emisfit =
∫

R2
γ(φ(x, y), ψ(x, y))dxdy, (5)

where γ(φ, ψ) is the generalized stacking fault energy [5], which can be obtained accurately
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using interatomic potentials or ab initio calculations [5–11]. The generalized stacking

fault energy can be expressed using truncated Fourier series [8,12,13,34] or symmetrized

polynomial basis [11] based on the crystal lattice symmetry, or by tabulated values. Any

of these forms can be used in our model.

The minimum energy state with respect to φ and ψ gives the equilibrium distribution

of the Burgers vector of the dislocations, which can be shown to satisfy the following

Euler-Lagrange equations

δE

δφ
= σ13 +

∂γ

∂φ
= 0,

δE

δψ
= σ23 +

∂γ

∂ψ
= 0, (6)

where σ13 and σ23 are the stress on the z = 0 plane. Note that the stress in these equi-

librium equations includes both the stress generated by the dislocations and the applied

stress.

For the stress components in Eq. (6), using Eqs. (3) and (4), we can write

σ̂mn(k1, k2) = F̂mn(k1, k2)φ̂(k1, k2) + Ĝmn(k1, k2)ψ̂(k1, k2), (7)

where

F̂mn(k1, k2) =
∫

R

3∑

j,l,p,q,s=1

CmnjlCpq1skq
Nlp(k1, k2, k3)

2πD(k1, k2, k3)
(εjs2k1 − εjs1k2)dk3, (8)

Ĝmn(k1, k2) =
∫

R

3∑

j,l,p,q,s=1

CmnjlCpq2skq
Nlp(k1, k2, k3)

2πD(k1, k2, k3)
(εjs2k1 − εjs1k2)dk3. (9)

Note that even though Eq. (7) is derived from three dimensional formulation for elasticity,

the expression itself is defined only on the slip plane of the dislocation. For simplicity of

notations, we write σmn(x, y, 0) as σmn(x, y), and the Fourier transform in Eqs. (7)–(9)

is in two dimensions. It is easy to verify that for straight dislocations with isotropic

elasticity, this formulation reduces to that of the classical Peierls-Nabarro model [1–3].

Equivalent formulations or formulations for isotropic elasticity have been obtained and

used in [21–23,26,29].

In some crystals such as Si, the disregistry normal to the slip plane (the opening) is also

very important [8,9]. This effect can be included in the elasticity system by considering

full disregistry (φ(x, y), ψ(x, y), η(x, y)), where η(x, y) is the opening across the slip plane.
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In this case, the dislocation density tensor becomes

{aij} =




φy(x, y)δ(z) ψy(x, y)δ(z) ηy(x, y)δ(z)

−φx(x, y)δ(z) −ψx(x, y)δ(z) −ηx(x, y)δ(z)

0 0 0




. (10)

The generalized stacking fault energy with the effect of opening γ(φ, ψ, η) can be obtained

from interatomic potentials or ab initio calculations [9], or using the universal binding

energy curves [35–38]. The minimum energy state in this case satisfies

∂E

∂φ
= σ13 +

∂γ

∂φ
= 0,

∂E

∂ψ
= σ23 +

∂γ

∂ψ
= 0,

∂E

∂η
= σ33 +

∂γ

∂η
= 0, (11)

in which the stress components can be calculated using the following equations:

σ̂mn(k1, k2) = F̂mn(k1, k2)φ̂(k1, k2) + Ĝmn(k1, k2)ψ̂(k1, k2) + Ĥmn(k1, k2)η̂(k1, k2), (12)

where in the new term containing η̂(k1, k2),

Ĥmn(k1, k2) =
∫

R

3∑

j,l,p,q,s=1

CmnjlCpq3skq
Nlp(k1, k2, k3)

2πD(k1, k2, k3)
(εjs2k1 − εjs1k2)dk3. (13)

