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Abstract. A new type of the KP equation with self-consistent sources (KPESCS)
first found by Melnikov ( Lett. Math. Phys. 7(1983) 129-136)is re-constructed
via source generation procedure. New feature of the obtained KPESCS is that we
allow y-dependence of the arbitrary constants in the determinantal solution for the
KP equation while applying the source generation procedure. We also propose a new
idea of commutativity of source generation procedure and Bäcklund transformations to
generate a BT for the new KPESCS which indicates the integrability of the KPESCS.

1. Introduction

Soliton equations with self-consistent sources (SESCSs) have received considerable

attention in recent years. Until now, numerous SESCSs have been found and studied.

One typical example is the Kadomtsev-Petviashvili equation with self-consistent sources

(KPESCS) [2, 3, 4, 5] which can be expressed as

4ut − uxxx − 6uux − 3

∫ x

uyydx +
K∑

j=1

(ΦjΨj)x = 0, (1)

Φj,y = Φj,xx + uΦj, j = 1, 2, · · · , K (2)

−Ψj,y = Ψj,xx + uΨj, j = 1, 2, · · · , K (3)

In the literature, a variety of methods have been developed to solve SESCSs, such as

inverse scattering transform, Darboux transformation, Hirota’s bilinear method, and so

on (see Refs. [2]-[19]). Very recently, we have proposed a new method called ”source

generation procedure” to systematically construct and solve SESCSs [21, 22, 23]. One

of advantages of this new approach is that SESCSs and their soliton solutions can be

generated simultaneously from the procedure. Moreover, different from other methods

that we have known, source generation procedure has helped to produce SESCSs in

fully discrete case and B-type KP case for the first time. Our procedure consists of

three steps:
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1. to express N-soliton solutions of a soliton equation without sources in the form

of determinant or pfaffian with some arbitrary constants.

2. to construct corresponding determinant or pfaffian with arbitrary functions of

one variable.

3. to seek coupled bilinear equations whose solutions are these generalized

determinants or pfaffians, and this coupled system is the SESCS.

It is noted that the above step 3 is crucial in source generation procedure and the

success of step 3 heavily depends on suitable choice of arbitrary functions involved in

step 2. Until now all examples of SESCSs in continuous and semi-discrete cases found by

source generation procedure always require time dependence of the arbitrary constants

appeared in the determinantal or pfaffian solutions for the equations without sources.

The reason for this is that many soliton equations without sources only contain the

first order derivative with respect to t, and therefore calculations involved in source

generation procedure can be easily managed if we choose arbitrary functions in step 2

as those of temporal variable t. For example, in [5], we have shown that the KPESCS

(1)-(3) can be easily constructed from source generation procedure by allowing time

dependence of the arbitrary constants in the determinatal solution for the KP equation.

Now, it is natural to ask whether we can still construct other type of SESCSs via

source generation procedure if arbitrary functions in step 2 of the procedure are chosen

as those of spatial variables. The answer is affirmative. The purpose of this paper is to

apply source generation procedure to the KP equation by allowing y-dependence of the

arbitrary constants in the determinantal solution for the KP equation. Consequently, a

new type of the KPESCS is produced, which is quite different from the known KPESCS

(1-3). To our surprise, this new type of KPESCS is nothing but another one previously

found by Mel’nikov [1]. In order to further show integrability of novel KPESCS, we

propose a new idea of commutativity of source generation procedure and Bäcklund

transformations which helps to find a bilinear Bäcklund transformation for this new

KPESCS.

The paper is organized as follows. In section 2, a new type of the KPESCS is

constructed via source generation procedure by allowing y-dependence of the arbitrary

constants in the determinantal solution for the KP equation. Then we present a bilinear

Bäcklund transformation for the novel KPESCS with the help of commutativity of

source generation procedure and Bäcklund transformations in section 3. Conclusion and

discussions are given in section 4. Finally we present a detailed proof of the Proposition

1 and list some bilinear operator identities in the appendices A and B, respectively.

