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The non-oscillatory reconstruction of the polynomials R;(x, "), which is the heart of the method,
is based on our Central-WENO reconstruction outlined below. An exact evolution of w, based on
integration of the conservation law over the staggered cell, /; />, then reads
IH+|
E’}ﬂﬁ = ﬁ / w(x,1")dx — ﬁ [f (w(xjs1, 7)) — f(w(x;, 7))] dr.
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The first integral is the staggered cell-average at time 7", W’ ,, which can be computed directly from
the above reconstruction. Due to the staggering, the time integrals of the flux are computed in smooth
regions (up to a certain CFL condition) and hence, they can be approximated by any sufficiently accurate
quadrature formula (e.g., for a fourth-order method one can use Simpson’s rule),
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Here, y;, are the quadrature weights and " + §; At are the intermediate levels. The intermediate values
required in (3), w(x;, t" 4+ By At), are predicted using either a Taylor expansion or a Runge—Kutta (RK)
method which is more efficient (in particular, for high-order methods and for systems). Our numerical
scheme utilized a RK method with a natural continuous extension (taken from [12]) which requires only
one step of the RK method from which the rest of the required values can be reconstructed with the
desired accuracy (consult [6]).

2.2. The CWENQO reconstruction

Below we outline the CWENO reconstruction and refer to [6] for more details. Our reconstruction
is a modification of the reconstruction procedure suggested in [4,7]. There, in the so-called Weighted
Essentially Non-Oscillatory (WENO) method, instead of selecting one stencil according to a non-
oscillatory criterion, the interpolant is constructed by taking a convex combination of all candidate
stencils. The weights of this combination are determined through a non-linear computation which is
based on the local smoothness of the stencil. Every stencil is weighted according to the oscillations
which it might create. In discontinuous regions, e.g., the weights will be biased towards the stencils in
the smoother regions. Since, effectively, in smooth regions the linear combination of the different stencils
can be interpreted as a wide stencil, a higher-order scheme can be constructed using polynomials of low
degree.

We derive a fourth-order method which is based on a piecewise-parabolic reconstruction step. Our
interpolant takes the form

J+1 _ J+1 ) )
Ri(x)= Y w{P(x), Y wi=1, w]=>0, (4)
k=j—1 k=j—1

where P;(x) are polynomials reconstructed using different stencils around x;. For example, P;_;(x)
is the polynomial based on the left stencil {x;_»,x;_;.x;}. The reconstructed polynomial must satisfy
conservation requirements,
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and accuracy requirements, imposing that the average of the reconstruction on the half cells, I, :=
[xj—1/2. %51, Ij-+ := [x}, Xj41/2], must satisfy (with s denoting the degree of accuracy),

1 n ] n &
E/Rj(x,f )dx:—:g/u(x,t )dx +O(°).
I+ I+
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For the point-values we require R;(x;,t") = u(x;,t") + O(h*). In the predictor step, we use a
separate reconstruction for the derivatives of the fluxes, f’(u(x, 1)), for which we require R}- (x5 1")=
f'(u(x;, ")) + O(h*~"). Non-oscillatory requirements (in the sense of ENO/WENO) enter through the
choice of the weights w in (4).
Each polynomial, P (x), can be written in the form

» - ; 5 ; &
Po(x) =up + up (x — xz) +5uk(x —x)°, k=j—1,j,j+1.

The reconstructed point-values, i, and the reconstructed discrete first and second derivatives, u, , i}, are
uniquely determined by the interpolation requirements as (k= j — 1, j, j+ 1)
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Following the notations of [4], convexity is guaranteed when the weights, w;{ , are written as (with
k=j—=1j,j+1),
J
: o ; Ck
w;:= = ﬁ I a;‘(f:—j’, C,=0.
oo (e +18;)F

The constant & appears in the denominator in order to prevent it from vanishing. In [4] an & = 107
was chosen empirically and we use the same ¢. In [7] the value of p was taken as one plus the degree
of the reconstruction polynomial, while in [4] a p = 2 was empirically selected and here we use the
same. The constants C} are chosen such as to gain maximum accuracy in smooth regions. The accuracy
requirements for the central and upwind frameworks are different. This results with different weights
for the CWENO reconstruction compared with those obtained in upwind WENO. We utilize two sets of
constants, one for the computation of cell-averages on half-cells, and the other for the computation of the
derivatives of the fluxes. These constants are displayed in Table 1.

