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ABSTRACT 

In this paper, we suggest a new type of three step iterative scheme called the CR iterative scheme and study the strong 
convergence of this iterative scheme for a certain class of quasi-contractive operators in Banach spaces. We show that 
for the aforementioned class of operators, the CR iterative scheme is equivalent to and faster than Picard, Mann, 
Ishikawa, Agarwal et al., Noor and SP iterative schemes. Moreover, we also present various numerical examples using 
computer programming in C++ for the CR iterative scheme to compare it with the other above mentioned iterative 
schemes. Our results show that as far as the rate of convergence is concerned 1) for increasing functions the CR itera-
tive scheme is best, while for decreasing functions the SP iterative scheme is best; 2) CR iterative scheme is best for a 
certain class of quasi-contractive operators. 
 
Keywords: Fixed Point; Various Iterative Schemes; Rate of Convergence 

1. Introduction 

There is a close relationship between the problem of 
solving a nonlinear equation and that of approximating 
fixed points of a corresponding contractive type operator. 
Consequently, there is theoretical and practical interest in 
approximating fixed points of various contractive type 
operators. Let  , X d

,  

 be a complete metric space and 
 a self map for X. Suppose that  :T X X

   F T p  X Tp  p  is the set of fixed points of T. 
There are several iterative processes in the literature for 
which the fixed points of operators have been approxi- 
mated over the years by various authors. 

In a complete metric space, the Picard iterative scheme 
defined by   0

,n n
x





1 , 0,1,n nx Tx n          (1.1) 

has been employed to approximate the fixed points of 
mappings satisfying the inequality 

   ,d Tx Ty d x y ,        (1.2) 

for all ,x y X  and  0,1  . 
Condition (1.2) is called the Banach’s contraction con- 

dition. Any operator satisfying (1.2) is called a strict con- 
traction. 

In 1953, W.R. Mann defined the Mann iterative sche- 
me [1] as 

 1 1 ,n n n nu u    

where  n  is a sequence of positive numbers in [0,1]. 
In 1974, S. Ishikawa defined the Ishikawa iterative 

scheme [2] as 

 1 1n n n n ns s T     t  

 1n n n nt s    ,nTs           (1.4) 

where  n  and  n  are sequences of positive num-  

bers in [0,1]. 
In 2007, Agarwal et al. defined the Agarwal et al. ite- 

rative scheme [3] as 

 1 1n n n n ns Ts Tt      

 1n n n nt s    ,nTs           (1.5) 

where  n  and  n  are sequences of positive num-  

bers in [0,1]. 
In 2000, M. A. Noor defined the Noor iterative scheme 

[4] as  

 1 1n n n np p     nTq  

 1n n n nq p    nTr  

 1n n n nr p    ,nTp           (1.6) 

where  n ,  n  and  n  are sequences of posi-  

tive numbers in [0,1]. 
nTu       (1.3) Recently, Phuengrattana and Suantai defined the SP 

iteration scheme [5] as *Corresponding author. 
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 1 1n n n n nx y T     y  

 1n n n ny z    nTz  

 1n n n nz x    ,nTx           (1.7) 

where  n ,  n  and  n  are sequences of posi-  

tive numbers in [0,1]. 
Remarks: 
1). If n , then the Noor iterative scheme (1.6) re- 

duces to the Ishikawa iterative scheme (1.4). 
0 

2). If n n , then the Noor iterative scheme (1.6) 
reduces to the Mann iterative scheme (1.3). 

0  

3). In addition, when n n , then the SP iterative 
scheme (1.7) reduces to the Mann iterative scheme (1.3). 

0  

In 1972, Zamfirescu [6] obtained the following inter- 
esting fixed point theorem. 

Theorem 1.1. Let (X, d) be a complete metric space 
and  a mapping for which there exists real  :T X X

numbers a, b and c satisfying   1
0,1 , , 0,

2
a b c

   
 

  

such that for each pair ,x y X , at least one of the fol-
lowing conditions hold 

  1) , ,d Tx Ty ad x y   

     2) , , ,d Tx Ty b d x Tx d y Ty    

     3) , , , .d Tx Ty c d x Ty d y Tx       (1.8) 

Then T has a fixed point p and the Picard iteration 
defined by  

0n n
x





1 ,  0,1,n nx Tx n     

converges to p for any arbitrary but fixed 0x X . 
The operators satisfying the condition (1.8) are called 

Zamfirescu operators. 
Berinde [7] introduced a new class of operators on an 

arbitrary Banach space satisfying 

     , 2 , ,d Tx Ty d x Tx d x y   ,    (1.9) 

,x y X
He proved that this class is wider than the class of 

Zamfirescu operators and used the Ishikawa iteration 
process to approximate fixed points of this class of ope- 
rators in an arbitrary Banach space given in the form of 
following: 

   and some .  0,1 

Theorem 1.2 [7]. Let K be a nonempty closed convex 
subset of an arbitrary Banach space X and :T K K  
be a mapping satisfying (1.9). Let {sn} be defined 
through the Ishikawa iteration (1.4) and 0



s K  where 
 n ,  n  are sequences of positive numbers in [0,1]  

with  n  satisfying 
0

n
n






  . Then {sn} converges  

strongly to the fixed point of T. 