2. New type of the KPESCS

In this section, we will apply the source generation procedure to the KP equation by

allowing y-dependence of the arbitrary constants in the determinantal solution for the

KP equation. The KP equation can be written as [24]

(−4ut + uxxx + 6uux)x + 3uyy = 0, (4)
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which can be transformed into the following bilinear equation

(D3
x − 4DxDt + 3D2

y)τ · τ = 0 (5)

through the dependent variable transformation

u = 2(ln τ)xx,

where D is the Hirota’s bilinear operator. The bilinear KP equation (5) has the following

Grammian determinant solution [24]

τ = det(cij +

∫ x

−∞
fif̃jdx)16i,j6N , cij = constant,

with functions fi and f̃j satisfying

∂fi

∂xn

=
∂nfi

∂xn
,

∂f̃i

∂xn

= (−1)n−1∂nf̃i

∂xn
, (x1 = x, x2 = y, x3 = t). (6)

Now following source generation procedure, we generalize τ into the following new

function:

f = det(aij)16i,j6N = pf(1, 2, · · · , N, N∗, · · · , 2∗, 1∗) = pf(·), (7)

where pfaffian elements are defined by

pf(i, j∗) = aij = Cij(y) +

∫ x

−∞
fif̃jdx, i, j = 1, 2, · · · , N,

with each function Cij(y) satisfying

Cij(y) =

{
Ci(y), i = j and 1 6 i 6 M 6 N, M, N ∈ Z+,

cij, otherwise

where each Ci(y) is a function of the variable y. Then we get the following formulas

through derivative formulas of pfaffian [24]:

fy = pf(d0, d
∗
1, ·)− pf(d1, d

∗
0, ·) +

M∑
i=1

ki, (8)

fyy = pf(d0, d
∗
3, ·) + pf(d3, d

∗
0, ·)− pf(d2, d

∗
1, ·)− pf(d1, d

∗
2, ·)− 2pf(d0, d1, d

∗
0, d

∗
1, ·)

+
M∑
i=1

ki,y +
M∑
i=1

Ċi(y)[pf(d0, d
∗
1, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)

−pf(d1, d
∗
0, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)], (9)

where the function ki is defined by

ki = Ċi(y)pf(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗), i = 1, 2, · · · ,M (10)

and new paffian elements are defined by:

pf(d∗m, i) =
∂mfi

∂xm
, pf(dm, j∗) =

∂mf̃j

∂xm
,

pf(d∗m, d∗l ) = pf(dm, dl) = pf(d∗m, dl) = pf(d∗m, j∗) = pf(dm, i) = 0, m, l ∈ Z.
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So we find the function f will never satisfy equation (5). In this case, we need to

introduce other new functions defined by

gi =

√
Ċi(y)pf(d∗0, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗), (11)

hi =

√
Ċi(y)pf(d0, 1, · · · , î, · · · , N, N∗, · · · , 1∗), (12)

Pi =
C
′′
i (y)

2
√

Ċi(y)
pf(d∗0, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)

+

√
Ċi(y)[

∑
16i<j6M

Ċj(y)pf(d∗0, 1, · · · , ĵ, · · · , N, N∗, · · · , ĵ∗, · · · , î∗, · · · , 1∗)

−
∑

16j<i6M

Ċj(y)pf(d∗0, 1, · · · , ĵ, · · · , N, N∗, · · · , î∗, · · · , ĵ∗, · · · , 1∗)], (13)

Qi =
C
′′
i (y)

2
√

Ċi(y)
pf(d0, 1, · · · , î, · · · , N, N∗, · · · , 1∗)

+

√
Ċi(y)[

∑
16i<j6M

Ċj(y)pf(d0, 1, · · · , î, · · · , ĵ, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)

−
∑

16j<i6M

Ċj(y)pf(d0, 1, · · · , ĵ, · · · , î, · · · , N, N∗, · · · , ĵ∗, · · · , 1∗)], (14)

where the dot denotes the derivative of the function Ci(y) with respect to the variable

y, and ′′ denotes the second-order derivative of Ci(y). We can show that the above new

functions so defined satisfy the following new bilinear equations:

