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Abstract. The uniaxial perfectly matched layer (PML) method uses rectangular domain to
define the PML problem and thus provides greater flexibility and efficiency in dealing with prob-
lems involving anisotropic scatterers. In this paper an adaptive uniaxial PML technique for solving
the time harmonic Helmholtz scattering problem is developed. The PML parameters such as the
thickness of the layer and the fictitious medium property are determined through sharp a posteriori
error estimates. The adaptive finite element method based on a posteriori error estimate is proposed
to solve the PML equation which produces automatically a coarse mesh size away from the fixed
domain and thus makes the total computational costs insensitive to the thickness of the PML absorb-
ing layer. Numerical experiments are included to illustrate the competitive behavior of the proposed
adaptive method. In particular, it is demonstrated that the PML layer can be chosen as close to one
wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far
fields.

Key words. Adaptivity, uniaxial perfectly matched layer, a posteriori error analysis, acoustic
scattering problems.

1. Introduction. We propose and study a uniaxial perfectly matched layer
(PML) technique for solving Helmholtz-type scattering problems with perfectly con-
ducting boundary:

∆u+ k2u = 0 in R
2\D̄, (1.1a)

∂u

∂nD
= −g on ΓD, (1.1b)

√
r

(

∂u

∂r
− iku

)

→ 0 as r = |x| → ∞. (1.1c)

Here D ⊂ R
2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD) is

determined by the incoming wave, and nD is the unit outer normal to ΓD. We assume
the wave number k ∈ R is a constant. We remark that the results in this paper can
be extended to the case when k2(x) is a variable wave number inside some bounded
domain, or to solve the scattering problems with other boundary conditions, such as
Dirichlet or the impedance boundary condition on ΓD.

Since the work of Bérénger [3] which proposed a PML technique for solving the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. Turkel and Yefet [19],
Teixeira and Chew [18] for the reviews). The basic idea of the PML technique is
to surround the computational domain by a layer of finite thickness with specially
designed model medium that would either slow down or attenuate all the waves that
propagate from inside the computational domain.

The convergence of the PML method is studied in Lassas and Somersalo [13],
Hohage et al [12] for the acoustic scattering problems for circular PML layers and
in Lassas and Somersalo [14] for general smooth convex geometry. It is proved in
[13, 12, 14] that the PML solution converges exponentially to the solution of the
original scattering problem as the thickness of the PML layer tends to infinite. We
remark that in practical applications involving PML techniques, one cannot afford to
use a very thick PML layer if uniform meshes are used because it requires excessive
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grid points and hence more computer time and more storage. On the other hand,
a thin PML layer requires a rapid variation of the artificial material property which
deteriorates the accuracy if too coarse mesh is used in the PML layer.

The adaptive PML technique was proposed in Chen and Wu [8] for a scattering
problem by periodic structures (the grating problem), in Chen and Liu [6] for the
acoustic scattering problem, and in Chen and Chen [5] for Maxwell scattering prob-
lems. The main idea of the adaptive PML technique is to use the a posteriori error
estimate to determine the PML parameters and to use the adaptive finite element
method to solve the PML equations. The adaptive PML technique provides a com-
plete numerical strategy to solve the scattering problems in the framework of finite
element which produces automatically a coarse mesh size away from the fixed domain
and thus makes the total computational costs insensitive to the thickness of the PML
absorbing layer.

The purpose of this paper is to extend the adaptive PML technique developed
for circular PML layer in [8, 6, 5] to deal with the uniaxial PML methods which are
widely used in the engineering literature. The main advantage of the uniaxial PML
method as opposing to the circular PML method is that it provides greater flexibility
and efficiency to solve problems involving anisotropic scatterers. Our technique to
prove the PML convergence is different from the techniques developed in [8, 6, 5]
for circular PML layers. It is based on the integral representation of the exterior
Dirichlet problem for the Helmholtz equation and the idea of the complex coordinate
stretching. To the authors’ best knowledge, this is the first convergence proof of the
uniaxial PML method in the literature. We remark that the boundary of the uniaxial
PML layer is only Lipschitz and so the results in [14] cannot be applied.

The layout of the paper is as follows. In section 2 we recall the uniaxial PML
formulation for (1.1a)-(1.1c) by following the method of complex coordinate stretching
in Chew and Weedon [4]. In section 3 we prove the convergence of the uniaxial PML
method. In section 4 we introduce the finite element approximation. In section 5 we
derive the a posteriori error estimate which includes both the PML error and the finite
element discretization error. Finally in section 6 we describe our adaptive algorithm
and present two examples to show the competitive behavior of the adaptive method.

2. The PML equation. Let D be contained in the interior of the rectangle
B1 = {x ∈ R2 : |x1| < L1/2, |x2| < L2/2}. Let Γ1 = ∂B1 and n1 the unit outer normal
to Γ1. We start by introducing the Dirichlet-to-Neumann operator T : H1/2(Γ1) →
H−1/2(Γ1). Given f ∈ H1/2(Γ1), we define Tf =

∂ξ

∂n1
on Γ1, where ξ is the solution

of the following exterior Dirichlet problem of the Helmholtz equation

∆ξ + k2ξ = 0 in R
2\B̄1, (2.1a)

ξ = f on Γ1, (2.1b)

√
r

(

∂ξ

∂r
− ikξ

)

→ 0 as r = |x| → ∞. (2.1c)

It is well-known that (2.1a)-(2.1c) has a unique solution ξ ∈ H1
loc(R

2\B̄1) (cf. e.g.
Colten-Kress [11]). Thus T : H1/2(Γ1) → H−1/2(Γ1) is well-defined and is a continu-
ous linear operator.

Let a : H1(Ω1) ×H1(Ω1) → C, where Ω1 = B1\D̄, be the sesquilinear form

a(ϕ, ψ) =

∫

Ω1

(

∇ϕ · ∇ψ̄ − k2ϕψ̄
)

dx− 〈Tϕ, ψ〉Γ1 , (2.2)
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where 〈·, ·〉Γ1 stands for the inner product on L2(Γ1) or the duality pairing between
H−1/2(Γ1) and H1/2(Γ1). The scattering problem (1.1a)-(1.1c) is equivalent to the
following weak formulation (cf. e.g. [11]): Given g ∈ H−1/2(ΓD), find u ∈ H1(Ω1)
such that

a(u, ψ) = 〈g, ψ〉ΓD , ∀ ψ ∈ H1(Ω1). (2.3)

The existence of a unique solution of the scattering problem (2.3) is known (cf.
e.g. [11], McLean [15]). Then the general theory in Babuška and Aziz [1, Chap. 5]
implies that there exists a constant µ > 0 such that the following inf-sup condition is
satisfied

sup
06=ψ∈H1(Ω1)

|a(ϕ, ψ)|
‖ψ ‖H1(Ω1)

≥ µ‖ϕ ‖H1(Ω1), ∀ ϕ ∈ H1(Ω1). (2.4)

Γ
2

Γ
1

Γ
D

L
1

L
2 D

d
1

d
2

Fig. 2.1. Setting of the scattering problem with the PML layer.

