
Inexact Barzilai-Borwein Method for Saddle
Point Problems ∗

Yi-Qing Hu† and Yu-Hong Dai†‡

Abstract

This paper considers the inexact Barzilai-Borwein algorithm ap-
plied to saddle point problems. To this aim, we study the convergence
properties of the inexact Barzilai-Borwein algorithm for symmetric
positive definite linear systems. Suppose that gk and g̃k are the exact
residual and its approximation of the linear system at the k-th itera-
tion, respectively. We prove the R-linear convergence of the algorithm
if ‖g̃k − gk‖ ≤ η‖g̃k‖ for some small η > 0 and all k. To adapt the
algorithm for solving saddle point problems, we also extend the R-
linear convergence result to the case when the right hand term ‖g̃k‖ is
replaced by ‖g̃k−1‖. Although our theoretical analyses cannot provide
a good estimate to the parameter η, in practice we find that η can
be as large as the one in the inexact Uzawa algorithm. Further nu-
merical experiments show that the inexact Barzilai-Borwein algorithm
performs well for the tested saddle point problems.

Keywords. Saddle point problem, Uzawa algorithm, Barzilai-
Borwein method, R-linear convergence.

∗This work was supported by the Chinese NSF grants 10571171, 40233029 and
10171104.

†State Key Laboratory of Scientific and Engineering Computing, Institute of Compu-
tational Mathematics and Scientific/Engineering Computing, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, P.R.
China. E-mail Addresses: {huyq, dyh}@lsec.cc.ac.cn

‡Corresponding author.

1

1. Introduction

We consider the saddle point problem:(
A BT

B −C

)(
u
p

)
=

(
f
h

)
, (1.1)

where A ∈ �n×n is symmetric positive definite and C ∈ �m×m is symmetric
positive semidefinite. This kind of problem arises frequently from the dis-
cretization of elasticity problems, Stokes equations, and sometimes lineariza-
tions of Navier-Stokes equations. It also has a close relation to nonlinear
programming since the problem of minimizing a convex quadratic subject
to linear constraints can be converted into the form (1.1). There have been
many methods developed for problem (1.1), see recent survey paper [4] and
book [17]). In this paper, we are interesting in a classic algorithm that is due
to Uzawa [1]. It can be written as

Algorithm 1.1 (Uzawa)

Step 1. Initialize k = 0 and pick some p0 ∈ �m;

Step 2. Solve Auk+1 = f − BT pk for uk+1 ∈ �n;

Step 3. Calculate pk+1 = pk − α(Cpk − Buk+1 + h);

Step 4. If not convergent, set k = k + 1 and go to Step 1.

The elimination of uk+1 in the calculation of pk+1 leads to the iteration

pk+1 = pk − α[(BA−1BT + C)pk − (BA−1f − h)] . (1.2)

Therefore the Uzawa algorithm is a fixed-parameter first-order Richardson
iterative method [27] applied to the linear system

(BA−1BT + C)p = BA−1f − h . (1.3)

In the context of optimization, the algorithm can be regarded as a fixed
stepsize gradient method for the problem of minimizing a convex quadratic

min
1

2
pT Āp − b̄T p , (1.4)

where Ā = BA−1BT + C and b̄ = (BA−1f − h).

2

The choice of the parameter α is important to the efficacy of the Uzawa
algorithm. Elman and Golub [16] proposed the following choice

α =
2

λ1 + λn
, (1.5)

where λ1 and λn are the minimal and maximal eigenvalues of the matrix Ā,
respectively. This choice is optimal in the sense that it minimizes the spectral
radius of the matrix I −αĀ. Since the eigenvalues λ1 and λn are not known
to the users in general, Dai and Yang [14] chose the stepsize as follows

αk =
‖gk‖
‖Āgk‖ , (1.6)

where gk = Āpk− b̄ and ‖·‖ is the two-norm. They proved that this sequence
of {αk} tends to the value in (1.5). In practical computations, however, the
gradient method with either (1.5) or (1.6) resembles the steepest descent
method (see Cauchy [10]), where

αSD
k =

gT
k gk

gT
k Āgk

. (1.7)

They all become very slow as the condition number of the matrix Ā deteri-
orates. Consequently, the use of the Uzawa algorithm is usually with some
preconditioning technique. The Uzawa algorithm has received much atten-
tion from the numerical linear algebra community, for example see [8], [9]
and [22].

In 1988, Barzilai and Borwein [3] proposed a different choice for the step-
size in the gradient method. Their basic idea is to regard Dk = α−1

k I as
an approximation of the Hessian matrix Ā and then to impose some cer-
tain quasi-Newton property on the matrix Dk. More exactly, they minimize
‖Dksk−1 − yk−1‖2 where sk−1 = xk − xk−1 and yk−1 = gk − gk−1, yielding the
following choice of αk:

αBB
k =

sT
k−1sk−1

sT
k−1yk−1

. (1.8)

In the quadratic case, the above stepsize is equivalent to

αk =
gT

k−1gk−1

gT
k−1Āgk−1

, (1.9)

3

which happens to be the Cauchy stepsize (1.7) at the previous iteration.
Although the Barzilai-Borwein (BB) stepsize (1.8) cannot guarantee a

descent in the objective function or the gradient norm, the corresponding
method is proved to be globally convergent for strictly convex quadratics
(see Raydan [25]) and the convergence rate is R-linear (see Dai and Liao
[13]). In the two-dimensional quadratic case, [3] presented a R-superlinear
convergence result for the method. Dai and Fletcher [11] analyzed the asymp-
totic convergence behavior of the BB method for the higher-dimension case.
In practical computations, it was pointed out in [3] that the BB stepsize (1.8)
is far more efficient than the Cauchy stepsize (1.7). Fletcher [18] presented
several linear systems of one million variables, showing that the BB method
is comparable with the conjugate gradient method. The BB method has now
received many generalizations and applications, for example see [26], [20], [5],
[19], [11], [15], [23] and the references therein.

In this paper, we will apply the BB method to solve the saddle point
problem (1.1). Each step of the Uzawa algorithm requires the solution of
a symmetric positive definite linear system (see Step 2 of Algorithm 1.1).
Elman and Golub [16] showed that this computation can be replaced by an
approximate solution produced by an arbitrary iterative method, leading to
the inexact Uzawa algorithm. The main purpose of this paper is to establish
and analyze inexact BB algorithm for saddle point problems.