(D4
x − 4DxDt + 3D2

y)f · f = 6
M∑
i=1

(Dyki · f −Dxgi · hi), (15)

Dxki · f + gihi = 0, (16)

(Dy −D2
x)gi · f = Pif − gi

M∑
j=1

kj, (17)

(Dy −D2
x)f · hi = hi

M∑
j=1

kj − fQi, (18)

(D3
x + 3DxDy − 4Dt)gi · f = 3Dx[Pi · f − gi · (

M∑
j=1

kj)], (19)

(D3
x + 3DxDy − 4Dt)f · hi = 3Dx[(

M∑
j=1

kj) · hi − f ·Qi]. (20)

Now we prove that these new functions so defined are solutions of equations (15)-(20).

At first, we derive the following derivative formulas:

fx = pf(d0, d
∗
0, ·), fxx = pf(d1, d

∗
0, ·) + pf(d0, d

∗
1, ·),

ft = pf(d2, d
∗
0, ·)− pf(d1, d

∗
1, ·) + pf(d0, d

∗
2, ·),

fxxx = pf(d2, d
∗
0, ·) + 2pf(d1, d

∗
1, ·) + pf(d0, d

∗
2, ·),

(21)
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gi,x =
√

Ċi(y)pf(d∗1, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗) ,
√

Ċi(y)pf(d∗1, ?),

gi,xx =
√

Ċi(y)[pf(d∗2, ?) + pf(d0, d
∗
0, d

∗
1, ?)],

gi,y = Pi +
√

Ċi(y)[pf(d∗2, ?)− pf(d0, d
∗
0, d

∗
1, ?)],

gi,xy = Pi,x +
√

Ċi(y)[pf(d∗3, ?)− pf(d1, d
∗
0, d

∗
1, ?)],

gi,t =
√

Ċi(y)[pf(d∗3, ?) + pf(d0, d
∗
0, d

∗
1, ?)− pf(d0, d

∗
0, d

∗
2, ?)].

(22)

Substituting (7)-(9) and (11)-(12) into equation (15) yields the sum of the determinant

identities:

0 =
M∑
i=1

√
Ċi(y)[pf(d0, d

∗
1, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)f

−pf(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)pf(d0, d
∗
1, ·)

+pf(d∗1, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)pf(d0, 1, · · · , î, · · · , N, N∗, · · · , 1∗)
−pf(d1, d

∗
0, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)f

+pf(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)pf(d1, d
∗
0, ·)

−pf(d∗0, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)pf(d1, 1, · · · , î, · · · , N, N∗, · · · , 1∗)],

which indicates equation (15) holds. In the same way, substitution of (7), (10) and

(11)-(12) into equation (16) leads to the Jacobi identity of determinants:

Ċi(y)[pf(d0, d
∗
0, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)f

−pf(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)pf(d0, d
∗
0, ·)

+pf(d∗0, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)pf(d0, 1, · · · , î, · · · , N, N∗, · · · , 1∗)] = 0,

then equation (16) holds. Similarly, substituting (21)-(22) into equation (17), we get

the following determinant identity:

√
Ċi(y)[pf(d∗0, ?)pf(d0, d

∗
1, ·) + pf(d∗1, ?)pf(d0, d

∗
0, ·)− pf(d0, d

∗
0, d

∗
1, ?)f ] = 0.

So equation (17) holds. In an analogous way, we can prove new functions in (7), (10)

and (11)-(14) are determinant solutions of bilinear equations (15)-(20). And equations

(15)-(20) just constitute a new type of KPESCS in the bilinear forms.