Several authors [5,8-17] have studied the equivalence 
between various iterative schemes. S. M. Solutz [15,16] 
proved that for quasi-contractive operators the itérative 
processes Picard, Mann, Ishikawa and Noor are 
équivalent. Recently, Renu Chugh and Vivek Kumar [17] 
proved that for quasi-contractive operators satisfying (1.9) 
Picard, Mann, Ishikawa, Noor and SP iterative schemes 
are equivalent. 

Fixed point iterative procedures are designed to be ap- 
plied in solving equations arising in physical formulation 
but there is no systematic study of numerical aspects of 
these iterative procedures. In computational mathematics, 
it is of vital interest to know which of the given iterative 
procedures converge faster to a desired solution, com- 
monly known as rate of convergence. B. E. Rhoades [18] 
compared the Mann and Ishikawa iterative procedures 
concerning their rate of convergence. He illustrated the 
difference in the rate of convergence for increasing and 
decreasing functions. Indeed he used computer programs, 
perhaps for the first time to compare the Mann and Ishi- 
kawa iterations through examples. S. L. Singh [19] ex- 
tended the work of Rhoades. Very recently, Phuengrat- 
tana and Suantai [5] proved that SP iterative scheme is 
equivalent to and faster than Mann, Ishikawa and Noor 
iterative schemes for increasing functions. 

Now, we introduce the following CR iterative process: 
Let X be a Banach space,  a self map of X  :T X X
and 0x X . Define the sequence  by   0n n

x




 
 
 

1 1

1

1 ,

n n n n

n n n n

n n n n n

n

n

x y T

y Tx

z x T

 

 

 

   

  

  

y

Tz

x

     (1.10) 

where  n ,  n  and  n  are sequences of posi- 

tive numbers in [0,1] with  n  satisfying 
0

n
n






  . 

We shall need the following lemma and definitions. 
Lemma 1 [20]. If   is a real number such that  

0 1   and   0n n




  is a sequence of positive num-  

bers such that lim 0n
n

  , then for any sequence of posi-  

tive numbers   0n n




  satisfying 

1 , 0,1,2,n n nu u n    ,  

we have lim 0n
n

u


 . 

Definition 1.1. Suppose that {an} and {bn} are two 
real convergent sequences with limits a and b respec- 
tively. Then {an} is said to converge faster than {bn} if  

lim 0n

n
n

a a

b b





. 

Copyright © 2012 SciRes.                                                                                AJCM 



R. CHUGH  ET  AL. 347

Definition 1.2 [21]. Suppose that {un} and {vn} are 
two fixed point iteration procedures both converging to 
the same fixed point p with the error estimates 

, 0,1,n nu p a n     

, 0,1,n nv p b n     

where {an} and {bn} are two real convergent sequences 
converging to 0. If {an} converges faster than {bn}, then 
we say {un} converges faster than vn to p. 

The purpose of this paper is to show the convergence 
of the CR iterative scheme and to prove equivalence be- 
tween Picard, Mann, Ishikawa, Noor, Agarwal et al., SP 
and CR iterative schemes for quasi-contractive operators 
satisfying (1.9). We provide an example for which the 
CR iterative scheme is faster than the other above men- 
tioned iterative schemes for the aforementioned class of 
operators. Also, by using computer programs in C++, we 
compare the above mentioned iterative schemes through 
examples of increasing and decreasing functions. 

2. Result on Strong Convergence 

Theorem 2.1. Let K be a nonempty closed convex subset 
of an arbitrary Banach space X and  a map-  :T K K
ping satisfying (1.9). Let be defined through the    0n n

x




CR iteration (1.10) and 0x X , where  n ,  n  
are sequences of positive numbers in [0,1] with  n  

 

Satisfying . Then  converges strongly 
0

n
n






    0n n
x





to the fixed point of T . 
Proof. Theorem 1.1 shows that T has a unique fixed 

point in K, say p. 
From (1.10), we have 

 

  
 

1

1

 1 1  

1

,

n

n n

n n

n n n

n n n

n n

x p

y p

Ty p

Tx p

Tz p

Ty p





 

 



 

  

 

   

  

 

     (2.1) 

Using (1.9), (2.1) yields  

  
 

1

1 1

1

n

n n n

n n n

n n

x p

x p

z p

y p

  

  



 

   

  

 

      (2.2) 

Using (1.9) and (1.10), (2.2) yields 

  
   
 
 

  
   
 
 
 

    
  

1

2

2

2

3

 1 1

1 1

1

1

1 1

1 1

1

1

1

1 1 1 1

1

n

n n n

n n n n

n n n n

n n n

n n n

n n n

n n n n

n n n n

n n n

n n n n

n n n n

n n

n n n n

x p

x p

x p

Tx p

Tx p

Tz p

x p

x p

x p

x p

x p

x p

x p

  

   

   

 

 

  

   

   

  

   

   

n n      

    

 

   

   

  

  

 

   

   

  

  

  

 

     

  

  (2.3) 

 

 
0

0
0

1

0

1 1

e
k

k

n
n

n k
k

n

x p x

x p
 

  








  

p      

 


   (2.4) 

Since 0   < 1, k  [0,1] and 
0

n
n






  , so 

 as . Hence, it follows from 

(2.4) that 

 
0

1

e 0
k

kn
 





  

 n 

1lim 0n
n

x p
  . Therefore  

0n n
x




 con-  

verges strongly to p. 