The rest of this paper is organized as follows. In the next section, we con-
sider the inexact BB method where the exact gradient gk is replaced by its
some approximation g̃k. Our study shows that there exists some small con-
stant η > 0, which depends only on the problem dimension and the spectrum
of the Hessian matrix, such that the BB method is R-linearly convergent for
symmetric positive definite linear systems if ‖g̃k − gk‖ ≤ η ‖g̃k‖ for all k. In
Section 3, we propose the inexact BB algorithm for the saddle point prob-
lem (1.1). To establish the R-linear convergence result of this algorithm, we
extend the result of Section 2 to the case when the previous gradient norm
‖g̃k−1‖ is used to control the inexactitude ‖g̃k−gk‖. Although the estimate to
η in our theoretical analyses can be very small, the numerical experiments in
Section 4 show that this parameter η can be reasonably large without harm-
ing the convergence of the algorithm in practice. Further numerical results
on some saddle point problems demonstrate the usefulness of the inexact BB
algorithm. Conclusions and discussions are made in the last section.

4

2. Inexact Barzilai-Borwein Method

In this section we consider the problem of minimizing a strictly convex
quadratic

min f(x) =
1

2
xT Ax − bT x, (2.1)

where A ∈ Rn×n is symmetric positive definite and b ∈ Rn. To solve (2.1) we
study the BB method with the gradient g(x) = ∇f(x) = Ax − b computed
inexactly and call the method as inexact BB method. Assuming that g̃k is
an approximation to gk at the k-th iteration, the inexact BB algorithm for
solving (2.1) can be described as follows.

Algorithm 2.1 (Inexact BB)

Step 1. Initialize k = 0 and pick some x0 ∈ �n. Calculate some approxima-
tion g̃0 of the gradient g0 = ∇f(x0) and set α̃0 = g̃T

0 g̃0/g̃
T
0 Ag̃0;

Step 2. Update xk+1 = xk − α̃kg̃k and k = k + 1;

Step 3. Calculate some approximation g̃k of the gradient gk = ∇f(xk);

Step 4. Stop if some termination criterion is satisfied;

Step 5. Compute sk−1 = xk − xk−1, ỹk−1 = g̃k − g̃k−1 and α̃k =
sT
k−1

sk−1

sT
k−1

ỹk−1
, goto

Step 2.

In the above algorithm, the first stepsize α̃0 is calculated by the steepest
descent formula (1.7) with g0 replaced by an inexact gradient g̃0. This is not
expensive if the matrix-vector product Ag̃0 can be used in computing g̃1, as
is the case of this paper.

Denote the error vector ξk = g̃k − gk. Then we have the basic relations

sk−1 = xk − xk−1 = −α̃k−1g̃k−1, (2.2)

gk = gk−1 − α̃k−1Ag̃k−1, (2.3)

g̃k = (I − α̃k−1A)g̃k−1 + ξk − ξk−1. (2.4)

Further, still denoting yk−1 = gk − gk−1, we have that

ỹk−1 = yk−1 + ξk − ξk−1 . (2.5)

5

We are going to analyze Algorithm 2.1 under the condition that

‖ξk‖ ≤ η ‖g̃k‖ , (2.6)

where η ∈ (0, 1) is some positive constant. It follows from (2.6) and the
definition of ξk that

gT
k g̃k = g̃T

k g̃k + (gk − g̃k)
T g̃k ≥ ‖g̃k‖2 − ‖ξk‖‖g̃k‖ ≥ (1 − η)‖g̃k‖2.

Therefore we can see that the condition (2.6) ensures the descent property
of −g̃k unless g̃k = 0.

Suppose that the eigenvalues of the Hessian matrix A are

0 < λ1 ≤ λ2 ≤ ... ≤ λn. (2.7)

The following theorem claims that Algorithm 2.1 is well defined if the pa-
rameter η satisfies

η ≤ 1

9

(
λ1

λn

)2

=: c1. (2.8)

Theorem 2.2 Consider the inexact BB algorithm, namely, Algorithm 2.1
under the assumption (2.6). If η satisfies (2.8), the following relations

2

λ1 + 2λn
≤ α̃k ≤ 2

λ1
(2.9)

and
‖g̃k+1‖ ≤ c2‖g̃k‖, (2.10)

where c2 = 9 λn

4 λ1
− 1, hold for all k ≥ 0. Therefore the algorithm is well

defined.

Proof We establish (2.9) and (2.10) by induction. If k = 0, we have
directly by the choice α̃0 = g̃T

0 g̃0/g̃
T
0 Ag̃0 that 1/λn ≤ α̃0 ≤ 1/λ1. Thus (2.9)

holds with k = 0. Further, fixing k = 0, we have by (2.9) that

‖I − α̃k A‖ ≤ max

{
1 − 2λ1

λ1 + 2λn
,

2λn

λ1
− 1

}
=

2λn

λ1
− 1. (2.11)

It follows from (2.4) that

‖g̃k+1‖ ≤ ‖(I − α̃k A) g̃k‖ + ‖ξk+1‖ + ‖ξk‖
≤ ‖I − α̃k A‖ ‖g̃k‖ + η‖g̃k+1‖ + η‖g̃k‖. (2.12)

6

Using (2.12), (2.11) and noticing that η ∈ (0, 1
9
), we can obtain

‖g̃k+1‖ ≤ (1 − η)−1

[
2λn

λ1

− 1 + η

]
‖g̃k‖

≤
[
2λn

λ1
(1 − η)−1 − 1

]
‖g̃k‖

≤
[
9λn

4λ1
− 1

]
‖g̃k‖. (2.13)

Thus by the choice of c2, we know that (2.10) is true with k = 0.
Now we assume that (2.9) and (2.10) hold for all l ≤ k, where k is some

integer that satisfies k ≥ 0. Then by (2.5), (2.6), the induction assumption
and (2.8), we have the following estimate∣∣∣∣∣s

T
k ỹk

sT
k sk

− sT
k yk

sT
k sk

∣∣∣∣∣ ≤
∣∣∣∣∣s

T
k (ξk+1 − ξk)

sT
k sk

∣∣∣∣∣ ≤ ‖ξk+1‖ + ‖ξk‖
‖sk‖

≤ (1 + c2)η‖g̃k‖
α̃k‖g̃k‖ =

9λnη

4λ1α̃k

≤ 9λn

4λ1
· λ1 + 2λn

2
· 1

9

(
λ1

λn

)2

<
λ1

2
. (2.14)

On the other hand, we can see from the definition of yk that λ1 ≤ sT
k yk

sT
k

sk
≤ λn.

It follows from this and (2.14) that

λ1

2
≤
∣∣∣∣∣s

T
k ỹk

sT
k sk

∣∣∣∣∣ ≤ λn +
λ1

2
. (2.15)

Thus α̃k+1 is well defined and (2.9) holds with k replaced by k + 1. Further,
it is not difficult to see that the deductions from (2.11) to (2.13) are still
available and hence (2.10) is true when the index k is replaced with k + 1.
Therefore by induction, the relations (2.9) and (2.10) hold for all k ≥ 0.
Algorithm 2.1 is then well defined. q.e.d

In the case that (2.6) and (2.8) hold, we can see from Theorem 2.2 that
the inexact BB algorithm is well defined provided that the initial stepsize α0

satisfies the relation (2.9). Theorem 2.2 also tells us that to guarantee the
well-definition of the algorithm, the constant η need be less than the square
of the inverse of the condition number λn/λ1 of the matrix A. The following
theorem extends the R-linear convergence result in [13] of the BB method.