Now we turn to the introduction of the absorbing PML layer. Let B2 = {x ∈
R

2 : |x1| < L1/2 + d1, |x2| < L2/2 + d2} be the rectangle which contains B1. Let
α1(x1) = 1 + iσ1(x1), α2(x2) = 1 + iσ2(x2) be the model medium property which
satisfy

σj ∈ C(R), σj ≥ 0, σj(t) = σj(−t), and σj = 0 for |t| ≤ Lj/2, j = 1, 2.

Denote by x̃j the complex coordinate defined by

x̃j =

{

xj if |xj | < Lj/2,
∫ xj

0 αj(t)dt if |xj | ≥ Lj/2.
(2.5)

To derive the PML equation, we first notice that by the third Green formula, the
solution ξ of the exterior Dirichlet problem (2.1a)-(2.1c) satisfies

ξ = −Ψk
SL(λ) + Ψk

DL(f) in R
2\B̄1, (2.6)
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where λ = Tf ∈ H−1/2(Γ1) is the Neumann trace of ξ on Γ1, and Ψk
SL,Ψ

k
DL are

respectively the single and double layer potentials

Ψk
SL(λ)(x) =

∫

Γ1

Gk(x, y)λ(y) ds(y), ∀ λ ∈ H−1/2(Γ1), (2.7)

Ψk
DL(f)(x) =

∫

Γ1

∂Gk(x, y)

∂n1(y)
f(y) ds(y), ∀ f ∈ H1/2(Γ1). (2.8)

Here Gk is the fundamental solution of the Helmholtz equation satisfying the Som-
merfeld radiation condition

Gk(x, y) =
i

4
H

(1)
0 (k|x− y|),

where H
(1)
0 (z) is the first Hankel function of order zero.

We follow the method of complex coordinate stretching [4] to introduce the PML
equation. For any z ∈ C, denote by z1/2 the analytic branch of

√
z such that

Im (z1/2) > 0 for any z ∈ C\[0,+∞). Let ρ(x̃, y) = [(x̃1 − y1)
2 + (x̃2 − y2)

2]1/2

be the complex distance and define

G̃k(x, y) =
i

4
H

(1)
0 (kρ(x̃, y)).

It is easy to see that G̃k is smooth for x ∈ R2\B̄1 and y ∈ B̄1. Now we can define the
modified single and double layer potentials [14]

Ψ̃k
SL(λ)(x) =

∫

Γ1

G̃k(x, y)λ(y) ds(y), ∀ λ ∈ H−1/2(Γ1), (2.9)

Ψ̃k
DL(f)(x) =

∫

Γ1

∂G̃k(x, y)

∂n1(y)
f(y) ds(y), ∀ f ∈ H1/2(Γ1). (2.10)

It is clear that Ψ̃k
SL(λ), Ψ̃k

DL(f) are smooth in R
2\B̄1, and

γ+
DΨ̃k

SL(λ) = γ+
DΨk

SL(λ), ∀ λ ∈ H−1/2(Γ1),

γ+
DΨ̃k

DL(f) = γ+
DΨk

DL(f), ∀ f ∈ H1/2(Γ1),
(2.11)

where γ+
D : H1

loc(R
2\B̄1) → H1/2(Γ1) is the trace operator.

For any f ∈ H1/2(Γ1), let E(f)(x) be the PML extension given by

E(f)(x) = −Ψ̃k
SL(Tf) + Ψ̃k

DL(f) for x ∈ R
2\B̄1. (2.12)

By (2.11) and (2.6) we know that γ+
DE(f) = −γ+

DΨk
SL(Tf) + γ+

DΨk
DL(f) = γ+

Dξ = f
on Γ1 for any f ∈ H1/2(Γ1). For the solution u of the scattering problem (2.3), let
ũ = E(u|Γ1) be the PML extension of u|Γ1 which satisfies γ+

Dũ = u|Γ1 on Γ1. Since

H
(1)
0 (z) decays exponentially on the upper half complex plane [6], heuristically ũ(x)

will decay exponentially when x is away from Γ1. It is obvious that ũ satisfies

∂2ũ

∂x̃2
1

+
∂2ũ

∂x̃2
2

+ k2ũ = 0 in R
2\B̄1,

which yields the desired PML equation by the chain rule

∇ · (A∇ũ) + α1α2k
2ũ = 0 in R

2\B̄1,
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where A = diag(α2(x2)/α1(x1), α1(x1)/α2(x2)) is a diagonal matrix.
The PML solution û in Ω2 = B2\D̄ is defined as the solution of the following

system

∇ · (A∇û) + α1α2k
2û = 0 in Ω2, (2.13a)

∂û

∂nD
= −g on ΓD, û = 0 on Γ2. (2.13b)

The well-posedness of the PML problem (2.13a)-(2.13b) and the convergence of its
solution to the solution of the original scattering problem will be studied in the next
section.

3. Convergence analysis. We start by considering the Dirichlet problem of
the PML equation in the layer

∇ · (A∇w) + α1α2k
2w = 0 in ΩPML = B2\B̄1, (3.1a)

w = 0 on Γ1, w = q on Γ2, (3.1b)

where q ∈ H1/2(Γ2). Introduce the sesquilinear form c : H1(ΩPML)×H1(ΩPML) → C

as

c(ϕ, ψ) =

∫

ΩPML

(A∇ϕ · ∇ψ̄ − α1α2k
2ϕψ̄) dx.

Then the weak formulation for (3.1a)-(3.1b) is: Given q ∈ H1/2(Γ2), find w ∈
H1(ΩPML) such that w = 0 on Γ1, w = q on Γ2, and

c(w,ψ) = 0, ∀ ψ ∈ H1
0 (ΩPML). (3.2)

Notice that, for any ϕ ∈ H1(ΩPML),

Re [c(ϕ,ϕ)] =

∫

ΩPML

(

1 + σ1σ2

1 + σ2
1

∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

2

+
1 + σ1σ2

1 + σ2
2

∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

2

+ (σ1σ2 − 1)k2|ϕ|2
)

dx.

Since

1 + σ1σ2

1 + σ2
1

≥ 1

1 + σ2
m

,
1 + σ1σ2

1 + σ2
2

≥ 1

1 + σ2
m

,

where σm = max
x∈B̄2

(σ1(x1), σ2(x2)) > 0, we know by using the spectral theory of com-

pact operators that (3.2) has a unique solution for every real k except possibly for
a discrete set of values of k (see Collino and Monk [10, Theorem 2] for a similar
discussion on the PML equation in the polar coordinates). In this paper we will not
elaborate on this issue and simply make the following assumption

(H1) There exists a unique solution to the Dirichlet PML problem (3.2) in the layer.