Numerically, the solution of Eq. (6) (or Eq. (11)) is found by minimizing the total energy

in Fourier space under periodic boundary conditions in the steepest descent direction,

i.e., solving the equations ∂φ
∂t

= −∂E
∂φ

, ∂ψ
∂t

= −∂E
∂ψ

(and ∂η
∂t

= −∂E
∂η

) in Fourier space to

the equilibrium state, where t is an artificial time. The stress components in Eq. (6) (or

Eq. (11)) are calculated using the FFT method through Eqs. (7)–(9) (or Eqs. (8),(9),(12),

and (13)). The integrals with respect to k3 in F̂mn(x, y), Ĝmn(x, y) (and Ĥmn(x, y)) are

replaced by summations over integer values of k3. These summations are the same for

the same type of slip planes in a crystal, e.g., {111} slip planes in an FCC crystal, thus

they can be pre-calculated only once before the energy minimization. Smooth profiles

of the disregistry components that are close to the solutions for the perfect or partial

dislocations, such as the arctangent profiles in the classical Peierls-Nabarro model [1–3],

can be used as the initial conditions for the energy minimization.

It is a standard technique to make the effect of periodic images negligible by using a
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large simulation cell, for which further increasing the size only gives negligible changes

in the result. Especially, since the summation with respect to k3 is performed only once

before the energy minimization, the size of the simulation cell in the z direction can be

chosen much larger to make the periodic effect in the z direction arbitrarily small. The

choice of the length of Burgers vector is a compromise between the resolution of the

dislocation core, which requires more numerical grid points for the length of the Burgers

vector, and the size of the simulation cell, which requires that the length of the Burgers

vector relative to the cell size cannot be quite large to eliminate the effect of the periodic

boundary conditions. In practice, the Burgers vector can be chosen to be several numerical

grid constants.

3 Formulation and parameters for FCC Al and Cu

In this paper, we use our method to study the core structures of dislocation loops on the

(111) planes of FCC Al and Cu. The effect of opening is neglected. The dislocations have

Burgers vector b = a
2
[110]. A perfect dislocation with this Burgers vector in most FCC

crystals tends to dissociate into Shockley partials [1]: a
2
[110] −→ a

6
[121] + a

6
[211].

We use the following parameters. The lattice constant a is 0.405nm for Al and 0.361nm

for Cu. The elastic constants C11 = 10.82 × 1010Pa, C12 = 6.13 × 1010Pa, and C44 =

2.85×1010Pa for Al, and C11 = 16.84×1010Pa, C12 = 12.14×1010Pa, C44 = 7.54×1010Pa

for Cu [1].

We use the following truncated Fourier expansion for the generalized stacking fault energy
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γ(φ, ψ) on FCC (111) planes, which incorporates the symmetry of the crystal lattice [34]:

γ(φ, ψ) = c0

+c1

(
cos 2π

b
(φ + ψ/

√
3) + cos 2π

b
(φ− ψ/

√
3) + cos 4πψ√

3b

)

+c2

(
cos 2π

b
(φ +

√
3ψ) + cos 2π

b
(φ−√3ψ) + cos 4πφ

b

)

+c3

(
cos 2π

b
(2φ + 2ψ/

√
3) + cos 2π

b
(2φ− 2ψ/

√
3) + cos 8πψ√

3b

)

+d1

(
sin 2π

b
(φ− ψ/

√
3)− sin 2π

b
(φ + ψ/

√
3) + sin 4πψ√

3b

)

+d2

(
sin 2π

b
(2φ− 2ψ/

√
3)− sin 2π

b
(2φ + 2ψ/

√
3) + sin 8πψ√

3b

)
,

(14)

where φ is the disregistry in the [1̄10] direction, ψ is the disregistry in the [1̄1̄2] direction,

b is the length of the Burgers vector, and c0 = −3c1 − 3c2 − 3c3. For Al, the coeffi-

cients c1 = −0.0595J/m2, c2 = −0.003J/m2, c3 = −0.0109J/m2, d1 = −0.0426J/m2,

d2 = 0.0153J/m2; and for Cu, c1 = −0.0876J/m2, c2 = 0, c3 = −0.0186J/m2, d1 =

−0.1517J/m2, d2 = 0.0149J/m2. These values of the coefficients are obtained by fitting

available data for the elastic constants in the (111) plane, the stacking fault energy, the

unstable stacking fault energy in the < 112 > direction, and the unstable stacking fault

energy in the < 110 > direction (only for Al) [1,11,40], following [12]. The obtained γ(φ, ψ)

for Al and Cu are shown in Fig. 1.