Table 1
The constants, C., of the Central-WENO reconstruction
Cj- C; Cj+1 Accuracy
Cell-averages % % % W
Derivatives % % % I

Point-values ~ any symmetric combination h*




D. Levy et al. / Applied Numerical Mathematics 33 (2000) 407414 411

Finally, there are several approaches to compute the smoothness indicators IS;{ (consult [4,7]). We
use the measure taken from [4], which sums the L?-norms of the first and second derivatives, where Pkm
denotes the /th derivative of P;(x),
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3. Numerical examples

We present several numerical examples demonstrating the promising TV properties of the 1D CWENO
fourth-order method. Our numerical results suggest that the CWENO method is TVB. Our first example
is the linear advection problem, u, + u, = 0, subject to the initial data, uy(x) = sin(7x), and to periodic
boundary conditions on [—1, 1]. The integration time is 7 = 1.5. Following [6], the CFL was taken as
1.8/7. Note that the TV of the exact solution equals 4, and remains constant along the evolution. Fig. 1
presents the TV of the CWENO approximate solution, which is computed using the point-values obtained
with the CWENO reconstruction from the cell-averages.

The value of the TV of the approximate solution never increases above the exact TV. The amplitude
of the oscillations decrease as the mesh is refined and it approaches the theoretical value. The TV of the
numerical solution is different from that of the exact solution for two reasons: First, the TV is computed
on a discrete set of points, and second, the discrete values of the numerical solution are not exact.
The computation on a discrete set of points is responsible for both the oscillations and the modulation
phenomena observed in Fig. 1. Same phenomena are observed if we sample the exact solution in a
discrete set of points in space and time. The amplitude of the oscillation decreases roughly by a factor
four when the grid points are doubled, indicating a second order effect. This is exactly what one would
expect from computing the TV of the exact solution on a grid. The TV would be slightly less than 4,
because the grid points will not be exactly on the extrema, but they will be displaced by a distance O(h),
and therefore the value of the function on those points will differ by an amount O(h?) from the extrema.
Also, the slow variation on the amplitude of the oscillation is due to the fact that the TV is not computed
for all times, but only for discrete times. If they were computed for all times, then the distance between
two crests would be equal to the grid spacing h (divided by the propagation speed, which in this case
is 1). The distance is larger, because the discrete solution is realized at discrete times. If At = Ax/2,
then the oscillations would be of the same amplitude. When Ar differs slightly from Ax/2, then the
usual modulation effect develops. Hence, the period of the modulation strongly depends on the Courant
number.

Our next example is the Burgers equation, u, + (3u?), = 0, subject to the initial conditions,
u(x,t =0) =1+ 0.5sin(;rx), and to periodic boundary conditions on [—1, 1]. Once again, the
integration time is 7 = 1.5. The results are displayed in Fig. 2. Each frame contains two graphs: the
dotted line corresponds to the TV of the exact solution, while the solid line corresponds to the TV of the
approximate solution. A shock is created at time 7 = 2/7.

The TV of the approximate solution has the same behavior as the TV of the exact solution. Most
importantly, again, it never increases above the theoretical value and it tends to the exact TV value when
the mesh is refined. Even in the coarse grids the slope of the decrease after the shock is the same for both
approximate and exact solution, though the starting time of that decrease is smaller for the approximate
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Fig. 1. TV of the solution to a linear advection problem.
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Fig. 2. TV of the solution to Burgers equation. Dotted line—TV computed from the exact solution. Solid line—TV
computed from the CWENO approximated solution.
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Fig. 3. The solution of Burgers equation with two interacting shocks.
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Fig. 4. TV of the solution to the Burgers equation with two interacting shocks. The curves correspond to
N =40, 80, 160, 320, 640, in an increasing order.
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solution. The results are impressive even in the N = 40 plot, taking into account that the 1D CWENO
reconstruction is based on a 5-point stencil. Finally, we would like to point the appearance of a stair-
case behavior in all pictures, whose magnitude decreases as the mesh is refined, we conjecture that this
stair-case behavior is due to the staggering—de-staggering mechanism.

Our last example is of two discontinuities interacting with each other. Once again we solve the periodic
Burgers equation u, + (%uz)_r = 0, with the initial condition, ug = 2 — sin(rx) + sin(27rx). This initial
condition generates two discontinuities, one moving faster that the other, eventually combining into one
discontinuity. We run the fourth-order CWENO method with A = 0.25 - % (the maximum speed is 4 and

the critical Courant number is %).

Fig. 3 presents the behavior of the solution in time. It is clear that two shocks form and that slightly
after T' = 0.6, they merge into one shock. Fig. 4 contains various plots of the total variation for different
grids. The grids are N = 40, 80, 160, 320, 640, with the curve corresponding to N = 40 being the lower
one.

Clearly, no undesirable behavior is detected when the two shocks merge. It looks as if the TVD is
monotonically converging, along with the fluctuations which converge to zero. The delay in the beginning
of the decrease in the TV is related to the decrease in the numerical diffusion as the grid is refined.
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