3. Equivalence between Picard, Mann, 
Ishikawa, Noor, Agarwal et al., SP and CR 
Iterative Schemes 

Theorem 3.1. Let K be a nonempty closed convex subset 
of a Banach space X and  a mapping 
satisfying (1.9). If the initial point is the same, 

:T K K

0,n A n N     , then the followings are equivalent: 
1) The Mann iteration (1.3) converges to p. 
2) The Agarwal et al. iteration (1.5) converges to p. 
3) The CR iteration (1.10) converges to p. 
Proof. First we prove that 1)  3). Let the Mann it-

eration (1.3) converge to p. We shall show that the CR 
iteration (1.10) also converges to p. 



Using (1.3) and (1.10), we have 

 
 

  

1 1

1

1 2

1 1 2 .

n n

n n n n n n

n n n n n n n n n

n n n n n n

x u

y u Ty Tu

y u y u u Tu

y u u Tu

 

    

   

 

    

      

     

(3.1) 

Copyright © 2012 SciRes.                                                                                AJCM 



R. CHUGH  ET  AL. 348 

From (1.10), we have 

 
   

 
   
 

   

1

1 1

1 2 1

1

2

1 2 1

,

n n

n n n n n n

n n n n n n

n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n

n n n

y u

Tx u Tz u

Tx Tu Tu u

Tz Tu Tu u

x u Tu

Tu u z u

Tu u Tu u

x u u Tu

z u

 

 



   

 

 

  





    

     

   

     

    

   

     

 

u   (3.2) 

Again, from (1.10), we have 

 
   

    

1

1

1 1 2 1

n n

n n n n n n

n n n n n n n n

n n n n n

z u

x u Tx u

n

x u Tx Tu Tu u

x u Tu

 

 

   



    

      

      u

 (3.3) 

Substituting (3.3) in (3.2), we have 

 
  

  

1

1 1

1 2 1 .

n n n n n

n n n n

n n n n

y u x u

x u

Tx u

 

  

  

   

   

   

   (3.4) 

Substituting (3.4) in (3.1), we obtain 

     
    



1 1

1 1 1

1 1 1 2 1

2 .

n n

n n n

n n n

n n n

x u

n nx u

u Tu

     

    

 

 

     

    
 

  (3.5) 

Also,  

 
 

 1 .

n n n n

n

u Tu u p p Tu

u p

    

  
    (3.6) 

Substituting (3.6) in (3.5), we have  

     
      

1 1

1 1 1

1 1 1 1 2 1 2

,?

n n

n n n n n

n n n

n

n n n

x u

x u

u p

h x u l u p

     

n       

 

     

        
 

     

(3.7) 

where  (using       1 1 1n n nh           1

0,n A n N     ) and  

    1 1 2 1 2l         

p

. 

Using  as  and Lemma 1.1, (3.7) 
yields 

nu  n 

0n nx u   as . n 

In addition 

n n n nx p x u u p      

and this implies that nx p  as . n 
Conversely, we prove that nx p  implies . nu p
Using (1.3), (1.9) and (1.10 ), we have 

 
 

 

1 1

1

1

2

1 1 2

n n

n n n n n n

n n n n n n

n n n

n n n n n

x u

y u Ty Tu

y u y u

y Ty

y u y Ty

 

 



  

 

    

    

 

        n

  (3.8) 

From (1.10), we have  

 

   

 
     

  

  
 

  

2

1

1 1

1 1 1

1 1

1 1

1

1 1

n n

n n n n n n

n n n n n n

n n n n n

n n n n n n n

n n n n n n n

n n n n n n

n n n n

n n n

n n n

n n n n

y u

Tx u Tz u

Tx x x u

Tz x x u

Tx p x p x

Tz p x p x u

x u x p z p

x u x p

x p

x p

x u x

 

 



  

  

  

 

 

  

   



    

     

   

        

     

       

     

  

 

     

u

.n p

 

(3.9) 
Also, 

 
    
      
    

1

1 1 1

1 1 1

1 1 1 ,

n n

n n

n

n n n n

n n n n n n

n n n

y Ty

y p Ty p

y p

x p z p

x p

x p



     

      

    



   

  

      

      

    

 

(3.10) 

Substituting (3.9) and (3.10) in (3.8) and rearranging 
the terms, we have 
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1 1

2

2

1 1

1 1 1 ( 1

2 1 1 1

1 1

1 2 1 ,

n n

n n n

n n n

n n n

n n n

n

x u

x u

nx p

x u

x p

 

     

     

 

  

 

   

     

    

     

    

  (3.11) 

Since 0,n A n N    
 1 1 , .n N      

, so 
0 1  n so nAl x p  

elds 
as

1) yi
 n  . 

usHence, ing Lemma 1.1, (3.1 0  as n nx u
 

In addition 
n  . 

n n n nu p x u x p      and this im- 
pl p as  Hence the r

 that 1)
g (1.3) and (1.5), we 

ha

ies that nu  esult. 
Next, w 2). 

 
e show

 n  .
   