We remark that for the circular PML method, the unique existence of the PML
equation in the layer can be proved under certain conditions on the PML medium
property in [13], [6]. The proof of the unique existence of the Dirichlet problem for
the uniaxial PML equation is an interesting open problem.

5



Throughout the paper we will use the weighted H1-norm

‖ϕ ‖H1(Ω) =
(

‖∇ϕ ‖2
L2(Ω) + |Ω|−1‖ϕ ‖2

L2(Ω)

)1/2

,

for any bounded domain Ω ⊂ R2, where |Ω| is the Lebesgue measure of Ω. For any
ϕ ∈ H1(ΩPML), we define

‖ϕ ‖∗,ΩPML =

[

∫

ΩPML

(

1

1 + σ2
1

∣

∣

∣

∣

∂ϕ

∂x1

∣

∣

∣

∣

2

+
1

1 + σ2
2

∣

∣

∣

∣

∂ϕ

∂x2

∣

∣

∣

∣

2

+ (1 + σ1σ2)k
2|ϕ|2

)

dx

]1/2

.

It is easy to see that ‖ · ‖∗,ΩPML is an equivalent norm on H1(ΩPML). Again by using

the general theory in [1, Chap. 5] we know that there exists a constant Ĉ > 0 such
that

sup
06=ψ∈H1

0 (ΩPML)

|c(ϕ, ψ)|
‖ψ ‖∗,ΩPML

≥ Ĉ‖ϕ ‖∗,ΩPML . (3.3)

The constant Ĉ depends in general on the domain ΩPML and the wave number k.
Before we state the main result of this section, we make the following assumptions

on the fictitious medium property, which is rather mild in the practical applications
of the uniaxial PML method

(H2)

∫

L1
2 +d1

0

σ1(t) dt =

∫

L2
2 +d2

0

σ2(t) dt = σ, σ > 0 is a constant;

(H3) σj(t) = σ̃j

( |t| − Lj/2

dj

)m

, m ≥ 1 integer, σ̃j > 0 is a constant, j = 1, 2.

The following theorem is the main result of this section.
Theorem 3.1. Let (H1)-(H3) be satisfied. Then for sufficiently large σ > 0, the

PML problem (2.13a)-(2.13b) has a unique solution û ∈ H1(Ω2). Moreover, we have
the following error estimate

‖ u− û ‖H1(Ω1) ≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ û ‖H1/2(Γ1), (3.4)

where γ = min(d1,d2)√
(L1+d1)2+(L2+d2)2

, L = max(L1, L2).

The proof of this theorem will be given in Section 3.3 which depends on the
exponential decay estimates of the PML extension in Section 3.1 and the stability
estimates of the Dirichelt problem of the PML equation in the layer in Section 3.2.

3.1. Estimates for the PML extension. We start with the following elemen-
tary lemma.

Lemma 3.2. For any z1 = a1 + ib1, z2 = a2 + ib2 with a1, b1, a2, b2 ∈ R such that
a1b1 + a2b2 ≥ 0 and a2

1 + a2
2 > 0, we have

Im (z2
1 + z2

2)
1/2 ≥ a1b1 + a2b2

√

a2
1 + a2

2

.
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Proof. For any a, b ∈ R we know that

Im (a+ ib)1/2 =

√

−a+
√
a2 + b2

2
.

Here we used the convention that z1/2 is the analytic branch of
√
z such that

Im (z1/2) > 0 for any z ∈ C\[0,+∞). It is easy to check that Im (a + ib)1/2 is a
decreasing function in a ∈ R. Let z2

1 + z2
2 = a+ ib, then

a+ ib =

(

√

a2
1 + a2

2 + i
a1b1 + a2b2
√

a2
1 + a2

2

)2

− (a2b1 − a1b2)
2

a2
1 + a2

2

.

Let a′ = a+ (a2b1−a1b2)2

a2
1+a2

2
, since a1b1 + a2b2 ≥ 0, we have

Im (a′ + ib)1/2 =
a1b1 + a2b2
√

a2
1 + a2

2

.

On the other hand, since a′ ≥ a, we know that Im (a + ib)1/2 ≥ Im (a′ + ib)1/2. This
completes the proof.

Now let zj = x̃j − yj = (xj − yj) + i
∫ xj

0 σj(t) dt. For any x ∈ Γ2, y ∈ Ω̄1, it is

easy to see that (xj −yj)
∫ xj

0
σj(t) dt ≥ 0. Thus, by Lemma 3.2, ρ(x̃, y) = (z2

1 +z2
2)

1/2

satisfies

Im ρ(x̃, y) ≥ |x1 − y1| |
∫ x1

0
σ1(t) dt| + |x2 − y2| |

∫ x2

0
σ2(t) dt|

|x− y| .

Now by (H2) we have, for any x ∈ Γ2, y ∈ Ω̄1,

Im ρ(x̃, y) ≥ min(d1, d2)
√

(L1 + d1)2 + (L2 + d2)2
σ = γ σ, (3.5)

where γ = min(d1,d2)√
(L1+d1)2+(L2+d2)2

.

We need the modified Bessel function Kν(z) of order ν, ν ∈ C, which is the
solution of the differential equation

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0

satisfying the asymptotic behavior Kν(z) ∼ i( π2z )
1/2e−z−

π
4 i as |z| → ∞. Kν(z) is

connected with H
(1)
ν (z) through the relation Kν(z) = 1

2πie
1
2νπiH

(1)
ν (iz). Thus we

know that

G̃k(x, y) =
i

4
H

(1)
0 (kρ(x̃, y)) =

1

2π
K0(−ikρ(x̃, y)). (3.6)

We refer to the treatise Watson [20] for extensive studies on the special function
Kν(z).

Lemma 3.3. For any ν ∈ R, θ2 ≥ θ1 > 0, we have

Kν(θ2) ≤ e−(θ2−θ1)Kν(θ1).
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Proof. We first recall the Schläfli integral representation formula [20, P. 181], for
z ∈ C such that | arg z | < π/2,

Kν(z) =

∫ ∞

0

e−z cosh t cosh νt dt. (3.7)

The lemma is a direct consequence of (3.7).
The following lemma on the estimates of the fundamental solution G̃k of the PML

equation will play an important role in the analysis in this paper.
Lemma 3.4. Let (H1)-(H3) be satisfied. Let γ, σ be so chosen that

γkσ ≥ 1. (3.8)

Then there exists a constant C > 0 depending only on γ but independent of k, σ, Lj, dj ,
j = 1, 2, such that for any x ∈ Γ2, y ∈ Ω̄1,
(i) |G̃k(x, y)| ≤ C e−(γkσ−1);

(ii)
∣

∣

∣

∂G̃k
∂xj

∣

∣

∣
≤ Ck|αm| e−(γkσ−1), j = 1, 2;

(iii)
∣

∣

∣

∂G̃k
∂yj

∣

∣

∣
≤ Ck e−(γkσ−1), j = 1, 2;

(iv)
∣

∣

∣

∂2G̃k
∂xi∂yj

∣

∣

∣
≤ Ck2|αm| e−(γkσ−1), i, j = 1, 2.