Applying the dependent variable transformations:

u = 2(ln f)xx, ϕi = hi/f, ψi = gi/f,

χi = ki/f φ1,i = Pi/f, φ2,i = Qi/f,

(23)
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the bilinear equations (15)-(20) are transformed into nonlinear equations:

uxxx + 6uux − 4ut + 3
∫ x

−∞ uyydx = 6
M∑
i=1

(χi,y + ϕi,xψi − ϕiψi,x)x,

χi,x + ϕiψi = 0,

ϕi,y = −ϕi,xx − uϕi + φ2,i − ϕi

M∑
j=1

χj,

ψi,y = ψi,xx + uψi + φ1,i − ψi

M∑
j=1

χj,

ϕi,xxx − 4ϕi,t − 3ϕi,xy + 3uϕi,x − 3ϕi

∫ x

−∞ uydx = −3φ2,i,x + 3
M∑

j=1

(ϕi,xχj − ϕiχj,x),

ψi,xxx − 4ψi,t + 3ψi,xy + 3uψi,x + 3ψi

∫ x

−∞ uydx = 3φ1,i,x − 3
M∑

j=1

(ψi,xχj − ψiχj,x),

(24)

which can be further simplified into the following nonlinear equations:

uxxx + 6uux − 4ut + 3
∫ x

−∞ uyydx = 6
M∑
i=1

[ϕi,xxψi − ϕiψi,xx − (ϕiψi)y],

4ϕi,xxx − 4ϕi,t + 6uϕi,x + 3uxϕi − 3ϕi

∫ x

−∞ uydx = 6ϕi

M∑
j=1

ϕjψj,

4ψi,xxx − 4ψi,t + 6uψi,x + 3uxψi + 3ψi

∫ x

−∞ uydx = −6ψi

M∑
j=1

ϕjψj.

(25)

Utilizing the expressions (7), (10), (11)-(14) and the relation (23), we can give N-soliton

(N > M) solution of the new type of KPESCS (25). For example, when M = 1, we

take

C1(y) =
1

p + q
e2α(y),

f1 = eξ = epx+p2y+p3t, f̃1 = eη = eqx−q2y+q3t, p, q ∈ R,

where α(y) is an arbitrary function of the variable y. Then the 1-soliton solution can

be expressed in the following forms:

u = 2
∂2

∂x2
ln(1 + eξ+η−2α(y)),

ψ =

√
2(p + q)α̇(y)eξ−α(y)

1 + eξ+η−2α(y)
, ϕ =

√
2(p + q)α̇(y)eη−α(y)

1 + eξ+η−2α(y)
.

When M = 2, we take

Ci(y) =
1

pi + qi

e2αi(y), i = 1, 2

fi = eξi = epix+p2
i y+p3

i t, f̃i = eηi = eqix−q2
i y+q3

i t, pi, qi ∈ R, i = 1, 2

then the 2-soliton solution of the system has the following form:

u = 2
∂2

∂x2
ln[1 + eξ1+η1−2α1(y) + eξ2+η2−2α2(y) + Aeξ1+η1+ξ2+η2−2α1(y)−2α2(y)],

ψ1 =

√
2(p1 + q1)α̇1(y)eξ1−α1(y)[1 + a1e

ξ2+η2−2α2(y)]

1 + eξ1+η1−2α1(y) + eξ2+η2−2α2(y) + Aeξ1+η1+ξ2+η2−2α1(y)−2α2(y)
,
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ψ2 = −
√

2(p2 + q2)α̇2(y)eξ2−α2(y)[1 + a2e
ξ1+η1−2α1(y)]

1 + eξ1+η1−2α1(y) + eξ2+η2−2α2(y) + Aeξ1+η1+ξ2+η2−2α1(y)−2α2(y)
,

ϕ1 =

√
2(p1 + q1)α̇1(y)eη1−α1(y)[1 + b1e

ξ2+η2−2α2(y)]

1 + eξ1+η1−2α1(y) + eξ2+η2−2α2(y) + Aeξ1+η1+ξ2+η2−2α1(y)−2α2(y)
,

ϕ2 = −
√

2(p2 + q2)α̇2(y)eη2−α2(y)[1 + b2e
ξ1+η1−2α2(y)]

1 + eξ1+η1−2α1(y) + eξ2+η2−2α2(y) + Aeξ1+η1+ξ2+η2−2α1(y)−2α2(y)
,

where

a1 =
p1 − p2

p1 + q2

, a2 =
p2 − p1

p2 + q1

, b1 =
q1 − q2

p2 + q1

, b2 =
q2 − q1

p1 + q2

, A =
(p1 − p2)(q1 − q2)

(p1 + q2)(p2 + q1)
.