7

Theorem 2.3 Consider the inexact BB algorithm, namely, Algorithm 2.1
under the conditions (2.6) and (2.8). There exists some positive constant
c3 ≤ c1, which depends only on λ1, λn and the dimension n, such that if
η ≤ c3, the algorithm either gives the solution in finite iterations or converges
to the solution R-linearly.

Proof To prove the theorem, we compare the inexact BB algorithm and
the (exact) BB method. At first, notice that the (exact) BB iterations are
uniquely decided by its starting point and initial stepsize. By Lemma 2.4 in
[13] and some slight modifications, we can see that there exists some positive
integer M , which depends only λ1, λn and the problem dimension n, such that
for any starting point z0 ∈ �n and initial stepsize β0 satisfying cL ≤ β0 ≤ cU

(cL and cU are some fixed positive constants), the M-th point zM generated
by the (exact) BB method satisfies

‖∇f(zM)‖ ≤ 1

2
‖∇f(z0)‖. (2.16)

Let’s fix cL = 2/(λ1+2λn) and cU = 2/λ1 and take some M satisfying the
above statement. For any point xk and stepsize α̃k generated by Algorithm
2.1, we consider the (exact) BB iterations {zk+l; l ≥ 0} with zk = xk and
βk = α̃k. The gradient of f at zk+l is denoted by hk+l. It is easy to see that
hk = gk and for l ≥ 0,

hk+l+1 = (I − βk+l A)hk+l and βk+l+1 =
hT

k+lhk+l

hT
k+lAhk+l

. (2.17)

Further, we take the smallest integer m′ ≤ M such that ‖hk+m′‖ ≤ 1
2
‖hk‖.

In this case, we have that

‖hk+l‖ >
1

2
‖hk‖, for all l = 0, 1, . . . , m′ − 1. (2.18)

We now consider the quantities φk+l = ‖g̃k+l − hk+l‖ and ψk+l = |α̃k+l −
βk+l|. Using (2.4), (2.17), (2.6) and (2.10), we get that for l ≥ 0

φk+l+1 ≤ ‖(I − βk+lA)hk+l − (I − α̃k+1)Ag̃k+l‖ + ‖ξk+l+1‖ + ‖ξk+l‖
≤ ‖I − βk+lA‖φk+l + ‖A‖ ‖g̃k+l‖ψk+l + η(1 + c2)‖g̃k+l‖ ,

≤ (
λn

λ1
− 1)φk+l + λn‖g̃k+l‖ψk+l + η(1 + c2)‖g̃k+l‖ . (2.19)

8

On the other hand, we have by direct calculations that

ψk+l+1 =

∣∣∣∣∣ τk+l + ‖hk+l‖2 θk+l

hT
k+lAhk+l [g̃T

k+lAg̃k+l + θk+l]

∣∣∣∣∣ , (2.20)

where
τk+l = ‖hk+l‖2 g̃T

k+lAg̃k+l − hT
k+lAhk+l ‖g̃k+l‖2 (2.21)

and
θk+l = α̃−1

k+lg̃
T
k+l(ξk+l − ξk+l+1) . (2.22)

For τk+l, we have the estimate

|τk+l| ≤
∣∣∣ g̃T

k+lAg̃k+l[‖hk+l‖2 − ‖g̃k+l‖2] + ‖g̃k+l‖2[g̃T
k+lAg̃k+l − hT

k+lAhk+l]
∣∣∣

≤
[
g̃T

k+lAg̃k+l(‖hk+l‖ + ‖g̃k+l‖) + ‖g̃k+l‖2 ‖A(hk+l + g̃k+l)‖
]
φk+l

≤ 2λn‖g̃k+l‖2(‖hk+l‖ + ‖g̃k+l‖)φk+l. (2.23)

For θk+l, we have the estimate

|θk+l| ≤ (1 + c2)(λ1 + 2λn)

2
η‖g̃k+l‖2 ≤ λ1

2
‖g̃k+l‖2. (2.24)

Denote the constant c4 = (1+c2)(λ1+2λn)
λ1

. Using (2.21) and (2.24), we can get
from (2.20) that

ψk+l+1 ≤ 2λn‖g̃k+l‖2(‖hk+l‖ + ‖g̃k+l‖) φk+l + c4λ1

2
η‖hk+l‖2‖g̃k+l‖2

hT
k+lAhk+l [g̃T

k+lAg̃k+l − λ1

2
‖g̃k+l‖2]

≤ 2λn(‖hk+l‖ + ‖g̃k+l‖) φk+l + c4λ1

2
η‖hk+l‖2

λ1

2
‖hk+l‖2

≤ 4λn(‖g̃k+l‖ + ‖hk+l‖) φk+l

λ1‖hk+l‖2
+ c4η . (2.25)

It follows from (2.10) that ‖g̃k+l‖ ≤ cl
2‖g̃k‖. By (2.17), we can deduce that

‖hk+l‖ ≤ cl
5‖hk‖, where c5 = max{1, λn

λ1
− 1} is constant. Since hk = gk, we

have from (2.6) and η ≤ c1 < 1
9

that ‖g̃k‖ ≤ 9
8
‖hk‖. Using these analyses,

the relation (2.18), (2.25) and m′ ≤ M , we can obtain the estimate

ψk+l+1‖g̃k+l+1‖ ≤ c6φk+l + c4η‖g̃k+l+1‖, for l = 0, 1, . . . , m′ − 2, (2.26)

9

where c6 is the constant given by

c6 =
9λn(9cM−2

2 + 8cM−2
5)cM−1

2

4λ1
. (2.27)

Since the first stepsize βk is chosen to be α̃k, we have that ψk = 0. In
addition, (2.6) implies that φk ≤ η‖g̃k‖. Thus we have from (2.19) that

φk+1 ≤ (
λn

λ1

− 1)φk + η(1 + c2)‖g̃k‖ ≤ (c2 +
λn

λ1

)η‖g̃k‖ . (2.28)

For l ∈ [1, m′ − 1], we have by (2.19) and (2.26) (with l replaced by l − 1)
and ‖g̃k+l‖ ≤ cM

2 ‖g̃k‖ that

φk+l+1 ≤ (
λn

λ1
− 1)φk+l + c6λnφk+l−1 + (1 + c2 + c4λn)η‖g̃k+l‖ . (2.29)

Notice that all the constants c1, c2, c4, c5, c6 and the integer M are de-
pendent only on λ1, λn and possibly the dimension n. From φk ≤ η‖g̃k‖,
(2.28), (2.29) and ‖g̃k+l‖ ≤ cM