Here αm = max
x∈Γ2

(|α1(x1)|, |α2(x2)|).
Proof. By the Schläfli integral representation formula (3.7), it is easy to see that

|K0(z)| < K0(Re (z)) for any z ∈ C such that Re (z) > 0. Thus, by (3.6) and Lemma
3.3, if k Im ρ(x̃, y) ≥ 1,

|G̃k| ≤
1

2π
|K0(−ikρ(x̃, y))| ≤ 1

2π
K0(kIm ρ(x̃, y)) ≤ 1

2π
K0(1)e−(kIm ρ(x̃,y)−1).

This proves (i) by (3.5) and (3.8).
To show (ii) we first notice that

∂G̃k
∂xj

= − ik

2π
K ′

0(−ikρ(x̃, y))
∂ρ(x̃, y)

∂xj
=

ik

2π
K1(−ikρ(x̃, y))

(x̃j − yj)αj(xj)

ρ(x̃, y)
,

where we have used the identity K ′
0(z) = −K1(z). Note that when |x − y| ≥ 2σ, we

have

|ρ(x̃, y)| ≥ |Re (z2
1 + z2

2)|1/2 ≥ (|x − y|2 − 2σ2)1/2 ≥ 1√
2
|x− y|,

where zj = (x̃j − yj). Thus for any x ∈ Γ2, y ∈ Ω̄1,

|x̃j − yj|
|ρ(x̃, y)| ≤

√
2
(|x− y|2 + σ2)1/2

|x− y| ≤
√

2

(

1 +
σ2

|x− y|2
)1/2

≤
√

10

2
. (3.9)

On the other hand, when |x − y| ≤ 2σ, by (3.5) we know that Im ρ(x̃, y) ≥ γσ.
Thus for any x ∈ Γ2, y ∈ Ω̄1,

|x̃j − yj |
|ρ(x̃, y)| ≤ (|x − y|2 + σ2)1/2

Im ρ(x̃, y)
≤ γ−1 (|x− y|2 + σ2)1/2

σ
≤

√
5γ−1. (3.10)

8



This proves (ii) again by using (3.8) and Lemma 3.3. Similarly, we can prove (iii).
To prove (iv) we note that

∂2G̃k
∂xi∂yj

=
k2

2π
K ′

1(−ikρ(x̃, y))
−(x̃i − yi)(x̃j − yj)αi(xi)

ρ(x̃, y)2

+
ik

2π
K1(−ikρ(x̃, y))

−ρ2δijαi(xi) + (x̃i − yi)(x̃j − yj)αi(xi)

ρ3
.

By using the identity K ′
1(z) = − 1

2 (K0(z) +K2(z)), we have

|K ′
1(−ikρ(x̃, y))| ≤ 1

2
( |K0(−ikρ(x̃, y))| + |K2(−ikρ(x̃, y))| )

≤ e−(γkσ−1) 1

2
(K0(1) +K2(1)) = e−(γkσ−1)|K ′

1(1)|.

Therefore, by using (3.9)-(3.10) we obtain

∣

∣

∣

∣

∣

∂2G̃k
∂xi∂yj

∣

∣

∣

∣

∣

≤ Ck2|αm| e−(γkσ−1) + Ck|αm|σ−1 e−(γkσ−1)

≤ Ck2|αm| e−(γkσ−1),

where in the last inequality we have used the assumption (3.8) to conclude that
σ−1 ≤ kγ. This completes the proof.

Now we are in the position to estimate the modified single and double layer
potentials Ψ̃k

SL, Ψ̃
k
DL. Throughout the paper we shall use the weightedH1/2(Γj) norm,

j = 1, 2,

‖ v ‖H1/2(Γj) =
(

|Γj |−1‖ v ‖2
L2(Γj)

+ |v|21
2 ,Γj

)1/2

,

where

|v|21
2 ,Γj

=

∫

Γj

∫

Γj

|v(x) − v(x′)|2
|x− x′|2 ds(x) ds(x′).

Lemma 3.5. For any f ∈ H1/2(Γ1), let

v(x) = Ψ̃k
DL(f) =

∫

Γ1

∂G̃k(x, y)

∂n1(y)
f(y) ds(y)

be the double layer potential. Then

‖ v ‖H1/2(Γ2) ≤ C|αm|(1 + kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1),

where L = max(L1, L2).
Proof. For any x ∈ Γ2, by Lemma 3.4, we know that

|v(x)| ≤ ‖∂n1(y)G̃k(x, ·)‖L∞(Γ1)‖f‖L1(Γ1) ≤ Ck e−(γkσ−1)‖f‖L1(Γ1).

Hence

|Γ2|−1/2‖ v ‖L2(Γ2) ≤ Ck e−(γkσ−1)‖ f ‖L1(Γ1).
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It is easy to see that, for any x, x′ ∈ Γ2,

|v(x) − v(x′)| ≤ C‖∇xv‖L∞(Γ2)|x− x′|.

Thus

|v| 1
2 ,Γ2

≤ C|Γ2| ‖∇xv‖L∞(Γ2) ≤ C|Γ2| max
x∈Γ2,y∈Γ1

|∇y∇xG̃k(x, y)| ‖f‖L1(Γ1)

≤ Ck2|αm| |Γ2| e−(γkσ−1)‖f‖L1(Γ1).

Since ‖f‖L1(Γ1) ≤ C|Γ1| ‖ f ‖H1/2(Γ1) ≤ CL‖ f ‖H1/2(Γ1), we conclude that

‖ v ‖H1/2(Γ2) ≤ C|αm|(1 + kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1).

This completes the proof.
Lemma 3.6. For any λ ∈ H−1/2(Γ1), let

v(x) = Ψ̃k
SL(λ) =

∫

Γ1

G̃k(x, y)λ(y) ds(y)

be the single layer potential. Then

‖ v ‖H1/2(Γ2) ≤ C|αm|(1 + kL)2 e−(γkσ−1)‖λ‖H−1/2(Γ1),

where L = max(L1, L2).
Proof. For any x ∈ Γ2, we know that

|v(x)| ≤ C‖λ‖H−1/2(Γ1)‖ G̃k(x, ·) ‖H1/2(Γ1)

≤ C‖λ‖H−1/2(Γ1)‖ G̃k(x, ·) ‖H1(Ω1)

≤ C‖λ‖H−1/2(Γ1)(‖ G̃k(x, ·) ‖L∞(Ω1) + |Ω1|1/2‖∇yG̃k(x, ·) ‖L∞(Ω1))

≤ C‖λ‖H−1/2(Γ1)(1 + kL) e−(γkσ−1),

where we have used Lemma 3.4. Hence

|Γ2|−1/2‖ v ‖L2(Γ2) ≤ C(1 + kL) e−(γkσ−1)‖λ‖H−1/2(Γ1).