From the expressions of above solutions, we can find these solutions of new KPESCS

(25) include arbitrary functions of the spatial variable y, which are different from the

solutions of previous KPESCS which are related with arbitrary functions of the temporal

variable t [2, 3, 4, 5].

3. New type of modified KP ESCS

In section 2, we constructed the new type of KPESCS and gave its Grammian

determinant solutions. In order to show the integrability of this new coupled system,

we will give a bilinear Bäcklund transformation (BT) for the KPESCS (24). However

it is difficult to obtain the bilinear BT directly from the bilinear KPESCS (15)-(20).

Motivated by the fact that commutativity of the pfaffianization procedure and bilinear

BT has helped to find a bilinear BT for the coupled KP equation[25], we now propose

a similar idea of commutativity of the source generation procedure and BTs to try to

find a bilinear BT for the KPESCS (24). This idea can be described more clearly using

the diagram:

KP KPESCSs

mKP mKPESCSs

-

Source generation

-
Source generation

6

BT

6

BT

According to this scheme, the problem of finding a bilinear BT for the KPESCS (24)

becomes the problem of constructing the corresponding mKP ESCS if the commutativity

of source generation procedure and BTs is true. So in the following, we will first give

the modified KP (mKP) ESCS through the source generation procedure. The bilinear

mKP equation is [24]:

(Dy + D2
x)τ · τ ′ = 0,

(3DxDy −D3
x + 4Dt)τ · τ ′ = 0.

(26)
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In Ref. [24], the Grammian determinant solution of (26) was given in the following form

τ = det(cij +

∫ x

−∞
fif̃jdx)16i,j6N , cij = constant,

τ
′
= det(cij −

∫ x

−∞

∂fi

∂x

∂−1f̃j

∂x−1
dx)16i,j6N ,

where ∂−1 denotes the integral of a function with respect to the variable x, and the

functions fi, f̃i still satisfy the relation (6).

Now we change the functions τ and τ
′
into the following forms:

F = det(Cij(y) +

∫ x

−∞
fif̃jdx)16i,j6N , (27)

F
′
= det(Cij(y)−

∫ x

−∞

∂fi

∂x

∂−1f̃j

∂x−1
dx)16i,j6N , (28)

where Cij(y) is the same as in the section 2. They can be expressed as the form of

paffian:

F = (1, 2, · · · , N, N∗, · · · , 1∗)1 = (·)1, F
′
= F − (d−1, d

∗
0, ·)1,

where pfaffian elements are defined by:

(i, j∗)1 = Cij(y)−
∫ x

−∞

∂fi

∂x

∂−1f̃j

∂x−1
dx,

(d∗m, i)1 =
∂mfi

∂xm
, (dm, j∗)1 =

∂mf̃j

∂xm
,

(d∗m, d∗l )1 = (dm, dl)1 = (d∗m, dl)1 = (d∗m, j∗)1 = (dm, i)1 = 0, m, l ∈ Z.

According to the source generation procedure, we introduce other new functions defined

as follows:

Gi =

√
Ċi(y)(d∗0, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)1, (29)

Hi =

√
Ċi(y)(d0, 1, · · · , î, · · · , N, N∗, · · · , 1∗)1, (30)

G
′
i =

√
Ċi(y)[(d−1, d

∗
0, d

∗
1, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)1

−(d∗1, 1, · · · , N, N∗, · · · , î∗, · · · , 1∗)1], (31)

H
′
i =

√
Ċi(y)(d−1, 1, · · · , î, · · · , N, N∗, · · · , 1∗)1, (32)
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where i = 1, 2, · · · ,M . Then these new functions so defined satisfy the following bilinear

equations:

(Dy + D2
x)F · F ′

= −
M∑
i=1

GiH
′
i ,

(3DxDy −D3
x + 4Dt)F · F ′

= 3
M∑
i=1

DxGi ·H ′
i ,

DxGi · F ′
+ FG

′
i = 0,

DxF ·H ′
i + HiF

′
= 0,

(D3
x − 4Dt)Gi · F ′ − 3D2

xF ·G′
i = 0,

(D3
x − 4Dt)F ·H ′

i − 3D2
xHi · F ′

= 0,

FK
′
i −KiF

′
= GiH

′
i ,

DxGi ·H ′
i −DxKi · F ′

+ DxF ·K ′
i = 0.