0
0.1
0.2
0.3
0.4
0.5

<110>
<112>

(a) γ(φ, ψ) on Al (111) plane

0

0.2

0.4

0.6

0.8

1

<110>
<112>

(b) γ(φ, ψ) on Cu (111) plane

Fig. 1. The generalized stacking fault energy γ(φ, ψ) (Unit: J/m2).

In the simulation results reported in this paper, the size of the simulation cell is 1024×1024

grid points, and the length of the Burgers vector b = 4∆x (b = 2∆x for very large
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dislocation loops in Cu), where ∆x = ∆y is the grid size. We use 16384 grid points in the

summation in the z direction. Further modifications of these parameters to increase the

accuracy only give negligible changes in the results.

4 Straight dislocations

When applied to straight dislocations, our FFT method, in which only one dimensional

FFT needs to be performed, is an alternative to the currently available numerical methods

within the framework of the Peierls-Nabarro model [7,9,11,12], In this section, we present

the simulation results of the core structures of straight dislocations in Al and Cu using our

method, and compare them with the results obtained using other Peierls-Nabarro models

and those from experiments.

We choose the direction of the straight dislocations to be the y axis. If θ is the angle

between the dislocation line and the Burgers vector, we have φ = φ1 sin θ + ψ1 cos θ and

ψ = −φ1 cos θ + ψ1 sin θ, where (φ, ψ) and (φ1, ψ1) are the coordinates of the disregistry

vector in the coordinate systems described in the previous and this sections, respectively.

To enforce periodic boundary conditions for straight dislocations, a pair of dislocations

with opposite directions are placed in one periodic cell by a distance equal to half of the

cell size. Convergence tests show that the effect on the core structure of one dislocation

from the other and all the periodic images is negligible for the cells we have chosen for

the simulations (see previous section). The density of dislocation, or the distribution of

the Burgers vector, is the derivative of the disregistry in the direction perpendicular to

the dislocation [1]: ρ(x) = φ′(x) = φ′1(x) sin θ + ψ′1(x) cos θ, where the derivatives can be

calculated using FFT. Even though one dimensional model is enough for these straight

dislocations, we solved these examples in two dimensions as test examples for the full two

dimensional model.

We first present a numerical test for a straight screw dislocation in an FCC crystal using

anisotropic elasticity and the Frenkel sinusoidal potential γ(ψ1) =
C′44b2

4π2d
(1 − cos 2πψ1

b
),

when the classical Peierls-Nabarro model has an analytical solution for the dislocation

density [1]: ρ(x) = b
π

ξ
x2+ξ2 , where ξ = d

2C′44

√
C ′

44
C′11−C′12

2
− C ′2

14, C ′
11, C ′

12, C ′
14, and C ′

44 are

the elastic constants of the FCC crystal in the coordinate system described above, and d is

the interplanar distance in the [111] direction. Figure 2 shows the calculated dislocation
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x/b
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our model

Fig. 2. Under the conditions of anisotropic elasticity and Frenkel sinusoidal potential, the dis-
location density of a screw dislocation obtained using our model (dots) and the result of the
classical Peierls-Nabarro (PN) model (solid line), using parameters of Cu.