2 ‖g̃k‖, we know that there exists some constant
c7, which depends only on λ1, λn and the dimension n, such that

φk+m′ ≤ c7 η ‖g̃k‖. (2.30)

Taking c3 = min{ 1
3+6c7

, c1}, we obtain from (2.30), ‖hk+m′‖ ≤ 1
2
‖hk‖, ‖hk‖ ≤

(1 + η)‖g̃k‖ and η ≤ c3 that

‖g̃k+m′‖ ≤ ‖hk+m′‖ + φk+m′ ≤
[
(1 + η)

2
+ c7η

]
‖g̃k‖ ≤ 2

3
‖g̃k‖ . (2.31)

To complete the proof, we define a subsequence {ki} with k1 = 2 for
Algorithm 2.1. If ki has been decided, we choose ki+1 = ki + mi, where
mi ∈ [1, m] is so chosen that

‖g̃ki+1
‖ ≤ 2

3
‖g̃ki

‖. (2.32)

By the analysis in the previous paragraph, we know that this is possible. It
then follows that

‖g̃ki
‖ ≤ (

2

3
)i−1‖g̃k1‖ (2.33)

with ki = k1 +
∑i−1

j=1 mj ≤ k1 + M(i − 1). Consequently, we have that

lim sup
i→∞

‖g̃ki
‖ 1

ki ≤ (
2

3
)

1
M . (2.34)

From the above relation and (2.10), we know that ‖g̃k‖ and hence ‖gk‖ con-
verges to zero R-linearly. q.e.d

10

The importance of Theorems 2.2 and 2.3 is in that, to guarantee the
well-definition of Algorithm 2.1 and inherent the R-linear convergence of the
(exact) BB method, the calculation error of the gradient can be less than
some constant proportion of the gradient norm. The constant depends only
the dimension n and the minimal and maximal eigenvalues of the matrix A.
However, the current estimate to the constant η in the proof of Theorem 2.3
may be very small, since the integer M can be very large. In practice, the
choice of the value η is optimistic, as will be seen in our numerical experiments
of Section 4.

As one application of Theorem 2.3, we can show that the (exact) BB
method is locally R-linearly convergent for twice continuously differentiable
functions. Suppose that f(x) is the function to be minimized and x∗ is a
point at which ∇f(x∗) and its Hessian H∗ is positive definite. Then at some
neighbourhood of x∗, the (exact) BB method for the minization of f(x) can
be regarded as the inexact BB method for minimizing the following quadratic

q(x) = f(x∗) +
1

2
(x − x∗)T H∗(x − x∗). (2.35)

In the case that f is twice continuously differentiable, it is not difficult to
establish the relation

‖∇f(x) −∇q(x)‖ = o(‖∇f(x)‖). (2.36)

Hence the condition (2.6) must be satisfied when xk tends to x∗ and hence R-
linear convergence can be established. This remark weakens the assumption
that the objection function f is two times Lipschitz continuously differen-
tiable for the CBB method in [12], in which case the following relation holds

‖∇f(x) −∇q(x)‖ = O(‖∇f(x)‖2). (2.37)

3. Inexact BB method for saddle point problems

The Uzawa algorithm for the saddle point problem (1.1) requires the
solution of a linear system at each iteration (see Step 2 of Algorithm 1.1). In
practice, it is usually expensive to solve the subproblem exactly. Elman and
Golub [16] proposed to replace Step 2 of Algorithm 1.1 by

Auk+1 = f − BT pk + δk, (3.1)

11

where the vector δk is the residual of the approximation solution uk+1 to
the system Av = f − BT pk. They suggested that a natural choice for the
magnitude of δk is

‖δk‖ ≤ τ‖Cpk−1 − Buk + h‖ . (3.2)

This is because the quantity Cpk−1 − Buk + h is the residual of the second
block row of (1.1) for the approximation solution pair (uk, pk−1) and this
quantity has already been calculated for the update of pk in the previous
step.

If the subproblem at Step 1 of Algorithm 1.1 is exactly solved, we obtain
the exact residual to the system (1.3):

gk = Āpk − b̄ = Cpk − BA−1(f − BT pk) + h. (3.3)

When the subproblem is solved inexactly by (3.1), the inexact gradient g̃k

can be written as

g̃k = Cpk − Buk+1 + h = gk − BA−1δk. (3.4)

From (3.2) and the first equality of (3.4) with k replaced by k − 1, the error
vector δk is required to satisfy

‖δk‖ ≤ τ ‖g̃k−1‖. (3.5)

Combining the BB method and the inexact idea of Golub and Elman, we
give an inexact BB algorithm for saddle point problem (1.1).

Algorithm 3.1 (Inexact BB algorithm for saddle point problems)

Step 1. Initialize k = 0 and p0 ∈ �m. Choose some big constant ρ > 1 and
some initial stepsize α̃0 ∈ [ρ−1, ρ];

Step 2. Compute uk+1 such that Auk+1 = f − BT pk + δk with δk satisfying
(3.2);

Step 3. Compute g̃k = Cpk −Buk+1 +h, pk+1 = pk − α̃kg̃k and set k = k +1;

Step 4. Stop if some termination criterion is satisfied;

Step 5. Calculate sk−1 = pk − pk−1 and ỹk−1 = g̃k − g̃k−1. Compute the next

stepsize α̃k by
[
max{ρ−1, min{ sT

k−1ỹk−1

sT
k−1

sk−1
, ρ}}

]−1

and goto Step 2.

12

The introduction of the constant ρ > 1 ensures that the stepsize α̃k

and hence Algorithm 3.1 is well defined. The previous section considers
the inexact BB algorithm under the assumption (2.6). For Algorithm 3.1,
however, we have by (3.4) and (3.5) that

‖ξk‖ = ‖g̃k − gk‖ ≤ η̄ ‖g̃k−1‖, (3.6)

where η̄ = τ‖BA−1‖. Since it is possible that ‖gk‖ can be arbitrarily smaller
than ‖gk−1‖ in the (exact) BB method and hence it is likely that ‖g̃k‖ is
far smaller than ‖g̃k−1‖, (3.6) does not imply (2.6) for any small constant
τ . Therefore we cannot establish the R-linear convergence of Algorithm 3.1
directly from Theorem 2.3. At the same time, we can see that unlike (2.6), the
condition (3.6) cannot ensure the descent property of −g̃k at every iteration.

The above difficulties can be circumvented by noticing that if ‖g̃k‖ is
significantly less than ‖g̃k−1‖, then a good approximation g̃k of the gradient
gk has been obtained. On the other hand, it follows from (2.4), α̃k ∈ [ρ−1, ρ]
and (3.6) that

‖g̃k‖ ≤ λn ρ‖g̃k−1‖ + η̄‖g̃k−2‖. (3.7)

Here and below we assume that ρ is a very large constant such that

ρ ≥ max{ 2

λ1
, λn +

λ1

2
}. (3.8)

The above relation and λ1 ≤ λn implies that λnρ ≥ 2. From (3.6), we have

‖gk‖ ≤ ‖g̃k‖ + η̄ ‖g̃k−1‖. (3.9)

The relations (3.7) and (3.9) hint us that, to establish the R-linear conver-
gence of Algorithm 3.2, we need to consider a subsequence of ki such that the
approximation gradients g̃ki−1 and g̃ki

have some properties simultaneously.