(33)

where the last two equations are auxiliary equations, and Ki, K
′
i are expressed as

Ki = Ċi(y)(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)1,

K
′
i = Ċi(y)[(1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)1

−(d−1, d
∗
0, 1, · · · , î, · · · , N, N∗, · · · , î∗, · · · , 2∗, 1∗)1].

The above equations can also be proved through identities of determinants. Here Taking

the sixth equation in (33) as an example, we prove that functions in (27)-(32) satisfy

that equation. In fact we have the following formulas:

H
′
i,x =

√
Ċi(y)[(d0, ∗)1 + (d−1, d0, d

∗
0, ∗)1],

H
′
i,xx =

√
Ċi(y)[(d1, ∗)1 + (d−1, d1, d

∗
0, ∗)1 + (d−1, d0, d

∗
1, ∗)1],

H
′
i,t =

√
Ċi(y)[(d2, ∗)1 + (d−1, d2, d

∗
0, ∗)1 − (d−1, d1, d

∗
1, ∗)1 + (d−1, d0, d

∗
2, ∗)1],

where ∗ denotes {1, · · · , î, · · · , N, N∗, · · · , 1∗}. Substituting the above results into the

sixth equation in (33), we get the the sum of six determinant identities

0 = 6[(d−1, ∗)1(d1, d
∗
1, ·)1 − (d1, ∗)1(d−1, d

∗
1, ·)1 − F (d−1, d1, d

∗
1, ∗)1]

−3[(d−1, ∗)1(d2, d
∗
0, ·)1 − (d2, ∗)1(d−1, d

∗
0, ·)1 − F (d−1, d2, d

∗
0, ∗)1]

−3[(d−1, ∗)1(d0, d
∗
2, ·)1 − (d0, ∗)1(d−1, d

∗
2, ·)1 − F (d−1, d0, d

∗
2, ∗)1]

−3[(d0, ∗)1(d1, d
∗
0, ·)1 − (d1, ∗)1(d0, d

∗
0, ·)1 − F (d0, d1, d

∗
0, ∗)1]

+3[(d0, d
∗
0, ·)1(d−1, d0, d

∗
1, ∗)1 − (d0, d

∗
1, ·)1(d−1, d0, d

∗
0, ∗)1 + (d0, ∗)1(d−1, d0, d

∗
0, d

∗
1, ·)1

+(d0, d
∗
0, ·)1(d−1, d1, d

∗
0, ∗)1 − (d1, d

∗
0, ·)1(d−1, d0, d

∗
0, ∗)1 − (d0, d1, d

∗
0, ∗)1(d−1, d

∗
0, ·)1],

which indicates the sixth equation in (33) holds. So equations in (33) constitute the other

type of mKP ESCS in the bilinear form, and functions in (27)-(32) are the determinant

solutions of the mKP ESCS (33). This type of mKP ESCS are different from those

given in [11] and [19].
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If we apply the set of dependent variable transformation:

p = 2(ln F )xx, q =
F
′

F
, Ψi =

Gi

F
, Φi =

Hi

F
, Ψ̄j =

G
′
i

F
, Φ̄i =

H
′
i

F
,

the bilinear equations (33) are transformed into the nonlinear equations:

qxxx − 4qt + 3qxy + 3q−1qx(qy − qxx −
M∑

j=1

ΨjΦ̄j)− 3
M∑

j=1

(Ψj,xΦ̄j −ΨjΦ̄j,x)

+3q
∫ x

−∞ q−2[qqyy − qqxxy − q
M∑

j=1

(Ψj,yΦ̄j + ΨjΦ̄j,y)