−20 −15 −10 −5 0 5 10 15 20
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x/b
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tr
y 

(b
)

along Burgers vector
normal to Burgers vector

(a) Disregistry

−20 −15 −10 −5 0 5 10 15 20
−0.1

−0.05

0
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0.1

0.15

0.2

0.25

0.3

0.35

0.4

x/b

along Burgers vector
normal to Burgers vector

(b) Dislocation density

Fig. 3. The core structure of a straight edge dislocation in Al. Solid line: the component parallel
to the Burgers vector; Dash-dot line: the component perpendicular to the Burgers vector. The
dotted lines in (a) show the values 1

4b and 3
4b.

density using our model under these conditions and the dislocation density given by

the above analytical expression, using parameters of Cu. The excellent agreement shows

that our model calculate the solutions accurately for straight dislocations in anisotropic

media, and recovers the available results of the classical Peierls-Nabarro model if the same

conditions are used.

The core structure of a straight edge dislocation in Al obtained using our model is shown

in Fig. 3. The two Shockley partials in these dislocations overlap heavily, and only the

tendency for dissociation is observed. The results of the core width of different kinds of
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Table 1
The core width/partial separation of straight dislocations in Al and Cu (in nm).

edge 60o 30o screw

Core width in Al 0.68 0.60 0.48 0.42

Partial separation in Cu 3.6 3.1 1.8 1.1

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/b

di
sr

eg
is

tr
y 

(b
)

along Burgers vector
normal to Burgers vector

(a) Disregistry

−30 −20 −10 0 10 20 30
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x/b

along Burgers vector 
normal to Burgers vector

(b) Dislocation density

Fig. 4. The core structure of a straight edge dislocations in Cu. Solid line: the component parallel
to the Burgers vector; Dash-dot line: the component perpendicular to the Burgers vector. The
dotted lines in (a) show the values 1

4b and 3
4b.

dislocations in Al are shown in Table 1, in which we have followed Lu et al. [11] to measure

the dislocation core width by the distance over which the disregistry in the direction of

the Burgers vector changes from 1
4
b to 3

4
b. To obtain such a solution using the full two

dimensional model, it took about 10 minutes in a simulation cell with 512 × 512 grid

points or about an hour in a simulation cell with 1024 × 1024 grid points, on a personal

computer with 3.2 GHz CPU and 4 GB memory.

The heavy overlap of the two Shockley partials in perfect dislocations in Al observed in

our simulations is in agreement with the large value of the stacking fault energy in Al [1],

and the simulation results in [11] using the semidiscrete Peierls-Nabarro model [9] and

the generalized stacking fault energy from ab initio calculations. Our results of the core

width shown in Table 1 agree very well with those obtained in [11], which are 0.70nm,

0.60nm, 0.50nm, and 0.42nm for the edge, 60o, 30o, and screw dislocations, respectively.

This agreement validates the approximations of isotropic elasticity and the constrained

path (i.e., neglecting the disregistry normal to the Burgers vector) for straight dislocations

in Al used in [11].
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The core structure of a straight edge dislocation in Cu obtained using our model is shown

in Fig. 4. It can be seen that the edge dislocation in Cu dissociates clearly into two

Shockley partials, which is quite different from the perfect dislocations in Al, see Fig. 3.

The results of the separation of the two Shockley partials of different kinds of straight

dislocations in Cu are shown in Table 1, where the partial separation is also identified

by the distance over which the disregistry in the direction of the Burgers vector changes

from 1
4
b to 3

4
b.

The clear dissociation of perfect dislocations in Cu into two Shockley partials observed in

our simulations is due to the low stacking fault energy in Cu [1], and has been observed in

experiments [41]. The values of the partial separation obtained using our method shown

in Table 1 agree with the experimental results [41] of 3.8±0.6 nm for the edge dislocation

and 1.8± 0.6 nm for the screw dislocation.

5 Dislocation loops

In this section, we report the simulation results of the core structure of dislocation loops

in Al and Cu. The x axis is in the [1̄10] direction, which is in the direction of the Burgers

vector, and the y axis is in the [1̄1̄2] direction. The loop center is located at the origin.