On the other hand, similar argument as in Lemma 3.5 yields

|v| 1
2 ,Γ2

≤ C|Γ2| ‖∇xv‖L∞(Γ2)

≤ CL‖λ‖H−1/2(Γ1) max
x∈Γ2

‖∇xG̃k(x, ·) ‖H1/2(Γ1)

≤ CL‖λ‖H−1/2(Γ1) max
x∈Γ2

‖∇xG̃k(x, ·) ‖H1(Ω1)

≤ CL‖λ‖H−1/2(Γ1) max
x∈Γ2

( ‖∇xG̃k(x, ·)‖L∞(Ω1) + |Ω1|1/2‖∇y∇xG̃k(x, ·)‖L∞(Ω1) ).

Again by using Lemma 3.4 we obtain

|v| 1
2 ,Γ2

≤ C|αm|(1 + kL)2 e−(γkσ−1)‖λ‖H−1/2(Γ1).

This completes the proof.
The following theorem is the main result of this subsection.
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Theorem 3.7. Let (H1)-(H3) and (3.8) be satisfied. For any f ∈ H1/2(Γ1),
let E(f) be the PML extension defined in (2.12). Then there exists a constant C
depending only on γ but independent of k, σ, Lj , dj , j = 1, 2, such that

‖E(f) ‖H1/2(Γ2) ≤ C|αm|(1 + kL)2 e−(γkσ−1)‖ f ‖H1/2(Γ1),

where L = max(L1, L2).
Proof. This theorem is a direct consequence of Lemmas 3.5-3.6 and the continuity

of the Dirichlet-to-Neumann operator T : H1/2(Γ1) → H−1/2(Γ1).

3.2. The PML equation in the layer. In this subsection we derive the sta-
bility estimates for the Dirichlet problem of the PML equation in the layer.

Theorem 3.8. Let (H1) be satisfied. For q ∈ H1/2(Γ2), let w be the solution
of the PML equation in the layer (3.1a)-(3.1b). Then there exists a constant C > 0
independent of k, σ such that

‖∇w ‖L2(ΩPML) ≤ CĈ−1|αm|2(1 + kL)‖ q ‖H1/2(Γ2),
∥

∥

∥

∥

∂w

∂n1

∥

∥

∥

∥

H−1/2(Γ1)

≤ CĈ−1|αm|2(1 + kL)2‖ q ‖H1/2(Γ2).

Proof. For any ζ ∈ H1(ΩPML) such that ζ = q on Γ2 and ζ = 0 on Γ1. By the
inf-sup condition in (3.3) and using (3.2), we know that

Ĉ‖w − ζ ‖∗,ΩPML ≤ sup
06=ψ∈H1

0 (ΩPML)

|c(w − ζ, ψ)|
‖ψ ‖∗,ΩPML

= sup
06=ψ∈H1

0 (ΩPML)

|c(ζ, ψ)|
‖ψ ‖∗,ΩPML

.

By Cauchy-Schwarz inequality

|c(ζ, ψ)| ≤ C max
x∈ΩPML

(

|α2|, |α1|, |ΩPML|1/2 k |α1| |α2|
(1 + σ1σ2)1/2

)

‖ ζ ‖H1(ΩPML)‖ψ ‖∗,ΩPML

≤ C(1 + kL)|αm| ‖ ζ ‖H1(ΩPML)‖ψ ‖∗,ΩPML . (3.11)

Notice that

‖ ζ ‖∗,ΩPML ≤ C|αm|(1 + kL)‖ ζ ‖H1(ΩPML),

by the triangle inequality and the trace inequality, we conclude that

‖w ‖∗,ΩPML ≤ CĈ−1|αm|(1 + kL)‖ q ‖H1/2(Γ2). (3.12)

This shows the first estimate in the theorem by using the definition of ‖ · ‖∗,ΩPML .
Next, since A(x) reduces to the identity matrix on Γ1, we know that, for any

ψ ∈ H1(ΩPML) such that ψ = 0 on Γ2,

−
∫

Γ1

∂w

∂n1
ψ̄ =

∫

∂ΩPML

A∇w · n ψ̄ =

∫

ΩPML

(A∇w · ∇ψ̄ + ∇ · (A∇w)) dx

=

∫

ΩPML

(A∇w · ∇ψ̄ − k2α1α2wψ̄) dx,

where we have used (3.1a) and the formula of integration by parts. Again by Cauchy-
Schwarz inequality and the argument in (3.11) we get

∣

∣

∣

∣

∫

Γ1

∂w

∂n1
ψ̄

∣

∣

∣

∣

≤ C(1 + kL)|αm| ‖w ‖∗,ΩPML‖ψ ‖H1(ΩPML).

This completes the proof by using (3.12) and the trace inequality.
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3.3. Convergence of the PML problem. The purpose of this section is to
prove Theorem 3.1. We start by introducing the approximate Dirichlet-to-Neumann
operator T̂ : H1/2(Γ1) → H−1/2(Γ1) associated with the PML problem. Given f ∈
H1/2(Γ1), let T̂ f =

∂ζ

∂n1

∣

∣

∣

Γ1

, where ζ ∈ H1(ΩPML) be the solution of the PML problem

in the layer

∇ · (A∇ζ) + α1α2k
2ζ = 0 in ΩPML, (3.13a)

ζ = f on Γ1, ζ = 0 on Γ2. (3.13b)

By assumption (H1), T̂ is well-defined.
Lemma 3.9. Let (H1)-(H3) and (3.8) be satisfied. We have, for any f ∈

H1/2(Γ1),

‖Tf − T̂ f‖H−1/2(Γ1) ≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ f ‖H1/2(Γ1).

Proof. For any f ∈ H1/2(Γ1), let E(f) be the PML extension defined in (2.12).

Denote by γ+
Nv =

∂v

∂n1

∣

∣

∣

Γ1

be the Neumann trace on Γ1 for any function v defined on

R2\B̄1. It is easy to see that γ+
N Ψ̃k

SL(λ) = γ+
NΨk

SL(λ), γ+
N Ψ̃k

DL(f) = γ+
NΨk

DL(f) for
any λ ∈ H−1/2(Γ1) and f ∈ H1/2(Γ1). Thus, by (2.6),

γ+
NE(f) = −γ+

NΨk
SL(Tf) + γ+

NΨk
DL(f) = γ+

Nξ = Tf.

By (3.13a)-(3.13b), we know that Tf−T̂ f =
∂w

∂n1

∣

∣

∣

Γ1

, where w = E(f)−ζ ∈ H1(ΩPML)

satisfies

∇ · (A∇w) + α1α2k
2w = 0 in ΩPML,

w = 0 on Γ1, w = E(f) on Γ2.