−qy(qy − qxx −
M∑

j=1

ΨjΦ̄j)]dx = 0,

(34)

2(Ψi,xxxq −Ψiqxxx −Ψi,tq + Ψiqt)

+3q−1(Ψi,xq −Ψiqx)(qy − qxx −
M∑

j=1

ΨjΦ̄j) = 0,
(35)

2Φ̄i,xxx − 6qxq
−2(Φ̄i,xxq − Φ̄i,xqx)

−2Φ̄i,t + 3q−1Φ̄i,x(qy − qxx −
M∑

j=1

ΨjΦ̄j) = 0.
(36)

According to what we explained at the beginning of this section, if commutativity

of the source generation procedure and BTs is true for the KP equation, the bilinear

mKP ESCS (33) should provide with us a bilinear Bäcklund transformation for the new

KPESCS (25). In the Appendix A, we have shown that the system (33) does constitute

a bilinear BT for the new KPESCS (25). This result can be described as the following

proposition:

Proposition 1. The bilinear KPESCS (15)-(20) has the following bilinear BT:

(Dy + D2
x)f · f

′
= −

M∑
i=1

gih
′
i, (37)

(3DxDy −D3
x + 4Dt)f · f ′ = 3

M∑
i=1

Dxgi · h′i, (38)

Dxgi · f ′ + fg
′
i = 0, (39)

Dxf · h′i + hif
′
= 0, (40)

(D3
x − 4Dt)gi · f ′ − 3D2

xf · g
′
i = 0, (41)

(D3
x − 4Dt)f · h′i − 3D2

xhi · f ′ = 0, (42)

fk
′
i − kif

′
= gih

′
i, (43)

Dxgi · h′i −Dxki · f ′ + Dxf · k′i = 0. (44)
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4. Conclusion and discussions

In this paper, we have constructed a new type of KPESCS through the source generation

procedure and given its Grammian determinant solution. For the previously known

KPESCS (1)-(3), its determinant solutions are connected with arbitrary functions which

are dependent on the time variable t. However for the new type of KPESCS, we allow

y-dependence of the arbitrary functions in its determinantal solution. If we set each

arbitrary function Ci(y) be a constant, the new KPESCS (25) is reduced to the KP

equation, and its determinant solutions (7) and (10)-(14) are transformed into the

solution of the KP equation. In addition, as another important part of this paper,

we have also obtained a new type of mKP ESCS, and proved that the bilinear mKP

ESCS (33) just constitutes a bilinear BT for the new KPESCS. This result indicates

that the commutativity of the source generation procedure and the bilinear BT is valid

for the KP equation.
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Appendix A. Proof of the Proposition 1

Proof. Let (fn, gi, hi, ki, Pi, Qi) be a solution of eqs.(15)-(20), and (f
′
, g

′
i, h

′
i, k

′
i, P

′
i , Q

′
i)

satisfies relations (37)-(44). We only need to prove that (f
′
, g

′
i, h

′
i, k

′
i, P

′
i , Q

′
i) is also

a solution of eqs.(15)-(20). In fact, through the relations (37)-(44) and the bilinear

operator identities in the appendix B, we have

P1,i = (Dxki · f + gihi)(f
′
)2 − f 2(Dxk

′
i · f

′
+ g

′
ih
′
i)

= Dx(kif
′ − fk

′
i) · ff

′
+ gihi(f

′
)2 − f 2g

′
ih
′
i

= −Dxgi · h′i + gihi(f
′
)2 − f 2g

′
ih
′
i

= gif
′
(Dxf · h′i + hif

′
)− (Dxgi · f ′ + fg

′
i)fh

′
i ≡ 0,

P3,i = [(Dy −D2
x)gi · f − Pif + gi

M∑
j=1

kj]g
′
if

′ − gif [(Dy −D2
x)g

′
i · f

′ − P
′
i f

′
+ g

′
i

M∑
j=1

k
′
j]