Let nu p  as n   Usin .
ve 

 
 

  
  

 

1 1

1

1 2

1 1

1 1

1 2 ,

n n

n n n n n n

n n n n n n n n n

n n n n

n n n n

n n n n n n n

s u

Ts u Tt Tu

Ts u t u u Tu

Ts Tu

Tu u

s u u Tu

 

  

 

 

  

 

    

      

   

   

    

 

(3.12) 

Now, we have the following estimates: 

 1

n n n n

n

u Tu u p p Tu    

u p  
           (3.13) 

 
2

 2 1

n n n n n n

n n n

Ts Tu s u u Tu

s u u

 

  

    

    
 

p
 (3.14) 

It follows using (3.12), (3.13) and (3.14) that 

    
   

   
 

   
  

1 1

(1 1 1

2 1 1 1

1 1 1

2 1

1 1

 1 4 1

n n

n n n n n

n n n

n n n

n n

n n n n

n

s u

ns u

u p

u p

u p

s u

u p

    

   

  

 

   

 

 

     

    

    

  

   

   

  (3.15) 

Since  and as , hence us-  
in

 0,1 
a 1.1, (3.

nu p  
 

 n 
g Lemm 15) yields 0  n n  as n  . s u

In addition 

n n n ns p s u u p          (3.16) 

and this implies that ns p  
e that 

as n  . 
Conversely, we prov ns p  im plies nu p . 
Using (1.3), (1.5) and (1.9), e  we hav

 
  

1 1n ns u 

1

1

2

n n n n n n

n n n n n

n n n n n n

Ts u Tt Tu

Ts s s u

t u t Tt

 



 

    

    

   

  (3.17) 

Now, we have the following estimates: 

 1n n ns Ts s p                 (3.18) 

 
    
1

1 1 1

n n n

n n

t Tt t p

s p



  

   

    
  (3.19) 

 
 

 

1

1

1

n n n n n n n n

n n n n n n

n n n

n n n n

t u s u Ts u

s u Ts

s u

s u s p

 

 



 

     

    

 

    

u
 (3.20) 

It follows from (3.17), (3.18), (3.19) and (3.20) that 

  
     

     

1 1n ns u

1 1

1 1 2 1 1

1 1 1 1 3

n n n

n n n n n

n

n n n n

s u

s p

s u s p

 

      

   

   

      

 

 

         

(3.21) 

If 0,n A n N     , then  0 1 1na d   1 . 
Also, ns p  as n 

ce, usin mma 1.
. 

Hen g Le 1, (3.21) yields 0u sn n   
as

 additi  
 n  . 
In on

n n n nu p u s s p      

and this implies that as  Hence the 

ing in mind Soltuz’s results [15,16] as well as 
C

t K be a nonempty closed convex 
su

nu p  n  .
result. 

Keep
hugh and Kumar’s result [17], Theorem 3.1 leads to the 

following corollary: 
Corollary 3.2. Le
bset of a Banach space X and T: K K  a mapping 

satisfying (1.9). If the initial p the same, 
0,n

oint is 
A n N     , then the followings are equivalent: 

eration (1.1) converges to the fixed1) The Picard it  
po

n iteration (1.3) converges to p, 
p, 

int p of T, 
2) The Man
3) The Ishikawa iteration (1.4) converges to 
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4) The Noor iteration (1.6) converges to p, 
5) The Agarwal et al. iteration (1.5) converges to p, 

. 

4. Results on Fastness of CR Iterative 
ators 

In  

on is faster than 
Pi

tractive 
op

finition (1.1), we show that CR iterative 
sc

6) The SP iteration (1.7) converges to p, 
7) The CR iteration (1.10) converges to p

Scheme for Quasi-Contractive Oper

 [21] Berinde showed that Picard iteration is faster than
Mann iteration for quasi-contractive operators satisfying 
(1.9). In [22], Qing and Rhoades by taking example 
showed that Ishikawa iteration is faster than Mann ite- 
ration for a certain quasi-contractive operator. Ciric, Lee 
and Rafiq [23], by providing an example, showed that 
Noor iterative scheme can be faster than Mann and Ishi- 
kawa iterative schemes for some quasi-contractive ope- 
rator. Recently, Nawab Hussian et al. [24] provide an 
example of a quasi-contractive operator for which the 
iterative scheme (1.5) due to Agarwal et al. is faster than 
Mann and Ishikawa iterative schemes. 

Now, we show that the CR iterati
card, Agarwal et al., Noor and SP iterations for quasi- 

contractive operators satisfying (1.9) as follows: 
1) By providing an example 4.1 of a quasi-con
erator satisfying (1.9), we show that CR iterative 

scheme is faster than Agarwal et al., Noor and SP ite- 
rative schemes. 

