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ABSTRACT

In this paper, we suggest a new type of three step iterative scheme called the CR iterative scheme and study the strong
convergence of this iterative scheme for a certain class of quasi-contractive operators in Banach spaces. We show that
for the aforementioned class of operators, the CR iterative scheme is equivalent to and faster than Picard, Mann,
Ishikawa, Agarwal et al., Noor and SP iterative schemes. Moreover, we also present various numerical examples using
computer programming in C++ for the CR iterative scheme to compare it with the other above mentioned iterative
schemes. Our results show that as far as the rate of convergence is concerned 1) for increasing functions the CR itera-
tive scheme is best, while for decreasing functions the SP iterative scheme is best; 2) CR iterative scheme is best for a

certain class of quasi-contractive operators.

Keywords: Fixed Point; Various Iterative Schemes; Rate of Convergence

1. Introduction

There is a close relationship between the problem of
solving a nonlinear equation and that of approximating
fixed points of a corresponding contractive type operator.
Consequently, there is theoretical and practical interest in
approximating fixed points of various contractive type
operators. Let (X,d) be a complete metric space and
T:X — X aself map for X. Suppose that
F (T) = { peX, Tp= p} is the set of fixed points of T.
There are several iterative processes in the literature for
which the fixed points of operators have been approxi-
mated over the years by various authors.

In a complete metric space, the Picard iterative scheme
{X, }::0 , defined by

Xpe = 1X,, N=0,1,--- (1.1
has been employed to approximate the fixed points of
mappings satisfying the inequality

d(Tx,Ty)<ad(x,y) (1.2)

forall x,ye X and « 6[0,1).

Condition (1.2) is called the Banach’s contraction con-
dition. Any operator satisfying (1.2) is called a strict con-
traction.

In 1953, W.R. Mann defined the Mann iterative sche-
me [1] as

Uy =(1-a, U, + o, Tu,, (1.3)

“Corresponding author.
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where {an} is a sequence of positive numbers in [0,1].
In 1974, S. Ishikawa defined the Ishikawa iterative
scheme [2] as

S =(1—a,)s, +a,Tt,
tn :(l_ﬂn)sn +ﬁnTSn3 (14)

where {,} and {B,} are sequences of positive num-

bers in [0,1].
In 2007, Agarwal et al. defined the Agarwal et al. ite-
rative scheme [3] as

Son =1, ) Ts, +,Tt,

tn :(l_ﬂn)sn+ﬂnTsn’ (15)

where {a,} and {8} are sequences of positive num-

bers in [0,1].
In 2000, M. A. Noor defined the Noor iterative scheme
[4] as

Prsi :(l_an) Py +aann
a, :(l_ﬂn) P, +ﬂnTrn
rn:(l_yn)pn'i_}/n-rpn’ (16)

where {a,}, {8,} and {y,} are sequences of posi-

tive numbers in [0,1].
Recently, Phuengrattana and Suantai defined the SP
iteration scheme [5] as
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Yo = (l_ﬂn ) Z, +ﬁnTZn

z,=(1=7,) %, + 7T, (1.7)

where {a,}, {8,} and {y,} are sequences of posi-

tive numbers in [0,1].

Remarks:

1). If y, =0, then the Noor iterative scheme (1.6) re-
duces to the Ishikawa iterative scheme (1.4).

2).If B, =y, =0, then the Noor iterative scheme (1.6)
reduces to the Mann iterative scheme (1.3).

3). In addition, when S, =y, =0, then the SP iterative
scheme (1.7) reduces to the Mann iterative scheme (1.3).

In 1972, Zamfirescu [6] obtained the following inter-
esting fixed point theorem.

Theorem 1.1. Let (X, d) be a complete metric space
and T:X — X a mapping for which there eXists real

numbers a, b and c satisfying ae(O,l),b,Ce(O,%j

such that for each pair X,y e X , at least one of the fol-
lowing conditions hold

D d(Tx,Ty)<ad(x,y)
2)d(Tx,Ty) < b[d (x,Tx)+d (y,Ty)]

3)d(Tx,Ty)<c[d (x.Ty)+d(y.Tx)]. (1.8)

Then T has a fixed point p and the Picard iteration
{X,}_, defined by

Xoo = TX,, N=0,1,---

converges to p for any arbitrary but fixed x, € X .

The operators satisfying the condition (1.8) are called
Zamfirescu operators.