By Theorem 3.8 and Theorem 3.7,
∥

∥

∥

∥

∂w

∂n1

∥

∥

∥

∥

H−1/2(Γ1)

≤ CĈ−1|αm|2(1 + kL)2‖E(f) ‖H1/2(Γ2)

≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ f ‖H1/2(Γ1).

This completes the proof.
Proof of Theorem 3.1: We first prove the estimate (3.4). Let û be the solution of

the PML problem (2.13a)-(2.13b). Simple integration by parts implies that

a(û, ψ) + 〈T û− T̂ û, ψ〉Γ1 = 〈g, ψ〉ΓD , ∀ ψ ∈ H1(Ω1).

Subtracting with (2.3) we get

a(u− û, ψ) = 〈T û− T̂ û, ψ〉Γ1 , ∀ ψ ∈ H1(Ω1).

Thus, by the inf-sup condition (2.4) and Lemma 3.9,

‖ u− û ‖H1(Ω1) ≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ û ‖H1/2(Γ1). (3.14)

This is the desired estimate (3.4).
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Now we turn to the well-posedness of the PML problem. By the Fredholm alter-
native theorem we only need to show the uniqueness of the PML problem (2.13a)-
(2.13b). For that purpose we let g = 0 in (2.13a)-(2.13b). By the uniqueness of the
scattering problem we know that the corresponding scattering solution u = 0 in Ω1.
Thus (3.14) implies

‖ û ‖H1(Ω1) ≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ û ‖H1/2(Γ1)

≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ û ‖H1(Ω1).

Thus for sufficiently large σ we conclude that û = 0 on Ω1. That û also vanishes
in Ω2 is a direct consequence of the unique continuation theorem (cf. e.g. [16, P. 92]).
This completes the proof. �

4. Finite element approximation. In this section we introduce the finite ele-
ment approximations of the PML problems (2.13a)-(2.13b). From now on we assume
g ∈ L2(ΓD). Let b : H1(Ω2) ×H1(Ω2) → C be the sesquilinear form given by

b(ϕ, ψ) =

∫

Ω2

(

A∇ϕ · ∇ψ̄ − α1α2k
2ϕψ̄

)

dx. (4.1)

Denote by H1
(0)(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ2}. Then the weak formulation of

(2.13a)-(2.13b) is: Given g ∈ L2(ΓD), find û ∈ H1
(0)(Ω2) such that

b(û, ψ) =

∫

ΓD

gψ̄ ds, ∀ ψ ∈ H1
(0)(Ω2). (4.2)

Let Mh be a regular triangulation of the domain Ω2. We assume the elements
K ∈ Mh may have one curved edge align with ΓD so that Ω2 = ∪K∈Mh

K. Let

Vh ⊂ H1(Ω2) be the conforming linear finite element space over Ω2, and
◦

V h = {vh ∈
Vh : vh = 0 on Γ2}. The finite element approximation to the PML problem (2.13a)-

(2.13b) reads as follows: Find uh ∈
◦

V h such that

b(uh, ψh) =

∫

ΓD

gψ̄h ds, ∀ ψh ∈
◦

V h. (4.3)

Following the general theory in [1, Chap. 5], the existence of unique solution of the
discrete problem (4.3) and the finite element convergence analysis depend on the
following discrete inf-sup condition

sup

06=ψh∈
◦

V h

|b(ϕh, ψh)|
‖ψh ‖H1(Ω2)

≥ µ̂ ‖ϕh ‖H1(Ω2), ∀ ϕh ∈
◦

V h, (4.4)

where the constant µ̂ > 0 is independent of the finite element mesh size. Since the
continuous problem (4.2) has a unique solution by Theorem 3.1, the sesquilinear form
b : H1

(0)(Ω2)×H1
(0)(Ω2) → C satisfies the continuous inf-sup condition. Then a general

argument of Schatz [17] implies (4.4) is valid for sufficiently small mesh size h < h∗. In
this paper we are interested in a posterioir error estimates and the associated adaptive
method. Thus in the following, we simply assume the discrete problem (4.3) has a
unique solution.
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For any K ∈ Mh, we denote by hK its diameter. Let Bh denote the set of all
sides that do not lie on ΓD and Γ2. For any e ∈ Bh, he stands for its length. For any
K ∈ Mh, we introduce the residual:

Rh := ∇ · (A∇uh|K) + α1α2k
2uh|K . (4.5)

For any interior side e ∈ Bh which is the common side of K1 and K2 ∈ Mh, we define
the jump residual across e:

Je := (A∇uh|K1 −A∇uh|K2) · νe, (4.6)

using the convention that the unit normal vector νe to e points from K2 to K1. If
e = ΓD ∩ ∂K for some element K ∈ Mh, then we define the jump residual

Je := 2(∇uh|K · nD + g). (4.7)

For any K ∈ Mh, we define the local error estimator η
K

as

η
K

=

(

‖ hKRh ‖2
L2(K) +

1

2

∑

e⊂∂K

he‖ Je ‖2
L2(e)

)1/2

. (4.8)

The following theorem is the main result of this paper, whose proof will be given in
the next section.

Theorem 4.1. Let (H1)-(H3) and (3.8) be satisfied. Then there exists a constant
C > 0 depending only on γ and the minimum angle of the mesh Mh such that the
following a posterior error estimate is valid

‖ u− uh ‖H1(Ω1) ≤ CĈ−1|αm|2(1 + kL)

(

∑

K∈Mh

η2
K

)1/2

+CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ uh ‖H1/2(Γ1).

5. A posteriori error analysis. For any ϕ ∈ H1(Ω1), let ϕ̃ be its extension in
ΩPML such that

∇ · (Ā∇ϕ̃) + α1α2k
2ϕ̃ = 0 in ΩPML, (5.1a)

ϕ̃ = ϕ on Γ1, ϕ̃ = 0 on Γ2. (5.1b)

Lemma 5.1. Let (H1) be satisfied. For any ϕ, ψ ∈ H1(ΩPML), we have

〈T̂ϕ, ψ〉Γ1 = 〈T̂ ψ̄, ϕ̄〉Γ1 .

Proof. By definition, T̂ ϕ = ∂ξ/∂n1 on Γ1, where ξ satisfies

∇ · (A∇ξ) + α1α2k
2ξ = 0 in ΩPML,

ξ = ϕ on Γ1, ξ = 0 on Γ2.
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Similarly, T̂ ψ̄ = ∂ζ/∂n1 on Γ1, where ζ satisfies the same equation but ζ = ψ̄ on Γ1,
ζ = 0 on Γ2. Integrating by parts we know that

0 = −
∫

ΩPML

(A∇ξ · ∇ζ − α1α2k
2ξ · ζ) −

∫

Γ1

∂ξ

∂n1
· ζ

0 = −
∫

ΩPML

(A∇ζ · ∇ξ − α1α2k
2ζ · ξ) −

∫

Γ1

∂ζ

∂n1
· ξ

Since A is a diagonal matrix, the first integrals on the right-hand side of the above
two equations are equal. Thus 〈T̂ ϕ, ζ̄〉Γ1 = 〈T̂ ψ̄, ξ〉Γ1 . This completes the proof since
ξ = ϕ, ζ = ψ̄ on Γ1.

