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Abstract 

In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a 
high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it is 
extension of results in [1] and [2]. Theoretical analysis shows that all eigenvalues of preconditioned matrix is 
strongly clustered. Finally, numerical tests confirm our analysis. 
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1. Introduction 

Consider the following saddle point linear system 

,
0
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Ax
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where n nF R 

n

 is symmetric and positive semidefinite 
with nullity r,  has full row rank, m nB R m n  
f R  and ng R , u and p are unknown. Note that 

the assumption that A is nonsingular, i.e., the system (1) 
has a unique solution implies that null(F)/null(B) = 0, 
which we use in our analysis below. Saddle point linear 
systems of form (1) can arise, for example, from con- 
straint optimization [3], mixed nite element formulation 
for the stokes problem [4], and discrete time harmonic 
Maxwell equations in mixed form [5]. 

There has many techniques for solving Saddle point 
linear systems of form (1), see [6] for a comprehensive 
survey. However, when F is singular, it cannot be in- 
verted and the Schur complement does not exist. In this 
case, one possible way of dealing with system is by 
augmentation [7]. Another way we can refer to [8] where 
Grief and SchÄotzau exploited a preconditioning techni- 
que for solving time-harmonic Maxwell equations in 
mixed form. 

Recently, Rees and Grief [2] extend the work by Grief 
and SchÄotzau [8] to interior point methods for optimi- 
zation problems. The preconditioner has attractive proper- 
ty of improved eigenvalue clustering with ill-conditioned 

the (1,1) block of saddle point systems. Based on the 
basic of above work, Huang etc. costructed two block 
triangular preconditioners for solving saddle point sys- 
tems (1) [1]. 

In this paper we are devoted to give new block trian- 
gular preconditioner for solving saddle point systems of 
(1) with an ill-conditioned (1,1) blocks. The precondi- 
tioner is involving two parameters, and they are exten- 
sion of recent work in Grief and SchÄotzau [8], Rees and 
Grief [2], and Cheng etc. [1]. 

2. New Preconditioner and Spectral Analysis 

Rees and Grief [9] provided the following preconditioner 
for the symmetric saddle point systems (1)  

1
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where t is a scalar and  is symmetric positive 
weight matrix. 

m mW R 

Recently, Huang etc. [6] established the following pre- 
conditioners for the saddle point systems: 
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where 0t   is a parameter and 
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

where . 1 0t 
In this section, we introduce the following precondi-

tioner involving two parameters: 

 1

,

1
,

0

T TF B W B B
M

W
 

 


  
  
 

      (2) 

for the saddle point systems (1), where 0   and 
0  . We note that when the parameter 1  , and  

t  , M  reduce to tM ; when t   and 
1 t

t
 
 , 

M  reduce to tM . 
Theorem 2.1. The matrix 1M A

  has two distinct ei-
genvalues, given by  

1 1   and 
2 1   , 

with the algebraic multiplicities n and r, respectively. 
The remaining m − r eigenvalues satisfy the relation 

 
,

1


 

 


               (3) 

where   are positive generalized eigenvalues of  
1 ,TB W Bu Fu                 (4) 

Let 
1i
 be a basis of the null space of F, 

1i r

ix  n m

iz



 

be a basis of the null space of B, and 
1i

 a set of 
linearly independent vectors that complete null(F)  
null(B) to a basis of Rn, Then the r vectors  
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iy




11
;i ix W Bx




 


 , the n − m vectors , and the m − r 

vectors 

 ;0iz

11
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i

  are linearly independent eigenvec-  

tors associated with 1  , and the r vectors  
 1;i ix W Bx   are eigenvectors associated with 

1


  . 

Proof: Suppose that   is an eigenvalue of 1M̂ A
 , 

whose eigenvector is . Then the correspond-  

T u

p
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TT Tu p

ing eigenvalue problem is 
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From the second row we can obtain 11
p W B


 u .  

By substituting it into the first row we have 

  11
1 0TFu B W Bu  


        

.      (5) 

If 1 
;u W

, then (5) is satisfied for any , and 
hence  is an eigenvector of 

nu R
1 1Bu  M A
 . 

If null(F), then from (5) we obtain u
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From which it follows that 11
;u W Bu


 
 
 

 and  

 1;u W Bu   are eigenvectors associated 1   and 

1


 . 

Next, suppose 1   and 1   . We divide (5) 
by   1 1   , which yields (3), with u defined in 
(4). 