Berinde [7] introduced a new class of operators on an
arbitrary Banach space satisfying

d(Tx,Ty) <28d (X, Tx)+5d (X, y),

VX,ye X andsome O e [0,1).

He proved that this class is wider than the class of
Zamfirescu operators and used the Ishikawa iteration
process to approXimate fixed points of this class of ope-
rators in an arbitrary Banach space given in the form of
following:

Theorem 1.2 [7]. Let K be a nonempty closed convex
subset of an arbitrary Banach space X and T:K — K
be a mapping satisfying (1.9). Let {s,} be defined
through the Ishikawa iteration (1.4) and s, € K where
{a,}, {B,} are sequences of positive numbers in [0,1]

(1.9)

with {an} satisfying Zan =o. Then {S,} converges
n=0

strongly to the fixed point of T.

Copyright © 2012 SciRes.
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Several authors [5,8-17] have studied the equivalence
between various iterative schemes. S. M. Solutz [15,16]
proved that for quasi-contractive operators the itérative
processes Picard, Mann, Ishikawa and Noor are
équivalent. Recently, Renu Chugh and Vivek Kumar [17]
proved that for quasi-contractive operators satisfying (1.9)
Picard, Mann, Ishikawa, Noor and SP iterative schemes
are equivalent.

Fixed point iterative procedures are designed to be ap-
plied in solving equations arising in physical formulation
but there is no systematic study of numerical aspects of
these iterative procedures. In computational mathematics,
it is of vital interest to know which of the given iterative
procedures converge faster to a desired solution, com-
monly known as rate of convergence. B. E. Rhoades [18]
compared the Mann and Ishikawa iterative procedures
concerning their rate of convergence. He illustrated the
difference in the rate of convergence for increasing and
decreasing functions. Indeed he used computer programs,
perhaps for the first time to compare the Mann and Ishi-
kawa iterations through examples. S. L. Singh [19] ex-
tended the work of Rhoades. Very recently, Phuengrat-
tana and Suantai [5] proved that SP iterative scheme is
equivalent to and faster than Mann, Ishikawa and Noor
iterative schemes for increasing functions.

Now, we introduce the following CR iterative process:
Let X be a Banach space, T: X — X a self map of X

and X, € X . Define the sequence {X,}” by

Xnn = (1_an)yn +anTyn
Yo =(1=,)Tx, + BTz,
Z, :(1_7n)xn +7nTXn’

(1.10)

where {e,}, {B,} and {y,} are sequences of posi-
tive numbers in [0,1] with {c,} satisfying iam =,
n=0

We shall need the following lemma and definitions.
Lemma 1 [20]. If & is areal number such that

0<o<1 and {en}::o is a sequence of positive num-

bers such that lim €,=0, then for any sequence of posi-

n—o

tive numbers {en}::o satisfying

Upyi S5un+ €y, N =0,1,2,--,

we have limu, =0.
Definition 1.1. Suppose that {a,} and {b,} are two
real convergent sequences with limits @ and b respec-

tively. Then {a,} is said to converge faster than {b,} if
a,-a
b,-b

lim =0.

n—ow
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Definition 1.2 [21]. Suppose that {u,} and {v,} are
two fixed point iteration procedures both converging to
the same fixed point p with the error estimates

Ju, - p|<a,,n=0,1,-
IV, = p| <b,,n=0,1,---

where {a,} and {b,} are two real convergent sequences
converging to 0. If {a,} converges faster than {b,}, then
we say {U,} converges faster than v, to p.

The purpose of this paper is to show the convergence
of the CR iterative scheme and to prove equivalence be-
tween Picard, Mann, Ishikawa, Noor, Agarwal et al., SP
and CR iterative schemes for quasi-contractive operators
satisfying (1.9). We provide an example for which the
CR iterative scheme is faster than the other above men-
tioned iterative schemes for the aforementioned class of
operators. Also, by using computer programs in C++, we
compare the above mentioned iterative schemes through
examples of increasing and decreasing functions.

2. Result on Strong Convergence

Theorem 2.1. Let K be a nonempty closed conveXx subset
of an arbitrary Banach space X and T:K — K a map-

ping satisfying (1.9). Let {Xn}::() be defined through the

CR iteration (1.10) and X, € X, where {a,}, Eﬁn%

are sequences of positive numbers in [0,1] with {e«,

Satisfying Zan =oo. Then {X,}  converges strongly
n=0

to the fixed point of T .