For a dislocation loop, a constant shear stress is needed to prevent the loop from shrink-

ing. The resulting unstable equilibrium configuration gives local maximum of the total

energy. In order to obtain this unstable configuration of the dislocation loop, a Lagrange

multiplier is used to keep the area enclosed by a dislocation loop constant during the

energy minimization. The control area is proportional to the integral of the disregistry

in the direction of the Burgers vector φ. The resulting Lagrange multiplier is thus the

applied stress. For a very small perfect loop (or partial loop) whose maximum value of

φ is less than b (or the length of the Burgers vector of the partial loop), it is more ef-

fective to control the value of φ at the center of the loop by varying the applied stress.

Convergence tests show that the effect of the periodic boundary conditions is negligible

for the core structure of dislocation loops with average radius up to about 1/4 of the size

of the simulation cell with the parameters given in Section 3. The results reported here

are based on the simulations of these loops.
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5.1 Dislocation loops in Al
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Fig. 5. Core structure of perfect dislocation loops in Al with different values of applied stress.
The number associated with each curve in (a)–(d) is the value of the applied stress in the unit
µ111.
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The core profiles of perfect dislocation loops in Al with different values of applied stress

are shown in Fig. 5. Figure 5(a) and (c) show the disregistry φ, which is in the direction

of the Burgers vector and determines the dislocation loops. Figure 5(b) and (d) show the

disregistry ψ, which is in the direction perpendicular to the Burgers vector. The values of

ψ are very small compared with the values of φ for these perfect loops, which validates

the constrained path approximation (i.e., neglecting the disregistry normal to the Burgers

vector) used in [21,27] for Al. As an example, the dislocation density and the core region

of a perfect loop with applied stress 0.026µ111 are shown in Fig. 5(e) and (f), where µ111

is the shear modulus in the {111} plane of Al. The core region is identified by the region

between the contour lines of φ = b
4

and φ = 3
4
b as the straight dislocations in Al. We

can see that in these perfect dislocation loops, the two Shockley partials are not clearly

separated, only some tendency of splitting is shown, as in the straight perfect dislocations

in Al. These perfect loops are elongated in the direction of the Burgers vector (the x

direction), which agrees with the classical dislocation theory that the edge dislocations

have larger line energy than the screw dislocations [1].

Partial dislocation loops in Al with Burgers vector a
6
[2̄11] are also found in our simulations,

as shown in Fig. 6. These partial loops are elongated along the 60o direction with respect

to the x axis, which is the direction of their Burgers vector a
6
[2̄11].

The perfect and partial dislocation loops shown in Figs. 5 and 6 exist up to some critical

applied stress levels. Under a large applied stress close to the critical levels, the loop is

very small and its maximum value of φ is clearly less than b or the length of the Burgers

vector of the partial loop, e.g., see the perfect loop with applied stress 0.090µ111 shown

in Fig. 5 or the partial loop with applied stress 0.127µ111 shown in Fig. 6. In this case,

the dislocation loops are not fully developed and the concept of the core region is not

appropriate. The perfect or partial loops larger than those shown in these figures exist

under lower values of the applied stress, and the profiles are similar to those of the largest

loops shown in these figures. These are the same for the dislocation loops in Cu to be

shown in the next subsection. More on the energetics of these two families of loops and

the critical levels of the applied stress can be found in the next section.
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Fig. 6. Core structure of partial dislocation loops in Al with different values of applied stress.
The number associated with each curve in (a)–(d) is the value of the applied stress in the unit
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4 .

5.2 Dislocation loops in Cu

The core profiles of perfect dislocation loops in Cu with different values of applied stress

are shown in Fig. 7. Figure 7(a)–(d) show the disregistry components φ and ψ along16
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the x and y axes. As an example, the dislocation density and the partial dissociation

of a perfect loop with applied stress 0.016µ111 are shown in Fig. 7(e) and (f), where

µ111 is the shear modulus in the {111} plane of Cu. The two partial loops shown in

Fig. 7(f) are identified by the contour lines of φ = b
4

and φ = 3
4
b, respectively. These

results show that unlike in Al, the two Shockley partials of a perfect dislocation loop in

Cu are clearly separated, with Burgers vectors a
6
[2̄11] ((φ, ψ) = (b/2,

√
3b/6)) and a

6
[1̄21̄]