2) By using de
heme is faster than Picard iteration. 
1) Example 4.1. Let T:    : 0,1T  0,1  be defined  

by  
2

x
T x  ,     0n n n  , 1, 2, ,15n   , 

4
, 1n n n n

n
      6 . It is clear that T is a quasi-  

contractive operator satisfying (1.9) with a unique fixed 
point 0. Also, it is easy to see that T, , andn n n    
satisfies all the conditions of Theorem 2.1  
CR iterative scheme is faster than Agarwal et al., Noor 
and SP iterative schemes. 

Proof. First of all we sh

. We show that

ow that CR iterative scheme is 
fa

rom [23], for Noor it-
er  (1.6), 

ster than Noor iterative scheme. 
Let 16n   and p0 = x0. Then, f
ation we have 

1 0
16

2 4 8
1

n

n
i

p p
ii i i




 
    

 
       (4.1) 

Also, for CR iteration (1.10), we have 

1 0
16

1 1 4 8

2

n

0
161

1
0

16

3

2

3
16

2

1 1 4 8

2

2 4 8
1

2 32

1

2 8 4 16

n

in

n
n

i

n

i

x
x ii i i
p

p
ii i i

i i

i i i









    
 
 
   

 

  
                 







 

It is easy to see that 

3

2

3
16

2

16

2 32

0 lim 1

2 8 4 16

1 15
lim 1 lim 0

n

n
i

n

n n
i

i i

i i i

i n

 

 

  
                 

     
 





. 

Hence, we have 1

1

lim 0n

n
n

x

p





 . 

Therefore, by de R ifinition 1.2, C terative scheme con- 
verges faster than Noor iterative scheme to the fixed 
point 0 of T. 

Secondly, we show that CR iterative scheme is faster 
than SP iterative scheme: 

For SP iteration (1.7) we have 

1 0
16

6 12
1 .

n 8
n

i

x x
ii i i





 

 
 

So, 


  

 
 

161

1

16

16

3

2

3
16 2

1 1 4 8
CR    2

SP 6 12 8
1

1 5 16 16

2
1

6 12 8
1

10 32 32

1 .

2 24 12 16

n

in

n
n

i

n

i

n

i

x ii i i
x

ii i i

ii i i

ii i i

i i i

i i i











 
   

 
    
 

  
    

   
    
 

  
         

   
  









 

n
i

x x
ii i i




    
 

       (4.2) 

So, 

 

It is easy to see that 
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3

2

3
16

2

16

10 32 32

0 lim 1

2 24 12 16

1 1015
lim 1 lim 0.

1000

n

n
i

n

n n
i

i i i

i i i

i n

 

 

  
                  

      





 

Hence, we have 
 
 

1

1

  CR  
lim 0

SP
n

n
n

x

x





 . Therefore, by  

de rative scheme convefinition 1.2, CR ite rges faster than 
SP iterative scheme to the fixed point 0 of T. 

Next, we show that CR iterative scheme is faster than 
Agarwal et al. iterative scheme. 

For Agarwal et al. iteration (1.5), we have 
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Hence, we have 1
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lim 0n
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 . Therefore, again by  

de erative schemefinition 1.2, CR it  converges faster than 
Agarwal et al. iterative scheme to the fixed point 0 of T. 

2) Here we show that CR iteration is faster than Picard 
iteration. 

Using Picard iteration (1.1) and condition (1.9) we 
have 

1
1 0

n
nx p x 
     p      (4.3) 

Also, from (2.3) we have 
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where  

    
  

1 1 1 1

1 1

n n

n n n

q n n    

    

     

  
. 



(if N ). 
 CR and Picard iterations, we must 

iously 

0,na n  
n order to compI are

compare the coefficients of the inequalities (4.4) and 
(4.3). 

Obv
1 1n n 

1
0

n

q
    as n   and hence us-  

in (1.1), we can at CR i

 the help of computer programs in 

g definition say th teration is faster 
than Picard iteration. 

Keeping in mind results of example 4.1 as well as 
Ciric et al.’s results [23], we conclude that CR iterative 
scheme is faster than other iterative schemes for a certain 
class of quasi-contractive operators. 

5. Applications 

In this section, with
C++, we compare the rate of convergence of Picard, 
Mann, Ishikawa, Noor, Agarwal et al., SP and CR ite- 
ration procedures, through examples. The outcome is 
listed in the form of Tables 1-4, by taking initial appro-  

ximation x0 = 0.8 and 

 
1

2

1
n n na b g   , for all  

1 n
iterative schemes. 

g Function 5.1. Example of Decreasin

Let f: [0,1]→[0,1] be defined by    1
m

f x x  , 
7,  8,m   . Then f is a  decreasing fun  

m , e comparison of convergence of above men- 
tioned iterative schemes to the exact fixed point p = 
0.188348 is listed in the Table 1. 

5.2. Example of Increasing Function

ction. By taking
= 7  th

 

Let f : [0,8]→[0,8] be defined as  
2 9

10

x
f x


 . Then f  

mparison of 

 x2 − 1 = 0 means  

is an increasing function. The co conver- 
gence of above mentioned iterative schemes to the exact 
fixed point p = 1 is listed in the Table 2. 

5.3. Example of Cubic Equation 

To find solution of cubic equation x3 +

to find fixed point of the function  1 231 x  as x3 + x2 
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Table 2. Increasing function. 