Lemma 5.2 (Error representation formula). For any ϕ ∈ H1(Ω1), which is

extended to be a function ϕ̃ ∈ H1(Ω2) according to (5.1a)-(5.1b), and ϕh ∈
◦

V h, we
have

a(u− uh, ϕ) =

∫

ΓD

g(ϕ− ϕh) − b(uh, ϕ̃− ϕ̃h) + 〈Tuh − T̂ uh, ϕ〉Γ1 . (5.2)

Proof. By (2.3) and the definitions (2.2) and (4.1),

a(u− uh, ϕ)

=

∫

ΓD

gϕ̄−
∫

Ω1

(A∇uh · ∇ϕ̄− α1α2k
2uhϕ̄) + 〈Tuh, ϕ〉Γ1

=

∫

ΓD

gϕ̄− b(uh, ϕ̃) +

∫

ΩPML

(A∇uh · ∇ ¯̃ϕ− α1α2k
2uh ¯̃ϕ) + 〈Tuh, ϕ〉Γ1 . (5.3)

On the other hand, by multiplying (5.1a) by ūh, integrating by parts, and recalling
that n1 is the unit outer normal to Γ1 which points outside Ω1, we deduce that

−
∫

ΩPML

(Ā∇ϕ̃ · ∇ūh − α1α2k
2ϕ̃ūh) −

〈

∂ϕ̃

∂n1
, uh

〉

Γ1

= 0,

which is equivalent to

∫

ΩPML

(A∇uh · ∇ ¯̃ϕ− α1α2k
2uh ¯̃ϕ) = −

〈

∂ ¯̃ϕ

∂n1
, ūh

〉

Γ1

. (5.4)

Since by the definition of T̂ : H1/2(Γ1) → H−1/2(Γ1),

∂ ¯̃ϕ

∂n1

∣

∣

∣

Γ1

= T̂ ϕ̄,

we obtain by substituting (5.4) into (5.3) that

a(u− uh, ϕ) =

∫

ΓD

gϕ̄− b(uh, ϕ̃) + 〈Tuh, ϕ〉 − 〈T̂ ϕ̄, ūh〉.

This completes the proof upon using Lemma 5.1 and (4.3).
Proof of Theorem 4.1: First, we construct a Clément type interpolation operator

Πh : H1
(0)(Ω2) →

◦

V h, where H1
(0)(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ2}. Let Nh =

{ai}Ni=1 be the set of the nodes of Mh which is interior to Ω2 or on the boundary ΓD,
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and {φi}Ni=1 be the corresponding nodal basis of Vh. Define ∆i = suppφi ∩Ω2. Then
the interpolation operator Πh : H1

(0)(Ω2) → Vh is defined by

Πhv(x) =

N
∑

i=1

(

1

|∆i|

∫

∆i

v(x)dx

)

φi(x).

Since the nodes on Γ2 are not included in the definition of Πh, we know that Πhv ∈
◦

V h.
Moreover, by slightly modifying the argument in Chen and Nochetto [7, Lemmas 3.1-
3.2], one can show that the operator Πh enjoys the following interpolation estimates,
for any v ∈ H1

(0)(Ω2),

‖ v − Πhv ‖L2(K) ≤ ChK‖∇v ‖L2(K̃), ‖ v − Πhv ‖L2(e) ≤ Ch1/2
e ‖∇v ‖L2(ẽ), (5.5)

where K̃ and ẽ are the union of all elements in Mh having non-empty intersection
with K ∈ Mh and the side e, respectively.

Now we take ϕh = Πhϕ̃ ∈
◦

V h in the error representation formula (5.2) to get

a(u− uh, ϕ) =

∫

ΓD

g(ϕ− Πhϕ) − b(uh, ϕ̃− Πhϕ̃) + 〈Tuh − T̂ uh, ϕ〉Γ1

:= II1 + II2 + II3. (5.6)

We observe that, by integration by parts and using (4.5)-(4.7),

II1 + II2 =
∑

K∈Mh

(

∫

K

Rh(ϕ̃− Πhϕ̃) dx+
∑

e⊂∂K

1

2

∫

e

Je(ϕ̃ − Πhϕ̃) ds

)

.

By using standard argument in the a posteriori error analysis and (5.5) we get

|II1 + II2| ≤ C
∑

K∈Mh

(

‖ hKRh ‖2
L2(K) +

1

2

∑

e⊂∂K

‖ h1/2
e Je ‖2

L2(e)

)1/2

‖∇ϕ̃ ‖L2(K̃)

≤ C

(

∑

K∈Mh

η2
K

)1/2

‖∇ϕ̃ ‖L2(Ω2).

By the argument in Theorem 3.8, we deduce that

‖∇ϕ̃ ‖L2(ΩPML) ≤ CĈ−1|αm|2(1 + kL)‖ϕ ‖H1/2(Γ1)

≤ CĈ−1|αm|2(1 + kL)‖ϕ ‖H1(Ω1).

Thus

|II1 + II2| ≤ CĈ−1|αm|2(1 + kL)

(

∑

K∈Mh

η2
K

)1/2

‖ϕ ‖H1(Ω1).

By Lemma 3.9, we obtain

|II3| ≤ CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ uh ‖H1/2(Γ1)‖ϕ ‖H1/2(Γ1).
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Therefore, by the inf-sup condition (2.4), we finally get

‖ u− uh ‖H1(Ω1) ≤ C sup
06=ϕ∈H1(Ω1)

|a(u− uh, ϕ)|
‖ϕ ‖H1(Ω1)

≤ CĈ−1|αm|2(1 + kL)

(

∑

K∈Mh

η2
K

)1/2

+CĈ−1|αm|3(1 + kL)4 e−(γkσ−1)‖ uh ‖H1/2(Γ1).

This completes the proof. �

6. Implementation and numerical examples. In this section, we present
several numerical examples to illustrate the performance of the adaptive uniaxial
PML method. The computations are carried out by using the PDE toolbox of MAT-
LAB. The PML parameters are determined through the a posteriori error estimate in
Theorem 4.1. Note that in Theorem 4.1 that the a posteriori error estimate consists of
two parts: the PML error and the finite element discretization error. First we choose
L1, L2 such that D ⊂ B1 and choose d1, d2 such that

d1

L1
=
d2

L2
= χ, (6.1)

where χ is a constant. Then we choose χ and σ such that the exponentially decaying
factor:

ω = e−(γkσ−1) = e
−

(

χ
χ+1

min(L1,L2)√
L2

1
+L2

2

kσ−1
)

≤ 10−8, (6.2)

which makes the PML error negligible compared with the finite element discretization
errors. By (H3),

σj(t) = σ̃j

( |t| − Lj/2

dj

)m

, j = 1, 2, (6.3)

where σ̃1, σ̃2 are determined from σ as follows

σ̃j =
(m+ 1)σ

dj
, j = 1, 2. (6.4)

Once the PML region and the medium property are fixed, we use the standard finite
element adaptive strategy to modify the mesh according to the a posteriori error
estimate. Now we describe the adaptive uniaxial PML method used in the paper.