Proof. Theorem 1.1 shows that T has a unique fixed
point in K, say p.

From (1.10), we have

0. = ol
<(1-a,)[y, - pl
+, [Ty, = p o
<(1-a,)(1-4,)[Tx, - p
+(1-a,) 4,1z, - |
+a, [Ty, - |
Using (1.9), (2.1) yields
[0 = o
<5(1-a,)(1-5,)[% - o 22

+6(1=a,) 2, - p
+6, [y, = p]
Using (1.9) and (1.10), (2.2) yields

Copyright © 2012 SciRes.

[0 =l
Sé‘(l_an)(l_ﬂn)”)(n - p”
+5(1_an )ﬂn (1_7n )"Xn - p”
+5(1=a,) B,7, [T%, = 0
+6at, (1- 8, )%, — 0|
+6at, B, [Tz, — p||
<5(1-a,)(1-5,) % - |
+5(1_an)ﬂn (1_7/n)||xn - p”
+5° (l_an)ﬂn7n "Xn - p"
+8%a, (1= 5,)|[% = bl
+6%a, B, (1=7,) %~ pl
+5%a, B,7, [%. — 1|
=5{l-a,(1-6)-(1-8)(1-a,) B,7,
=5(1=8) a7 % = p|

n

[ = pl< 8" T1[1-a (1-5) % -
k=0 ‘ 2.4)
-(1-5) i a
< -l

2.3)

<o'e

Since 0 < §< 1, o € [0,1] and D a, =, so

n=0

(1-2)
o'e

(24) that lim|x,, —p|=0. Therefore {x,} = con-

0

ag

—0 as n— o. Hence, it follows from

Tt

verges strongly to p.

3. Equivalence between Picard, Mann,
Ishikawa, Noor, Agarwal et al., SP and CR
Iterative Schemes

Theorem 3.1. Let K be a nonempty closed convex subset
of a Banach space X and T:K —> K a mapping
satisfying (1.9). If the initial point is the same,

a, 2 A>0,Vne N, then the followings are equivalent:

1) The Mann iteration (1.3) converges to p.

2) The Agarwal et al. iteration (1.5) converges to p.

3) The CR iteration (1.10) converges to p.

Proof. First we prove that 1) < 3). Let the Mann it-
eration (1.3) converge to p. We shall show that the CR
iteration (1.10) also converges to p.

Using (1.3) and (1.10), we have

"X un+1

n+l

S(l—an)"yn _un"+an ”Tyn _Tun" (3.1
< (l_an)"yn _un"+an5"yn _un"+2a”5”u" _Tu"" |

< (l—an (1—5))||yn —U ||+ 2,8 |u, = Tu,|-
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From (1.10), we have

vo =

< (1= BT =g |+ B [Tz, —u,|

< (1= )% =Ty [+ (1= 8,)[Tu, =, |
+ o {72 =Tu, |+ [Tu, - u, [}

<S(1-8,)|% —u,|+25(1-B,)[Tu, —u,|  (3.2)
(1= [T, —uy |+ 5B, 2, —u,|
+2388, [Tu, —u, ||+ B, |[Tu, —u, |

<S(1=8,) % =y |+ (26 +1)u, = Tu, |
+ 3B, ||z, - u,

Again, from (1.10), we have
20—
< (1= 70l =l 74 [T, =g
< (1=70 )0 =l 70 %, =Ty | [Tu, -, [}
<(1=7,(1=3))[%, —uy | + (25 +1) 7, [Tu, —u, |
Substituting (3.3) in (3.2), we have
o =uall <& (1= 5,) %, —un|
+0B, (1=7, (1-5)) %, —u, | (3.4)
+(B, 7y +1) (28 +1)[[Tx, —u, |-

(3.3)

Substituting (3.4) in (3.1), we obtain

||Xn+l —Upy "
< (l_an (1_5))(5_§ﬂn7n (1_5))")(" —Un"
(3.5)
+[(1=at, (1-8)) (3B +1)(25+1)
+ 20,5 ], = Tu, |-
Also,
~Tu, | <|u, - -7
=Tl <lo-plelp-Tl

<(1+0)|Ju, = p]-
Substituting (3.6) in (3.5), we have
X = U
<(1-a, (1-8))(6=8,7, (1-0)) %, —u,|
+(1+ 5)[(1—(1” (1-6))(8,7, +1)(25+1)+2an5]
lu, =l
<hlx, ~u,|+1]u, - p].