CR iteration SP iteration Noor iteration Picard iteration Mann iteration Ishikawa iteration 
Agarwal et al. 

iteration 

n fxn xn+1 fxn xn+1 fxn xn+1 n fxn xn+1 fxn xn+1 n xn+1 fxn 

0 0.964 0.998591 0.964 0.998591 0.964 0.998591 0.9 0.9 0.964 0.964 0.964 0.99293 0.964 0.99293

- - - - - - - - - - - - - - - 

4 1 1 0.999999 0.999999 0.999974 0.999922 0.99985 0.99985 0.994714 0.982828 0.999968 0.999937 0.999996 0.999997

5 1 1 1 1 0.999984 0.99995 0.99997 0.99997 0.996595 0.988449 0.999987 0.999973 0.999999 0.999999

6 1 1 1 1 0.99999 0.999966 0.999994 0.999994 0.997703 0.991947 0.999968 0.999937 1 1 

7 1 1 1 1 0.999993 0.999976 0.999999 0.999999 0.998396 0.994227 0.999995 0.999988 1 1 

8 1 1 1 1 0.999995 0.999983 1 1 0.998849 0.995767 0.999998 0.999994 1 1 

- - - - - - - - - - - - - - - 

23 1 1 1 1 1 1 1 1 0.999964 0.99985 0.999999 0.999997 1 1 

24 1 1 1 1 1 1 1 1 0.99997 0.999874 0.999999 0.999998 1 1 

- - - - - - - - - - - - - - - 

33 1 1 1 1 1 1 1 1 0.999994 0.999974 1 1 1 1 

- - - - - - - - - - - - - - - 

68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

69 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

− 1 = 0 can be rewritten as  1 231 x x  . The com-  

parison of convergence of above mentioned iterative 
schemes to the exact fixed point p = 0.754878 of 
 1 231 x  is listed in the Table 3. 

5.4. Example of Goat Problem 

A farmer has a fenced circular pasture of radius a and 
wants to tie a goat to the fence with a rope of length b so 
as to allow the goat to graze half the pasture. How long 
should the rope be to accomplish this? 

The length of the rope “b” must be longer than “a” and 
shorter than 2a , i.e. 2a b a  . 

If we let 
b

x
a

 , we get the simplified equation 

 2 1 2 24 2 sin 4 π π
2

x
x x x      

 
x   and  we  are  

looking for the solution x, with 1 2x 
produce a sequence that 

. If we rear-
range the equation, we can will 
converge to the solution: 

 2 2 2π π 4 4 2 sin
2

1 x
x x x x         

 
 

or 
 2 2 1π 4 4 2 sin

2
π

x
x x x

x

       
  .

1 1x  , 

 

Let 

 2 2 1

1

π 4 4 2 sin
2

π

n
n n n

n

x
x x x

x





      
   

 
 2 2 1π 4 4 2 sin

2
.

π

n
n n n

x
x x x

f x

       
   and 

The comparison of convergence of above mentioned 
iterative schemes to the exact fixed point 1.15863 of the 
function f(x) is listed in the Table 4. So the rope length 
“b” should be approximately 1.15863 a.

 For detailed study, these programs are again executed 
after changing the parameters and the readings are re-
corded (discussed in the next section). 

6. Observations 

6.1. Decreasing Function (1 − x)m 

1). For m = 8 and xo = 0.8, the Picard scheme never 
converges (oscillates between 0 and 1), the Mann scheme 
converges in 9 iterations, the Ishikawa scheme converges 
in 35 iterations, the Noor scheme converges in 10 itera- 
tions, Agarwal et al. iteration does not converges, the CR 
scheme converges in 9 iterations and the SP scheme 
converges in 7 iterations. 

2). For m = 30 and xo = 0.8, the Picard scheme never  
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n n  

Table 3. Cubic equation. 

CR iteration SP iteratio Noor iteratio Picard iteration Mann iteration Ishikawa iteration 
Agarwal et al. 

iteration 

n fxn xn+1 fxn x 1 fxn x 1 fxn x 1   n+ n+ n+ fxn xn+1 fxn xn+1 fxn xn+1 

0 0.69857 0.68185 0.6985 5 5 857 57 7   7 0.68184  0.698 7 0.681845 0.69 0.698 0.6985 0.69857 0.69857 0.811848 0.69857 0.811848

- - - - - - - - -  

0.754709 0 48 39

0.754872 0 4878 0 4878 0 487 0 55

0.754878 0 4878 0 4878 0 487 0.755475 0.755263

- - - 

0.754878 0 4878 0 4878 0 487 0. 3724 0. 724 0.754592 0.75466

0.754878 0 4878 0 4878 0. 4878 0. 4877 0. 4878 0. 9217 0. 9217 0. 78 0.754878 0.754097 0.755268 0.755124 0.755071

- - - - - -  

0.754878 0 4878 0 4878 0 4878 0. 4878 0. 4878 0. 2241 0. 241 0.754691 0.754722

13 0.754878 0. 4878 0 4878 0. 4878 0. 4878 0. 4878 0. 2259 0. 2259 0. 78 0.754878 0.754789 0.754925 0.755054 0.755027