((φ, ψ) = (b/2,−√3b/6)) for the outer and inner partial loops, respectively. Between

the two partial loops is the stacking fault region, where the disregistry (φ, ψ) is close to

(b/2,
√

3b/6), in contrast with the very small ψ for the perfect loops in Al shown in Fig. 5

(b) and (d). From these figures we can see that the partial dissociation along the y axis,

where the dislocations are pure screw, is not as much as that along the x axis, where the

dislocations are pure edge. This behavior is the same as that of the straight dislocations

in Cu, see Table 1. These dissociated dislocation core structures in Cu cannot be obtained

using the constrained path approximation, as was used for the dislocation core structures

in Al in the literature [21,27].

In Fig. 7(f), the two partial loops of the perfect loop in Cu are elongated approximately in

the directions of their own Burgers vectors, respectively. This behavior is quite different

from that of the undissociated or slightly dissociated perfect loops in Al, in which the

two partial loops together with the perfect loops are all elongated in the direction of the

Burgers vector of the perfect loops, see Fig. 5(f). For a small perfect loop in Cu, the two

partials are almost decoupled and elongated in the directions of their own Burgers vectors,

due to the strong line tension effect of the two partials. As the size of the perfect loop

increases, the line tension effect of the two partial loops becomes weak and the interaction

between them becomes dominant, which makes them tend to elongated uniformly in the

direction of the Burgers vector of the perfect loop. Compared with the perfect loops in

Al, the tendency towards decoupling still exists for fairly large perfect loops in Cu (e.g.

a perfect loop with radius about 100b in the x direction) due to the widely separated

partials with relatively weak interaction between them. While for Al, this decoupling can

only be seen in very small loops that are not fully developed (e.g. the perfect loop with

applied stress 0.090µ111 in Al).

The core profiles of partial dislocation loops in Cu with Burgers vector a
6
[2̄11] obtained

using our model are shown in Fig. 8. As in Al, these partial loops are elongated in the

direction of their Burgers vector, and in some range of applied stress values, both the per-
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fect and partial loops exist. The energetics of these two families of loops will be discussed

in the next section.

6 Activation energies

It has been shown by continuum dislocation theory that homogeneous nucleation of dis-

location loops in a perfect crystal by thermal activation is considered impossible under

realistic values of applied shear stress due to the high activation energy [1]. This conclusion

was confirmed by more accurate calculations of the activation energy using a variational

method based on the Peierls-Nabarro framework [21]. However, in the calculations in [21],

approximations of isotropic elasticity and sinusoidal interplanar potential with the con-

strained path (i.e., neglecting the disregistry normal to the Burgers vector ψ in the slip

plane) were used. In this section, we calculate the activation energy of the dislocation

loops in the {111} planes in Al and Cu using our model, incorporating elastic anisotropy

and more realistic generalized stacking fault energy with the full disregistry in the slip

plane.
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Fig. 9. Activation energies of dislocation loops in Al and Cu with different values of applied
shear stress, and comparison with the constrained path approximation (dotted lines).

Following Xu and Argon [21], the activation energy is the difference between the total

energy of the dislocation loop and that of the uniform stable shear deformation with the

same applied stress level. The total energy is

Etotal = Eelastic + Emisfit + Eapplied, (15)
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where the elastic energy Eelastic and the misfit energy Emisfit are given by Eqs. (2) and (5)

in Sec. 2, and the energy due to the applied stress Eapplied is

Eapplied =
∫

R2
[σapp

13 φ(x, y) + σapp
23 ψ(x, y)]dxdy, (16)

where σapp
13 and σapp

23 are the components of the applied stress. As in the previous section, in

our simulations, the Burgers vector of the perfect dislocation loops is in the +x direction,

σapp
13 is constant, and σapp

23 = 0. It is known that there exists a critical value τc of the

applied stress σ13, above which no stable uniform deformation exists and slip occurs over

the whole slip plane at once [1,4,21,25].