3.7
where h=(1-q,(1-5))(6-3B,7,(1-5)) <1 (using
a,>2A>0, Vne N)and

I =(1+5)[(1+5)(25+1)+25].

Copyright © 2012 SciRes.

Using u,—>p as n—o and Lemma 1.1, (3.7)
yields

||Xn —un||—>0 as N—>ow.
In addition
s = Pl %, =t [+, =

and this implies that X, > p as n—>o.
Conversely, we prove that X, = p implies u, = p.
Using (1.3), (1.9) and (1.10 ), we have

| Xne —Unp "
< (1= )||Yo =Ua|+ @, [Ty, ~Tuy|

<(T=ay)|[Yn = Uy ||+ S, ||V =y (3.8)
+26a, ||yrl —Tyn||

<[1-a, (1=6) Jlya —ua|+20a, |y, =Ty
From (1.10), we have

¥ =
<(1=4,) [T —un |+ 4, T2, —u|
< (1= =%, [ +(1=8,) [, v
ATz, =]+ -}
< (1= = P+ (1= ,)l%, = pll+ (1= 5, ) — |
R LA B2 A R L
<[x, ~u,[+(5 (1= £,) + 1), - pl+ 35, |z, - vl
<[x =t |+(6(1=£,)+1)lx, - ol
+38, (1= = ol
+6*foralx

<%, = U, |+ (1+ 5= B,7, (1-3))|[%, — p| -

(3.9)
Also,

1Y =Y

<[y, = pll+[Ty, - p

= (1+5)”yn - p"

<5(1+8)(1-5,)[% - p|+8(1+5) 5, |z, - p|

<S(1+N(1=5,)+ By (1=70) +3B.7a [, — P

=5(1+8){1=B,7, (1=6)} %~ p|

(3.10)

Substituting (3.9) and (3.10) in (3.8) and rearranging
the terms, we have
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et =

<(1-a,(1-8)), ~u,|

+{(1-a, (1-6))(1+5 - 9B,7,((1-5))
+20,6° (148) (1= 8,7, (1-8))} %, — |
<[1-a,(1-5) %, —u,|

+(1+6+25 (1+6) )%, - p|.

3.11)

Since o, 2A>0, Vne N, so
0<l-g,(1-5)<1,vneN. Also X, >p as N—>x.
Hence, using Lemma 1.1, (3.11) yields ||Xn _Un" —0 as
n—oo.

In addition ||un - p|| < ||Xn ‘Un""‘"Xn - p|| and this im-
plies that u, - p as n— oo . Hence the result.

Next, we show that 1) < 2).

Let u, > p as n—oo. Using (1.3) and (1.5), we
have

[$net = U
<(1-a,)|Ts, —u,|+a, [Tt, = Tu, |
<(1-a,)|Ts, —u, ||+ oa, t, —u, ||+ 26e, |Ju, —Tu, |
<(1-a,(1-58,))|Ts, ~Tu, |
+(1-a, (1-8,)) Ty, -u, |
+0a, (1= B, )|, —u, ||+ 26e, u, —Tu,|.

(3.12)
Now, we have the following estimates:
o, T <, -+ -Tu,| o)
< (1+ é‘)"un N p"
ITs, = Tu, | < &s, —u, |+ 28 u, = Tu,| .14
<5 |s, —u, || +25 (1+5)||u, - p|
It follows using (3.12), (3.13) and (3.14) that
||sn+1 —U,
<o{(-a,(1-86,)+ a, (1= 5,)}[}s, -,
+25(1-a, (1-3B,))(1+5)|u, - p|
+(1-a, (1-3B,))(1+6)|u, - p| (3.15)

+26a, (1+6)||u, - p|

<5{(1-a,p,(1-0)} s ~u|

+(1+468)(1+6)||u, - p|

Since §€[0,1) and u,— p as n—oo, hence us-
ing Lemma 1.1, (3.15) yields ||Sn—un||—>0 as N—oo.