- - - - - - - 

0.754878 0. 78 0. 78 0. 78 0. 78 0. 78 1 1 0.754878 0.754878 0.754877 0.754878 0.759426 0.759083

0.754878 0 4878 0 4878 0 4878 488 0. 4878 0. 0113 0. 113 0. 878 0.754878 0.754878 0.754878 0.750074 0.750431

0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 1 1 0.754878 0.754878 0.754878 0.754878 0.759867 0.759516

- - - - - - 

3 .75 83 0.754992 0.754878 0.754385 0.754963 0.8264 0.826439 0.76192 0.755248 0.723666 0.769363 0.756614 0.75569

4 .75 .75 .75 8 0.754782 0.7549 2 0.6599 0.659955 0.754458 0.754895 0.737969 0.762659 0.753957 0.75435

5 .75 .75 .75 8 0.75485 0.754886 0.844134 0.844134 0.754858 0.75488 0.745922 0.759043 

- - - - - - - - - - - - 

8 .75 .75 .75 8 0.754876 0.754878 59 593 0.754878 0.754878 0.753476 0.755566 

9 .75 .75 75 75 75 88 88 7548

- - - - -  - - - 

12 .75 .75 .75 75 75 48 482 0.754878 0.754878 0.754728 0.754956 

75 .75 75 75 75 94 94 7548

- - - -  - - - 

27 7548 7548 7548 7548 7548

28 .75 .75 .75 0.75 75 00 000 754

29 

 
converges (oscillates between 0 and 1), the Mann scheme 
converges in 11 iterations, the Ishikawa scheme con- 
ver  37 iterations, the Noor scheme converges in 12 

, Agarwal et al. scheme never c
ges in

iterations onverges, the 
s and the SP scheme 

tions, Noor sche- 
m

erge R scheme converges in 10 itera- 
tions a  SP sch

4). Taking

CR scheme converges in 13 iteration
converges in 9 iterations. 

3). Taking initial guess xo = 0.2 (nearer to the fixed 
point), Picard scheme never converges (oscillates be- 
tween 0 and 1), Mann scheme converges in 10 iterations, 
Ishikawa scheme converges in 40 itera

e converges in 10 iterations, Agarwal et al. scheme 
does not conv , the C

nd the eme converges in 8 iterations. 

 

 
1

4

1

1
n n n

n
    


 and xo = 0.8, we  

obtain that the Mann scheme converges in 23 iterations, 
 56 iterat

, the CR scheme converges in 
11 iterations and the SP scheme converges in 
tions. 

6.2. Increasing Function 

the Ishikawa scheme converges in ion, the Noor 
scheme converges in 21 iterations, Agarwal et al. scheme 
converges in 12 iterations

15 itera- 

2

). For xo = 0.8, the Picard scheme converges to a 
point in 8 iterations, the Mann scheme verges in 

69 iterations, the Ishikawa scheme converges in 34 itera- 
tions, the Noor scheme converges in 24 iterations, Agar- 
wal et al. scheme converges in 7 iterations, the SP 
scheme converges in 6 iterations and the CR scheme con- 
verges in 5 iterations. 

2). Taking initial guess xo = 0.6 (away from the fixed 
), the Picard scheme converges to a fixed point in 8 

ite

9

10

x 
 

1
fixed  con

point
rations, the Mann scheme converges in 75 iterations, 

the Ishikawa scheme converges in 38 iterations, the Noor 
scheme converges in 27 iterations, Agarwal et al. scheme 
converges in 6 iterations, the SP scheme converges in 7 
iterations and the CR scheme converges in 5 iterations. 

3). Taking, 

 
1

4

1

1
n n n

n
    


, xo = 0.8, we ob- 

tain that the Mann sc
Ishikawa scheme con

heme converges in 23 iterations, the 
verges in 12 iterations, Noor sche- 

 al. scheme con- 
ve

verges in 9 iterations, the Ishi- 
ka

me converges in 9 iterations, Agarwal et
rges in 6 iterations, the SP scheme converges in 5 it- 

erations and the CR scheme converges in 4 iterations. 

6.3. Cubic Equation x3 + x2 –1 = 0 

1). For xo = 0.8, the Picard scheme never converges to 
the solution of cubic equation (oscillates between 0 and 
1), the Mann scheme con

wa scheme converges in 29 iterations, the Noor sche-  
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Table 4. Goat problem. 