Theorem 3.2 Consider Algorithm 3.1 for saddle point problem (1.1) under
the conditions (2.6) and (2.8). Assume that ρ is a big constant that satisfies
(3.8). Then there exists some positive constant τ1, which depends only on
λ1, λn and the dimension n, such that if (3.5) holds for all k and τ ≤ τ1,
the algorithm either gives the solution in finite iterations or converges to the
solution R-linearly.

Proof Similarly to the proof of Theorem 2.3, we find some constant c3 ∈
(0, 1) and integer m which depend only on λ1, λn, the dimension n and the

13

parameter ρ such that, if ‖ξj‖ ≤ η‖g̃j‖ for all j and if η ≤ c3, then for
any index k, there exists some integer m′ ≤ M satisfying ‖g̃k+m′‖ ≤ 2

3
‖g̃k‖.

Denote M1 = 	 log(2λnρ)
log 1.5

M . Then if ‖ξj‖ ≤ η‖g̃j‖ for all j and if η ≤ c3, then
for any index k, there exists some integer m′ ≤ M1 such that

‖g̃k+m′‖ ≤ (
2

3
)

M1
M ‖g̃k‖ ≤ 1

2λnρ
‖g̃k‖. (3.10)

Now we denote the constants

c8 =
1

2λnρ(λnρ + 1)M1−1
, τ1 = c3c8‖BA−1‖−1. (3.11)

and define a subsequence {ki} in the following way. Pick the least index k1 ≥
1 such that ‖g̃k1‖ ≥ 2

3
‖g̃k1−1‖. If this is not possible, we have ‖g̃k‖ ≤ 2

3
‖g̃k−1‖

for all k ≥ 1 and {‖g̃k‖} is a Q-linear convergence sequence. Assume that
for some i ≥ 1, ki has been chosen with the property

‖g̃ki
‖ ≥ 2

3
‖g̃ki−1‖. (3.12)

By this, (3.9) and η̄ ≤ 2
3

and using the induction principle, it is not difficult
to show that

‖g̃ki+l‖ ≤ (λnρ + 1)l‖g̃ki
‖, for all l ≥ 1. (3.13)

Thus if ‖g̃ki+l‖ < c8 ‖g̃ki+l−1‖ for some l ∈ [1, M1], we have by this, (3.13)
and the choice of c8 that ‖g̃ki+l‖ ≤ 1

2λnρ
‖g̃ki

‖. If this is not the case, we have

‖g̃ki+l‖ ≥ c8 ‖g̃ki+l−1‖ for l = 1, . . . , M1. It follows from this, (3.6) and (3.11)
that ‖ξki+l‖ ≤ c3‖g̃ki+l‖ for l = 1, . . . , M1. By the statement in the first
paragraph of the proof and the choice of η̄, we must have that ‖g̃ki+M1‖ ≤

1
2λnρ

‖g̃ki
‖. Therefore there always exists some integer m′ ∈ [1, M1] such that

‖g̃ki+m′‖ ≤ 1

2λnρ
‖g̃ki

‖. (3.14)

We then take ki+1 to be the least integer that is not less than ki + m′ + 1
and satisfies ‖g̃ki+1

‖ ≥ 2
3
‖g̃ki+1−1‖. If ki+1 = +∞, we know that {‖g̃k‖} is

R-linearly convergent. Therefore we assume that the above-defined {ki} is
an infinite sequence.

14

If ki+1 = ki + m′ + 1, we have by (3.7), (3.14), (3.13), (3.11), m′ ≤ M1

and the definition of η̄ that

‖g̃ki+1
‖ ≤ λn ρ ‖g̃ki+m′‖ + η̄ ‖g̃ki+m′−1‖

≤ λnρ

(
1

2λnρ
‖g̃ki

‖
)

+ η̄ (λnρ + 1)m′−1 ‖g̃ki
‖

≤
[
1

2
+

c3

2λnρ

]
‖g̃ki

‖ ≤ 3

4
‖g̃ki

‖ . (3.15)

The facts that c3 ∈ (0, 1) and λnρ ≥ 2 are also used for the last inequality.
If ki+1 > ki + m′ + 1, we denote j0 = ki+1 − (ki + m′ + 1). The choice of

ki+1 implies that

‖g̃ki+m′+j‖ ≤ (
2

3
)j‖g̃ki+m′‖, for j = 1, . . . , j0 . (3.16)

It follows by (3.7), (3.16), (3.11) and the fact that 3η̄ ≤ λnρ that

‖g̃ki+1
‖ ≤ λn ρ ‖g̃ki+m′+j0‖ + η̄ ‖g̃ki+m′+j0−1‖

≤ (
2

3
)j0λn ρ ‖g̃ki+m′‖ + η̄ (

2

3
)j0−1‖g̃ki+m′‖

≤ (
2

3
)j0

(
1

2
‖g̃ki

‖
)

+ η̄ (
2

3
)j0−1

(
1

2λnρ
‖g̃ki

‖
)

≤ (
2

3
)j0

[
1

2
+

3η̄

4λnρ

]
‖g̃ki

‖ ≤ (
2

3
)j0

[
3

4
‖g̃ki

‖
]

. (3.17)

Combining the two possible cases of ki+1 and noting that m′ ≤ M1, we
always have the following relation

‖g̃ki+1
‖ ≤ 3

4
(

2

3
)max{0,ki+1−ki−M1−1} ‖g̃ki

‖ . (3.18)

Denote the constant c9 = (3
4
)

1
M1+1 . Since M1 ≥ 1, we have that 2

3
< c9 < 1.

With the choice of c9, we can show by (3.18) that ‖g̃ki+1
‖ ≤ c

ki+1−ki

9 ‖g̃ki
‖ .

The recursion of this relation leads to

‖g̃ki+1
‖ ≤ c

ki+1−k1

9 ‖g̃k1‖ . (3.19)

In addition, by (3.13), the definition of ki+1 and m′ ≤ M1, it is not difficult
to see that

max{‖g̃ki+1‖, . . . , ‖g̃ki+1−1‖} ≤ (λnρ + 1)M1−1‖g̃ki
‖ . (3.20)

15

Therefore we know by (3.19) and (3.20) that

lim sup
k→∞

‖g̃k‖ 1
k ≤ c9 < 1, (3.21)

which implies that {‖g̃k‖} and hence by (3.9), {‖gk‖} are R-linearly conver-
gent. q.e.d

Again, the proof to Theorem 3.2 provides a pessimistic estimate to the
largest admissible value to τ1. Nevertheless, the numerical experiments in
the next section show that τ1 and hence η̄ can be much larger.