Algorithm 6.1. Given tolerance TOL > 0. Let m = 2.

• Choose L1, L2 such that D ⊂ B1;
• Choose χ and σ such that the exponentially decaying factor ω ≤ 10−8;
• Set d1, d2 and σ̃1, σ̃2 according to (6.1),(6.4);
• Set the computational domain Ω2 = B2\D̄ and generate an initial mesh Mh over

Ω2;

• While EFEM =
(
∑

K∈Mh
η2
K

)1/2
> TOL do

- refine the mesh Mh according to the strategy:

17



if ηK > 1
2 maxK∈Mh

ηK , refine the element K ∈ Mh

- solve the discrete problem (4.3) on Mh

- compute error estimators on Mh

end while

Now we report two numerical examples to demonstrate the efficiency of the pro-
posed algorithm. We scale the error estimator for determining finite element meshes
by a default factor 0.15 as in the PDE toolbox of MATLAB.

Example 1. Let D = [−λ/2, λ/2] × [−λ/2, λ/2]. We consider the scattering

problem whose exact solution is known: u = H
(1)
0 (k|x|), where k = 2π/λ and so λ

is the wavelength. Define dist = min{|x − x′|, x ∈ ΓD, x
′ ∈ Γ1} as the minimum

distance between the scatterer to the inner boundary of the PML layer. We want
to test the influence of the different choices of the size of B1. Fix χ = 1.0 and take
different dist, that is, in the first step we choose different L1 and L2. Table 6.1 shows
the different choices of the PML parameters dist, χ and σ determined by the relation
(6.2). In the following we simply take λ = 1.0 to fix the exact solution.

Table 6.1
The PML parameters for Example 1 and Example 2.

Example 1 Example 2
dist χ σ dist χ σ
0.1λ 1.0 9λ 1.0λ 0.5 20λ
1.0λ 1.0 9λ 1.0λ 1.0 14λ
5.0λ 1.0 9λ 1.0λ 2.0 10λ

0.1λ 1.0 19λ

Figure 6.1 shows the logNk-log ‖ u−uk ‖H1(Ω1) curves, where Nk is the number of
nodes of the mesh Mk and uk is the finite element solution of (4.3) over the mesh Mk.
It indicates that for different choices of dist, the meshes and the associated numerical

complexity are quasi-optimal: ‖ u− uk ‖H1(Ω1) ≈ CN
−1/2
k is valid asymptotically.

Table 6.2
The number of nodes required to achieve the given relative error of the far field for different

choices of dist for Example 1. The exact far field is 0.22507908-0.22507908 i.

Error dist = 0.1λ dist = 1.0λ dist = 5.0λ
10% 295 557 5111
1% 997 5556 16845

0.1% 2989 16006 >114848

One of the important quantities in the scattering problems is the far field pattern:

u∞(x̂) =
ei

π
4√

8πk

∫

∂D

(

u(y)
∂e−ikx̂·y

∂ν(y)
− ∂u(y)

∂ν(y)
e−ikx̂·y

)

ds(y), x̂ =
x

|x| .

We compute the far field u∞(x̂), x̂ = (cos(θ), sin(θ))T in the observation direction
θ = π/4. Table 6.2 shows the number of nodes required to achieve the given relative

18
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Fig. 6.1. The quasi-optimality of the adaptive mesh refinements of the error ‖u − uN‖
H1(Ω1)

for Example 1.
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Fig. 6.2. The geometry of the scatterer for Example 2.

error of the far field for different choices of PML parameter dist. It demonstrates
clearly that for given relative error, a smaller dist is preferred in terms of number of
nodes used. Thus for the same accuracy of the far fields, we can choose small dist
which will largely save the computational costs.

Example 2. This example is taken from [10] which concerns the scattering of the
plane wave uI = eikx1 from a perfectly conducting metal. The scatter D is contained
in the box {x ∈ R2 : −2 < x1 < 2.2,−0.7 < x2 < 0.7} as plotted in Figure 6.2. We
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Fig. 6.3. The quasi-optimality of the adaptive mesh refinements of the a posteriori error esti-

mator for Example 2.
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Fig. 6.4. The real part of the far-field patterns in the incident direction for Example 2.
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Fig. 6.5. The real part of the far-field patterns in the reflective direction for Example 2.

take k = 2π, that is the wave length λ = 1.0. Let dist = 1.0 and thus the scatterer
is contained in the box B̄1 = [−3.2, 3.2] × [−1.7, 1.7]. The different choices of PML
parameters χ and σ determined by the relation (6.2) are shown in Table 6.1.

Figure 6.3 shows the logNk-log Ek curves, where Nk is the number of nodes of
the mesh Mk and the Ek = (

∑

K∈Mk
η2
K)1/2 is the associated a posteriori error

estimate. It indicates that the meshes and the associated numerical complexity are

quasi-optimal: Ek ≈ CN
−1/2
k is valid asymptotically.

Figures 6.4 and 6.5 show the far fields in the incident direction θ = 0 and the
reflective direction θ = π. We observe that the far fields are insensitive to the thickness
of the PML layers.

Table 6.3
The number of nodes required to achieve the given relative error of the far fields in both incident

and reflective directions for different choices of dist for Example 2. The far fields in the last adaptive

step when dist = 1.0λ and χ = 1.0 are chosen as the exact far fields.

Error inc dist = 0.1λ dist = 1.0λ Error ref dist = 0.1λ dist = 1.0λ
10% 568 1032 10% 549 492
1% 7315 12614 1% 2871 5183

0.1% 29882 62605 0.1% 9812 23156

Then we take χ = 1.0 and test the influence of different choices of dist as
in Example 1. Table 6.3 shows the number of nodes required to achieve the given
relative error of the far fields in both incident and reflective directions for different
choices of PML parameter dist. It again shows that for the same accuracy of the far
fields, a smaller dist is a better choice.
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In Figure 6.6 we show the mesh after 16 adaptive iterations when dist = 1.0 and
χ = 1.0. We observe that the mesh near the boundary Γ2 is rather coarse, because
the solution is rather small there due to the exponential damping of the PML layer.
Figure 6.7 shows the real part of the PML solution when dist = 1.0 and χ = 1.0.
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Fig. 6.6. The mesh of 3754 nodes after 16 adaptive iterations when dist = 1.0 and χ = 1.0
for Example 2.

Fig. 6.7. The real part of the solution of the PML problem for Example 2.
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