CR iteration SP iteration Noor iteration Picard iteration Mann iteration Ishikawa iteration 
Agarwal et al. 

iteration 

n fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 fxn xn+1 

0 1.103589 1.150601 1.103589 1.150601 1.103589 1.150601 1.103589 1.103589 1.103589 1.103589 1.103589 1.137884 1.103589 1.137884

1 1.155492 1.15 84 1.103589 1.150601 1.155492 1.155275 1.137884 1.137884 1.137884 1.137884 1.150601 1.149315 1.150601 1.15304

1.15863 1.15863 1.158626 1.158625 1.158512 1.158399 1.158601 1.158601 1.156852 1.155011 1.158273 1.157929 1.158627 1.158627

1.15863 1.15863 1.15863 1.15863 1.158574 1.158515 1.158629 1.158629 1.157693 1.156661 1.158458 1.158278 1.15863 1.15863

1.15863 1.15863 1.15863 1.15863 1.1586 1.158567 1.15863 1.15863 1.158092 1.157474 1.158538 1.158436 1.15863 1.15863

1.15863 1. 3

1.15863 1.15863

15863 1.15863 1.15863 1.15863 1.158616 1.158599 1.15863 1.15863 1.158349 1.158013 1.158585 1.158533 1.15863 1.15863

3

3

- 

63

63

3

73

- - - - - - - - - - - - - - - 

6 1.158629 1.158629 1.15861 1.158608 1.158414 1.158229 1.15844 1.15844 1.155693 1.152847 1.157988 1.157426 1.158603 1.158608

7 1.15863 1.15863 1.158622 1.15862 1.158472 1.158328 1.158556 1.158556 1.156366 1.154091 1.158157 1.15772 1.15862 1.158621

8 

9 1.15863 1.15863 1.158628 1.158628 1.158539 1.158449 1.158619 1.158619 1.157211 1.155707 1.158355 1.15808 1.158629 1.158629

10 1.15863 1.15863 1.15863 1.15863 1.158559 1.158487 1.158626 1.158626 1.157484 1.156243 1.158414 1.158193 1.15863 1.15863

11 

12 1.15863 1.15863 1.15863 1.15863 1.158585 1.158537 1.15863 1.15863 1.157857 1.156993 1.158492 1.158344 1.15863 1.15863

13 1.15863 1.15863 1.15863 1.15863 1.158594 1.158554 1.15863 1.15863 1.157987 1.157259 1.158518 1.158395 1.15863 1.15863

14 

15 1.15863 1.15863 1.15863 1.15863 1.158606 1.158578 1586 1.158176 1.157649 1.158554 1.158468 1.15863 1.15863

16 1.15863 1.15863 1.15863 1.15863 1.15861 1.158586 1.15863 1.15863 1.158245 1.157794 1.158567 1.158494 1.15863 1.15863

17 1.15863 1.15863 1.15863 1.15863 1.158613 1.158593 1.158302 1.157914 1.158577 1.158516 1.15863 1.15863

18 1.

- - - - - - - - 

47 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.1586

48 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.1586

- - - - - - - - 

6

- - - - - - - 

1.15863 1.15862 1.158607 1.158629 1.158627 1.15863 1.15863

1.15863 1.158621 1.158609 1.158629 1.158628 1.15863 1.15863

- -- - - - - 

1.15863 1.158627 1.158623 1.15863 1.15863 1.15863 1.15863

- - - - - - - 

1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863

1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863

0 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.158

- - - - - - - - 

89 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.158

90 1.15863 1.15863 1.15863 1.15863 1.15863 1.15863 1.1586

 
me converges in 13 iterations, Agarwal et al. scheme 
ne  CR scheme co
tions and the SP scheme converges in 5 iterations. 

ges in 10 iterations and the SP scheme converges 

ver converges, the nverges in 6 itera- 

2). Taking initial guess xo = 0.1 (away from the solu-
tion of cubic equation), Picard scheme never converges 
(oscillates between 0 and 1), the Mann scheme converges 
in 10 iterations, the Ishikawa scheme converges in 30 
iterations, Noor scheme converges in 21 iterations, 
Agarwal et al. scheme never converges, the CR scheme 
conver
in 5 iterations. 

3.Taking 

 
1

41
n n n

n
    


 and xo = 0.8, we  

1

ob ann scheme converg
the Ishikawa scheme converges in 27 iterations, the Noor 

e converges to a 
heme converges 

in

tain that the M es in 14 iterations, 

scheme converges in 9 iterations, Agarwal et al. scheme 
converges in 10 iterations, the CR scheme converges in 8 
iterations and the SP scheme converges in 8 iterations. 

6.4. Goat Problem 

1). For xo = 0.8, the Picard schem
fixed point in 13 iterations, the Mann sc

 90 iterations, the Ishikawa scheme converges in 61 
iterations, the Noor scheme converges in 48 iterations, 
Agarwal et al. scheme converges in 11 iterations, the SP 
scheme converges in 11 iterations and the CR scheme  
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converges in 8 iterations. 
2). Taking initial guess x  = 0.6 (away from the fixed 

poin hem es to  
iterations, the nn sc e converges i  104 iterations
the Ishi  s e con erge 71 iterations, t Noor 
s
con
12 iterations and the CR scheme converges in 9 itera- 
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o

e convergt), the Picard sc  a fixed point in 14 
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kawa s in he 

cheme converges in 57 iterations, Agarwal et al. scheme 
verges in 12 iterations, the SP scheme converges in 
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me converges in 14 iterations, Agarwal et al. scheme 
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7. Conclusions
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btain that Mann scheme converges in 29 iterations, the 
kawa scheme converges in 18 iterations, Noor sche- 

onverges in 10 iterations ,the SP scheme converges in 7 
terations and the CR scheme converges in 7 iterations. 
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