4. Numerical Experiments

Our numerical experiments in this section are divided into two parts.
In the first part, we test Algorithm 2.1 with the inexactitude case (3.6)
for random symmetric and positive definite linear systems. Specifically, we
observe how the value of η̄ in (3.6) influences the performance of the algorithm
and how its choice depends on the problem dimension n and the smallest
eigenvalue λ1 and the condition number κ of the matrix A.

Problem 4.1. Consider the symmetric positive definite linear system Ax =
b, where x ∈ �n×n. The coefficient matrix A is formed by

A = PDP T , where P = (1 − 2ω1ω
T
1)(1 − 2ω2ω

T
2)(1 − 2ω3ω

T
3) (4.1)

and ω1, ω2 and ω3 are unit vectors generated by the uniform distribution in
�n and D is a diagonal matrix. Given the smallest eigenvalue λ1 and the
condition number κ, the i-th diagonal entry Di,i of the matrix D is set to

Di,i = exp
(
log λ1 +

i − 1

n − 1
log κ

)
. (4.2)

To generate the right hand term b, we randomly generate a solution x∗ ∈ �n

with x∗
i ∈ [−1, 1]. Then we set b = Ax∗. The starting point is x0 = 0.

Given tmin, tmax and some positive integer nη̄, we tested the inexact BB
method with the inexactitude case (3.6) using the following values for η̄:

η̄j = exp
(
log tmin +

√
(j − 1)/(nη̄ − 1) log(tmax/tmin)

)
, j = 1, . . . , nη̄.

Since ‖g̃−1‖ is not available for the first iteration, we assumed that ‖g̃−1‖ = 0,
which means that the exact gradient g0 is used. The initial stepsize is set

16

to be the Cauchy stepsize α0 = gT
0 g0/g

T
0 Ag0 as in Step 1 of Algorithm 2.1.

For k ≥ 1, to generate an approximation g̃k of the exact gradient gk, we first
generate a random vector vk and then set

g̃k = gk + η̄
‖g̃k−1‖
‖vk‖ vk.

The above choice of g̃k is such that the equality in the relation (3.6) holds.
Although the condition (3.6) cannot guarantee the descent property of −g̃k,
Theorem 3.2 tells us that the inexact BB method still converges and the
convergence rate is R-linear.

In our tests, we fix tmin = 10−3, tmax = 0.5 and nη̄ = 100 and observe the
influence of κ, n and λ1. For each value of κ, n and λ1, we do 100 tests and
use the stopping condition

‖gk‖ ≤ 10−6 ‖g0‖, (4.3)

where the exact gradient is used for the purpose of comparison. All tests for
this part were done with MATLAB 6.5.0.

At first, to observe the influence of κ, we fix n = 100 and λ1 = 1 and
use the following three values for κ: 102, 103 and 104. For j = 1, . . . , nη̄, we
denote by Iter(j) the average iteration numbers of the 100 tests required for
the inexactitude rule (3.6) with η̄ = η̄j. For the three different values of κ,
Figure 4.1(a) plots the corresponding curves Iter(j)/Iter(1) vs η̄j. Secondly,
we fix κ = 103 and λ1 = 1 and vary the problem dimension n to be 102,
103 and 104, respectively. Thirdly, we fix κ = 103 and n = 102 and vary
the minimal eigenvalue λ1 to be 0.1, 1 and 10, respectively. See Figures
4.1(b) and 4.1(c) for the corresponding curves. Considering the log scale of
the horizontal axis, we can see from the three figures that basically, as the
inexactness parameter η̄ increases, the required average iteration number is
linearly increases and hence the R-linear factor of the inexact BB algorithm is
linearly decreasing. The decrement of the R-linear factor is strongly affected
by the condition number of the problem, but has little relation with the
problem dimension or the minimal eigenvalue of the coefficient matrix A.
In the numerical sense, this feature resembles to that of the inexact Uzawa
algorithm, whose Q-linear factor mainly depends on κ and η̄ (see Theorem
2.2 in [16]).

A comparison was also made between the inexact BB algorithm and the
inexact Uzawa algorithm. In this case, we fix n = 100, κ = 103 and λ1 = 1.

17

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12

14
Figure 4.1(a)

κ=102

κ=103

κ=104

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12
Figure 4.1(b)

n=102

n=103

n=104

10
−3

10
−2

10
−1

10
0

0

2

4

6

8

10

12
Figure 4.1(c)

λ
1
=0.1

λ
1
=1

λ
1
=10

10
−3

10
−2

10
−1

10
0

0

2000

4000

6000

8000

10000
Figure 4.2

Inexact Uzawa
Inexact BB

(Note: all the x axes in the above figures are corresponding to the
value of η̄ = ηj . The y axes in Figures 4.1 (a) to (c) are correspond-
ing to the relative value of Iter(j) with respect to Iter(1); the y
axis in Figure 4.2 stand for the absolute value of Iter(j).)

Therefore the only difference between the two algorithms is the choice of
the stepsize αk. The inexact Uzawa algorithm uses (1.5), which means that
αk ≡ 2/101, whereas the inexact BB algorithm decides the stepsize according
to the information at the most recent two points except the initial stepsize
is chosen to be the Cauchy stepsize. In Figure 4.2, we plot the curves of
the required average iteration numbers Iter(j) vs η̄j . From the figure, we
can see that the inexact BB algorithm is far more efficient than the inexact
Uzawa algorithm. In the case when η̄ = η̄1 = 10−3, to reach the stopping
condition (4.3), the inexact BB algorithm and the inexact Uzawa algorithm
requires 242.6 and 5983.5 iterations on the average. From Figure 4.2, we can

18

also see that the influence of the inexactness parameter η̄ is similar to the
performance of the two algorithms.

In the second part of our numerical experiments we test Algorithm 3.1 on
saddle point problems arising from the finite element discretization of Stokes
equations.

Problem 4.2. This problem is related to the Stokes equations:

−
 u + �p = f in Ω = (0, 1) × (0, 1)
−div u = h in Ω

u = 0 on ∂Ω∫
Ω p = 0

(4.4)

We discretize (4.4) in the same way as that in [16]. More exactly, the dis-
cretization takes uniform triangular meshes on Ω, use continuous piecewise
linear velocities on a mesh of width d, and use continuous piecewise linear
pressures on a mesh of width 2d (this discretization is called as P1(h)P1(2h)
in [16]). We are then led to the saddle point problem (1.1) with n = 2 (1

d
−1)2

and m = (2
d
−1)2. For this problem, f is randomly generated with its elements

in [−1, 1] and h is set to zero.