Now we can find a specific set of linearly independent 
eigenvectors for 1   and 1   . Since null(F) ∩ 
null(B) = 0, the vectors   1i

 and 
1i

r

ix  n m

iz



 defined 

above are linearly independent and form a subspace of 
nR of dimension n − m + r. Let  1i i

 complete this 
set to a basis of Rn. It follows that i i

n m

,
y

 1 1x W Bx  , 
 ,0iz , and  By1 1y W  ,i i  are eigenvectors associated 
with 1  . The r vectors  1

i , ix W B x  are igenvec-
tors associated with 1   . 

When the parameters satisfy 1 1  , we can obtain 
the following corollary from Theorem 2.1.  

Corollary 2.2. Let 1 1  . Then the matrix 1M A
  

has one eigenvalue which given by 1   with algebraic 
multiplicity n + r. The remaining m − r eigenvalues sat-
isfy the relation 

 1 ,      

where µ are positive generalized eigenvalues of  
1TB W Bu Fu  . 

Theorem 2.3. The matrix 1M A
  has two distinct ei-

genvalues, given by 

1 1   and 
2 1   , 

with the algebraic multiplicities n and r, respectively. 
The remaining m − r eigenvalues lie in the interval 

    0, 1 0 ,or 1 ,0 0        . 

Proof: From Theorem 2.1 we obtain that the matrix 
1M A
  has two distinct eigenvalues, given by  

1 1   and 
2 1   , 

with the algebraic multiplicities n and r, respectively. 
Taking inner product of (5) with u, we can obtain that 

the remaining m − r eigenvalues satisfy 

 1

1

,

, ,

T

T

B W Bu u

Fu u B W Bu u














,        (6) 

where ,   denotes the standard Euclidean inner prod-
uct, u  null(F) and u  null(B). By (6), we have that 
the remaining m − r eigenvalues lie in interval 
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      0, 1 0 ,or 1 ,0 0       . 

When the parameters satisfy 1 1  , we can obtain 
the following corollary from Theorem 2.3. 

Corollary 2.4. Let 1 1  . Then the matrix 1M A
  

has one eigenvalue which given by λ = 1 with algebraic 
multiplicity n + r. The remaining m − r eigenvalues lie in 
the interval (0, 1). 

3. Numerical Experiments  

We consider the following finite element discretization 
of the time-harmonic Maxwell equations (k2 = 0) [5,8]. 
The following two-dimensional Model problem is con-
sidered: find u and p that satisfy  

in

0 in

0 on

0 on

u p f

u

u

p

   
  
  

 
n



           (7) 

Here is a simply connected polyhedron do-
main with a connected boundary ∂Ω, and ~n denotes the 
outward unit normal on ∂Ω. The datum 

2R

f  is a given 
source (not necessarily divergence free). Using the low-
est order N’ed’elec elements of first kind [9,10] for the 
approximation of the vector field and standard nodal 
elements for multiplier yields the following saddle-point 
linear system  

.
00

T u gF B
Ax

pB

    
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    
b  

Experiments were done in a square domain (0 ≤ x ≤ 1; 
0 ≤ y ≤ 1). And we set the right-hand side function so 
that the exact solution is given by  

      , 1 , 1
T

u x y y y x x   . 

In our numerical experiments the matrix W in the 
augmentation block preconditioner is taken as W = I.  

We consider three meshes with different values of n 
and m in Table 1. Table 2 shows iteration counts for 
different η and meshes, applying BiCGSTAB of 
block-triangular preconditioner, and 1 1  . We ob- 

 
Table 1. Values of n and m and size of the linear systems for 
three meshes. 

h n m n + m 

1

8
 176 49 225 

1

16
 225 736 961 

1

32
 961 3008 3969 

Table 2. Iteration counts for different and meshes, using 
BiCGSTAB for solving the saddle point system with precon- 
ditioner  , the iteration was stopped once 

( ) 0 13kr r ( ) 10 . 

h 0.1 0.5 2 4 6 

1

8
h   3 3 1 1 0.5 

1

16
h  3 2 2 1 1 

1

32
h  1 0.5 0.5 0.5 0.5 

 
serve that for a fixed mesh, When η = 6, We spent the 
least iteration counts. In particulary, when η > 2, the it-
eration we spent are less than η = 2 (corresponding to M2 
[1]). It shows that preconditioner M   is more effi-
cient than tM  and ˆ

tM . 
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