= [(Dy + D2
x)gi · g′i]ff

′ − gig
′
i[(Dy + D2

x)f · f
′
]− 2Dx(Dxgi · f ′) · fg

′
i

− Pig
′
iff

′
+ giP

′
i ff

′
+ gig

′
i(

M∑
j=1

kj)f
′ − gig

′
if(

M∑
j=1

k
′
j)

= [(Dy + D2
x)gi · g′i − Pig

′
i + giP

′
i ]ff

′ − gig
′
i[(Dy + D2

x)f · f
′
+

M∑
j=1

(fk
′
j − kjf

′
)]

≡ 0.
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P2 = [(D4
x − 4DxDt + 3D2

y)f · f − 6
M∑
i=1

(Dyki · f −Dxgi · hi)](f
′
)2

− f 2[(D4
x − 4DxDt + 3D2

y)f
′ · f ′ − 6

M∑
i=1

(Dyk
′
i · f

′ −Dxg
′
i · h

′
i)]

= 2Dx(D
3
xf · f) · ff

′ − 6Dx(D
2
xf · f

′
) · (Dxf · f ′)− 8Dx(Dtf · f ′) · ff

′

+ 6Dy(Dyf · f ′) · ff
′ − 6Dy

M∑
i=1

(hif
′ − fh

′
i) · ff

′
+ 6

M∑
i=1

Dx(gif
′ · hif

′ − fg
′
i · fh

′
i)

= 2Dx[(D
3
x − 4Dt)f · f ′ ] · ff

′ − 6Dx(D
2
xf · f

′
) · (Dxf · f ′)

− 6Dy(D
2
xf · f

′
) · ff

′
+ 6

M∑
i=1

Dx(gif
′ · hif

′ − fg
′
i · fh

′
i)

= −6
M∑
i=1

Dx[(Dxf · h′i) · gif
′
+ (Dxgi · f ′) · fh

′
i] + 6

M∑
i=1

Dx(gif
′ · hif

′ − fg
′
i · fh

′
i)

≡ 0,

The above results indicates that (f
′
, g

′
i, h

′
i, k

′
i, P

′
i , Q

′
i) satisfies eqs. (15)-(17). Much in the

same way, eqs. (18)-(20) hold. So we have completed the proof of the proposition.

Appendix B. Hirota’s bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, a
′
, b
′
, c and d.

Dx(a · b)c2 − b2(Dyd · c) = Dx(ac− bd) · bc; (B1)

(Dxa · b)a′b′ − ab(Dxa
′ · b′) = (Dxa · a′)bb′ − aa

′
(Dxb · b′); (B2)

(D2
xa · b)a

′
b
′ − ab(D2

xa
′ · b′) = (D2

xa · a
′
)bb

′ − aa
′
(D2

xb · b
′
)− 2Dxab

′ · (Dxb · a′); (B3)

(D4
xa · a)b2 − a2(D4

xb · b) = 2Dx(D
3
xa · b) · ab− 6Dx(D

2
xa · b) · (Dxa · b); (B4)

(DxDya · a)b2 − a2(DxDyb · b) = 2Dx(Dya · b) · ab = 2Dy(Dxa · b) · ab; (B5)

(D3
xa · b)a

′
b
′ − ab(D3

xa
′ · b′)− 3(D2

xa · b)(Dxa
′ · b′) + 3(Dxa · b)(D2

xa
′ · b′)

= (D3
xa · a

′
)bb

′ − aa
′
(D3

xb · b
′
)

−3(D2
xa · a

′
)(Dxb · b′) + 3(Dxa · a′)(D2

xb · b
′
); (B6)

Dx(DxDya · b) · ab = Dy(D
2
xa · b) · ab−Dx(Dya · b) · (Dxa · b); (B7)

Dx[(Dya · b) · cd + (Dyc · d) · ab] = Dy[(Dxa · d) · cb− ad · (Dxc · b)]; (B8)

Dx[(Dya · b) · cd + (Dyc · d) · ab] + (DxDya · b)cd− (DxDyc · d)ab

= (Dxa · b)(Dyc · d)− (Dya · b)(Dxc · d) + Dy(Dxa · d) · cb. (B9)
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