The activation energies for dislocation loops in Al and Cu obtained using our model are

shown in Fig. 9. It is found that there are two branches of the activation energy curves

when the applied stress is less than the critical applied stress τc, which is 0.13µ111 for

Al and 0.12µ111for Cu (points M and E in Fig. 9). One branch starts from τc, along

which partial loops are developed from loops with small disregistry as the applied stress

decreases. The profiles of the partial dislocation loops and the loops with small disregistry

in this branch are shown in Figs. 6 and 8 for Al and Cu, respectively. Perfect dislocation

loops are developed along the other branch of the energy curve, starting from another

critical applied stress value τp, which is less than τc and is 0.0898µ111 for Al and 0.0179µ111

for Cu (points N and F in Fig. 9). At the applied stress level τp, the activation energy

for the perfect loop is larger than that for the partial loop. The profiles of the perfect

dislocation loops in this branch are shown in Figs. 5 and 7 for Al and Cu, respectively.

When the applied stress level is less than τp, both the branches of the perfect loops and

the partial loops exist. The two branches of energy curves intersect at an applied stress

level τ0, which is 0.0853µ111 for Al and 0.0144µ111 for Cu. When the applied stress is less

than τ0, the perfect loops are energetically favorable; when the applied stress is between

τ0 and τp, the partial loops are energetically favorable. For Al, the two branches of energy

curves intersect almost at the starting point of the branch of perfect loops, which means

that in Al, the perfect loops, if they exist, are almost always energetically favorable than

isolated partial loops. Note that since the stacking fault region inside a partial loop is a

local minimum energy state, there is an energy barrier for the nucleation of the second

partial loop inside the original partial loop to form a perfect one, even though in most

cases the perfect loop has lower energy than the initial partial loop at the same applied
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Table 2
The activation energy of some dislocation loops in Al and Cu.

Al perfect loop Al partial loop Cu perfect loop Cu partial loop

Applied stress (µ111) 0.034 0.060 0.018 0.027

Activation energy (eV) 34 25 93 24

stress level.

In our simulations, we have considered the full disregistry vector (φ, ψ) in the slip plane,

where φ and ψ are the components parallel and perpendicular to the given Burgers vector,

respectively. We have also examined the previously used constrained path approxima-

tion [21,27], and the resulting energy curves are shown by the dotted lines in Fig. 9, along

which perfect dislocation loops without dissociation are developed. For Al, the dotted line

almost agrees with the energetically favorable parts of the two branches of energy curves

with full disregistry, which verifies the constrained path approximation used previously for

Al [21,27]. While for Cu, the constrained path approximation has a large error and does

not give the energetically favorable partial loops. Thus it is very important to incorporate

the full disregistry for the quantitative study of dislocation nucleation in Cu.

The values of activation energy of some dislocation loops in Al and Cu are shown in

Table 2. These loops are among the smallest fully developed perfect or partial loops,

see Figs. 5–8. These high values of activation energy confirm the conclusion that thermal

activation plays negligible role in homogeneous nucleation of dislocation loops in a perfect

crystal [1,21].

Our method and results provide a basis for accurate analysis of the nucleation of dis-

location loops combined with other effects such as the presence of cracks [25,42,43] or

surfaces [44,45].

7 Summary and discussion

We have proposed a generalized Peierls-Nabarro model for curved dislocations, in which

the anisotropic elastic energy is obtained efficiently by solving the elasticity system associ-

ated with the disregistry across the slip plane using the FFT method, and the generalized

stacking fault energy incorporating the full disregistry vector in the slip plane is used for
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the interplanar potential. We have used this method to study the core structures and

activation energies of dislocation loops in FCC Al and Cu.

Further generalization of this model may include the incorporation of the opening [9], the

Peierls energy and the Peierls stress [9,17], the nonlocal effect near the slip plane [18], and

multiple slip planes [20], as have been done for straight dislocations. This model can also

be generalized to the study of structure and activation energy of curved dislocations near

crack tips [25,42,43] or crystal surfaces [44,45].
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