In this experiment, we vary τ to see the influence of the inexactitude of
the subproblem on the performance of Algorithm 3.1. For each value of τ ,
we generate 20 random experiments and observe the average performance of
Algorithm 3.1. Note that the purpose of this work mainly focuses on the
inexact BB method used for computing pk. For ease in coding, we simply
use the (exact) BB method with no preconditioner to solve the subproblem
for uk+1 (see Step 2 of Algorithm 3.1). It is certain that other methods
possibly with some preconditioner can be used to solve the subproblem, for
example conjugate gradient methods or other gradient methods. Considering
the special structure of A, some other effective iterative or direct methods
can be also found. When the (exact) BB method is used for the subproblem,
at least one step is computed. The maximal iteration number, INMAX say,
for the subproblem is set to 100. If this number is exceeded, the inner solver
exits with the point having the minimal residuals. Here we note that some
other values were also used for INMAX, for example, 250 and 400. However,
the difference between the numerical results is not significant.

The tests on Problem 4.2 and the next problem were done with Matlab
7.1.0. We list the numerical results on Problem 4.2 in Table 4.1, where
“# OUT” means the average number of outer iterations, “# In” stands for

19

the average number of inner iterations per outer iteration and “time” is the
required average CPU time in second. Listed in the last column is the number
of outer iterations required by the inexact Uzawa algorithm with the same
value of τ for the problem, which can be found in [16] (only the case d = 1/32
is available).

Table 4.1: Results of Algorithm 3.1 for Problem 4.2

d τ # OUT # IN time Uzawa

1/16 1/64 89.0 78.9 0.995 -
1/16 1/16 99.4 68.4 0.993 -
1/16 1/4 105.3 56.5 0.911 -
1/16 1 146.4 43.7 1.113 -

1/32 1/64 194.5 99.1 9.832 (500)
1/32 1/16 185.3 98.3 9.245 426
1/32 1/4 185.2 95.4 8.915 427
1/32 1 194.7 86.6 8.839 431

Table 4.1 indicates that as τ increases, the average number of outer itera-
tions increases and the cost for inner iteration decreases. In this experiment,
the suggested value for τ is 1/4. From the table, we also see that the inex-
act BB algorithm requires less than one half of the outer iterations by the
inexact Uzawa algorithm. This means that if the same solver is used for the
subproblem, the inexact BB algorithm, which does not need to estimate the
minimal and maximal eigenvalues of A, is even faster.

Problem 4.3. This problem comes from a different discretization of the
Stokes equations with nonzero diverse of velocity, namely, h �= 0. Specifi-
cally, we discrete the velocity with continuous piecewise linear finite elements
on uniform triangular mesh of width d as before. However, for the pres-
sure function we use the elements suggested in [7] and [6]. More exactly, a
piecewise constant function on the adjacent blocks on uniform square mesh
of width d is used:

φij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x ∈ (xi−1, xi), y ∈ (yi−1, yi)
−1, x ∈ (xi, xi+1), y ∈ (yi−1, yi)
−1, x ∈ (xi−1, xi), y ∈ (yi, yi+1)

1, x ∈ (xi, xi+1), y ∈ (yi, yi+1) .

20

The discretization leads to the saddle point problem (1.1) with n = 2(1
d
− 1)2

and m = (1
d
− 1)2. To guarantee the positive definiteness of the matrix

C + BA−1BT , we choose C = d Im with Im being the identity matrix in
�m×m. It is easy to see that C tends to zero as d tends to zero. For this
problem, both f and g are randomly generated with their elments in [−1, 1].

Table 4.2: Results of Algorithm 3.1 for Problem 4.3

d τ # OUT # IN time
1/8 1/16 36.4 9.7 0.103
1/8 1/8 34.4 9.6 0.097
1/8 1/4 35.2 9.3 0.102
1/8 1/2 37.8 9.2 0.111

1/16 1/16 41.9 9.8 0.494
1/16 1/8 42.9 9.7 0.503
1/16 1/4 42.2 9.5 0.490
1/16 1/2 44.0 9.4 0.516

1/32 1/16 76.7 9.9 4.953
1/32 1/8 70.6 9.8 4.442
1/32 1/4 72.5 9.7 4.588
1/32 1/2 78.3 9.7 5.075

1/64 1/16 153.8 9.9 57.856
1/64 1/8 144.3 9.9 52.254
1/64 1/4 157.2 9.9 59.388
1/64 1/2 150.9 9.8 55.596

For this problem, we vary the value of τ to be 1/16, 1/8, 1/4 and 1/2.
The maximum for the inner iterations, INMAX, is set to 10. The results of
Algorithm 3.1 for Problem 4.3 are reported in Table 4.2. From the table, we
see that the choice of τ = 1/8 is preferred, but the performance of Algorithm
3.1 is not sensitive to the parameter τ . However, we observed that the
performance of Algorithm 3.1 heavily depends on the choice of INMAX. In
the case of INMAX= 10, we see from the column # IN of Table 4.2 that the
the inner solver often reach INMAX iterations. We found that this is also
the case if INMAX= 50. Take d = 1/32 and τ = 1/8 as an example. If we

21

set INMAX= 50, the average number of inner iterations is 47.8, whereas the
algorithm still needs 68.2 outer iterations on the average. The total time is
8.016, about double of the one by choosing INMAX= 10.

The numerical experiments on Problems 4.2 and 4.3 suggest that the in-
exact BB algorithm is an efficient alternative to the inexact Uzawa algorithm.
On the other hand, due to its nonmonotonic feature, the BB algorithm might
not be a good option for the inner solver. Further numerical experiments are
still required to understand the behavior of the BB algorithm.

5. Conclusions and discussions

In this paper, we have analyzed the inexact BB method with the inexac-
titude rules (2.6) and (3.6). The analysis with the rule (2.6) could help us in
understanding the (exact) BB method for unconstrained optimization, since
the latter can be regarded as an inexact BB method for some quadratic func-
tion if xk tends to x∗. Consequently, we are able to prove that the (exact) BB
method is locally R-linearly convergent for twice continuously differentiable
functions, a result stronger than the one in [12] for the cyclic BB method.
Another interesting point with the BB method is that, in the previous anal-
ysis of the BB method, the nonmonoticity is introduced by the choice of
stepsize αk. Since the inexactitude rules (2.6) allows the possibility that −g̃k

is an uphill search direction, Theorem 3.2 tells us that it would be also fine to
introduce some suitable nonmonoticity in choosing search directions without
affecting the R-linear convergence.

To adapt the inexact BB algorithm for solving saddle point problems, we
also analyzed the rule (3.6) carefully and provide R-linear convergence result
in the case. These analyses are based on those with the inexact rule (2.6).
However, our theoretical analyses cannot provide a good estimate for either
the parameter η in (2.6) or the η̄ in (3.6), although our numerical experiments
show that the latter one can be as large as the one in the inexact Uzawa
algorithm. It still remains under study how to estimate the parameters η and
η̄ theoretically. The good solution of this problem is related to the question
how to establish theoretical evidence showing that the (exact) BB method is
faster than the Uzawa algorithm or the steepest descent method in the any
dimension case. Some evidence in low dimensions has been established in [3]
and [11].

To solve the saddle point problems (1.1), the references [7], [9] and [2]

22

introduce some preconditioner for the inexact Uzawa method:

uk+1 = Q−1(f − BT p)

pk+1 = pk + Q̄−1(Cpk − Buk+1 + h),
(5.1)

where Q and Q̄ are some approximation to A and Ā = BA−1BT + C as
before. Some extensions are also made to the case when A, B and C are
nonlinear operators. Since the BB method does not need to estimate any
eigenvalue of the coefficient matrix and is far better than the Uzawa algorithm
or the steepest descent method, it might be worthwhile to study the above
issues with the inexact BB methods. As the referees commented, the use of
preconditioning is indepensible in building fast and pratical methods (here we
should note that the preconditioning technique was used to the BB method
first by Molina and Raydan [24]). On the other hand, there have been many
contenders of the BB stepsize (1.8), see [19] and [11] for example. Our future
work is then to establish an efficient inexact and preconditioning BB-like
method for saddle point problems.

Acknowledgements. The authors are very grateful to Professor Marcos
Raydan in Universida Central de Venezuela and two anonymous referees for
their useful comments and suggestions that improved the quality of this paper
greatly.

References

[1] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming,
Stanford University Press, Stanford, CA, 1958.

[2] E. Bansch, P. Morin and R. H. Nochetto, An Adaptive Uzawa FEM for
the Stokes Problem: Convergence without the Inf-Sup Condition, SIAM
J. Numer. Anal., Vol. 40, No. 4, pp. 1207-1229, 2002.

[3] J. Barzilai and J. M. Borwein, Two-Point Step Size Gradient Methods,
IMA J. Numer. Anal., Vol. 8, pp. 141-148, 1988.

[4] M. Benzi, G. H. Golub and J. Liesen, Numerical Solution of Saddle
Point Problems, Acta Numerica, Vol. 14, pp. 1-37, 2005.

23

[5] E. G. Birgin, I. Chambouleyron and J. M. Mart́ınez, Estimation of
the Optical Constants, and the Thickness of Thin Films Using Uncon-
strained Optimization, J. Comput. Phys., Vol. 151, pp.862-880, 1999.

[6] J. H. Bramble and J. E. Pasciak, A Preconditioning Technique for Indefi-
nite Systems Resulting from Mixed Approximations of Elliptic Problems,
Math. of Comp., Vol. 50, pp. 1-17, 1988.

[7] J. H. Bramble, J. E. Pasciak and A. T. Vassilev, Analysis of the Inexact
Uzawa Algorithm for Saddle Point Problems, SIAM J. Numer. Anal.,
Vol. 34, No. 3, pp. 1072-1092, 1997.

[8] Z.-H. Cao, Fast Uzawa Algorithm for Generalized Saddle Point Prob-
lems, Applied Numer. Math., Vol. 46, pp. 157-171, 2003.

[9] X. L. Cheng, On the Nonlinear Inexact Uzawa Algorithm for Saddle-
Point Problems, SIAM J. Numer. Anal., Vol. 37, No. 6, pp. 1930-1934,
2000.

[10] A. Cauchy, Méthode générale pour la résolution des systèms d’équations
simultanées, Comp. Rend. Sci. Paris, 25, pp. 536-538, 1847.

[11] Y. H. Dai and R. Fletcher, On the Asymptotic Behaviour of Some New
Gradient Methods, Mathematical Programming (Series A), Vol. 13, No.
3, pp. 541-559, 2005.

[12] Y. H. Dai, W. Hager, K. Schittkowski and H. Zhang, The Cyclic
Barzilai-Borwein Method for Unconstrained Optimization, Research re-
port, 2005 (to appear in: IMA J. Numer. Anal.)

[13] Y. H. Dai and L. Z. Liao, R-Linear Convergence of the Barzilai and
Borwein Gradient Method, IMA J. Numer. Anal., vol. 22, pp. 1-10, 2002.

[14] Y. H. Dai and X. Q. Yang, A New Gradient Method with An Optimal
Stepsize Property, Computational Optimization and Applications, Vol.
33, pp. 73-88, 2006.

[15] Y. H. Dai, J. Y. Yuan and Y. Yuan, Modified Two-point Stepsize Gradi-
ent Methods for Unconstrained Optimization, Computational Optimiza-
tion and Applications, Vol. 22, pp. 103-109, 2002.

24

[16] H. C. Elman and G. H. Golub, Inexact and Preconditioned Uzawa Algo-
rithms for Saddle Point Problems, SIAM J. Numer. Anal., Vol. 31, No.
6, pp. 1645-1661, 1994.

[17] H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast
Iterative Solvers: with applications in incompressible fluid dynamics,
Oxford University Press, 2005.

[18] R. Fletcher, On the Barzilai-Borwein Method, In: Optimization and
Control with Applications (L. Qi, K. Teo, X.Q. Yang, eds.), Springer,
pp. 235-256, 2005.

[19] A. Friedlander, J. M. Mart́ınez, B. Molina and M. Raydan, Gradient
Method with Retards and Generalizations, SIAM J. Numer. Anal., Vol.
36, pp. 275-289, 1999.

[20] W. Glunt, T. L. Hayden and M. Raydan, Molecular Conformations form
Distance Matrices, J. Computational Chemistry, Vol. 14, No. 1, pp. 114-
120, 1993.

[21] L. M. Hernández, Alternating Oblique Projections for Coupled Linear
Systems, Numerical Algorithms, Vol. 38, pp. 285-303, 2005.

[22] Q. Y. Hu and J. Zou, Two New Variants of Nonlinear Inexact Uzawa
Algorithms for Saddle-Point problems, Numer. Math., Vol. 93, pp. 333-
359, 2002.

[23] W. B. Liu and Y. H. Dai, Minimization Algorithms Based on Super-
visor and Searcher Cooperation, Journal of Optimization Theory and
Applications, Vol. 111, No. 2, pp. 359-379, 2001.

[24] B. Molina and M. Raydan, Preconditioned Barzilai-Borwein Method for
the Numerical Solution of Partial Differential Equations, Numerical Al-
gorithms, Vol. 13, pp. 45-60, 1996.

[25] M. Raydan, On the Barzilai and Borwein Choice of Steplenth for the
Gradient Method, IMA J. Numer. Anal., Vol. 13, pp. 321-326, 1993.

[26] M. Raydan, The Barzilai and Borwein Gradient Method for the Large
Scale Unconstrained Minimization Problem, SIAM J. Optim., Vol. 7, pp.
26-33, 1997.

25

[27] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs,
NJ, 1962.

26