In addition

Copyright © 2012 SciRes.

s, = Pl<lss ol +us =0 3:16)

and this implies that S, > p as Nn—>w.
Conversely, we prove that s, — p implies u,— p.
Using (1.3), (1.5) and (1.9), we have

||Sn+1 _un+1||
<(1-a,)|Ts, =, |+, [Tt, = Tu, | 517
< (1=, ){ITs, =5, [+, ~ul[}
+oat, [t, —u, ||+ 25, |ft, — Tt |
Now, we have the following estimates:
s, = Ts, | < (1+6)]s, - p| (3.18)
t —Tt 1+0)|t, —
=T )< (40, ~pl 10
(1+5)(1 £ (1=9)) s, = pl
m—un s, M+AW%—MI
+ﬂn IISn un||

s, ]|+ 5, (1+8)[ls, - |
It follows from (3.17), (3.18), (3.19) and (3.20) that

||Sn+1 —U, ”

<(1-a, (1-0))|s, —u,|
+(1+§){1—an +26a, (l—ﬂn (1_5))+5‘7‘nﬂn}

s =l

<(1-a, (1=3))|ls, —uy ||+ (1+ ) (1+35)]s, - p|

(3.21)

If a,2A>0,vneN , then 0<l-a (1-d)<I
Also, s,—>p as n—oo.

Hence, using Lemma 1.1, (3.21) yields ||un
as N— o,

In addition

o = Pl <[us =S, +Is, ~ ol

and this implies that u, - p as n—oo. Hence the
result.

Keeping in mind Soltuz’s results [15,16] as well as
Chugh and Kumar’s result [17], Theorem 3.1 leads to the
following corollary:

Corollary 3.2. Let K be a nonempty closed convex
subset of a Banach space X and T: K — K a mapping
satisfying (1.9). If the initial point is the same,
o, 2 A>0,vne N, then the followings are equivalent:

1) The Picard iteration (1.1) converges to the fixed
pointp of T,

2) The Mann iteration (1.3) converges to p,

3) The Ishikawa iteration (1.4) converges to p,

-s,| >0
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4) The Noor iteration (1.6) converges to p,

5) The Agarwal et al. iteration (1.5) converges to p,
6) The SP iteration (1.7) converges to p,

7) The CR iteration (1.10) converges to p.

4. Results on Fastness of CR Iterative
Scheme for Quasi-Contractive Operators

In [21] Berinde showed that Picard iteration is faster than
Mann iteration for quasi-contractive operators satisfying
(1.9). In [22], Qing and Rhoades by taking example
showed that Ishikawa iteration is faster than Mann ite-
ration for a certain quasi-contractive operator. Ciric, Lee
and Rafiq [23], by providing an example, showed that
Noor iterative scheme can be faster than Mann and Ishi-
kawa iterative schemes for some quasi-contractive ope-
rator. Recently, Nawab Hussian et al. [24] provide an
example of a quasi-contractive operator for which the
iterative scheme (1.5) due to Agarwal et al. is faster than
Mann and Ishikawa iterative schemes.

Now, we show that the CR iteration is faster than
Picard, Agarwal et al., Noor and SP iterations for quasi-
contractive operators satisfying (1.9) as follows:

1) By providing an example 4.1 of a quasi-contractive
operator satisfying (1.9), we show that CR iterative
scheme is faster than Agarwal et al., Noor and SP ite-
rative schemes.

2) By using definition (1.1), we show that CR iterative
scheme is faster than Picard iteration.

1) Example 4.1. Let T: T:[0,1]—>[0,1] be defined

X
by T(X)=2, @ =, =7, =0, n=1,2,-15,

a, =B, =7, =%,n 216 . It is clear that T is a quasi-
n

contractive operator satisfying (1.9) with a unique fixed
point 0. Also, it is easy to see that T, ¢,, £, and 7,
satisfies all the conditions of Theorem 2.1. We show that
CR iterative scheme is faster than Agarwal et al., Noor
and SP iterative schemes.

Proof. First of all we show that CR iterative scheme is
faster than Noor iterative scheme.

Let n>16 and py = Xo. Then, from [23], for Noor it-
eration (1.6), we have

Pna =ﬁ(l_%_i_%lpo (4.1)

i=16

Also, for CR iteration (1.10), we have
nf1 1 4 8
Xoey = =t — X 4.2)
) (v i
So,

Copyright © 2012 SciRes.

ET AL.

-ttt
Xn+l _ =16 2 \/I i i/i ’

(R

3
[iz —2i—32J
n
<H 1— ]
2

e (Zi _g\ﬁ_4i—l6]

It is easy to see that

3
(iZ—zi—32J
n
0<lim[]|1-—

nN—o0 ™~

e [2i2 —8\i—4i —16] .

n
< 1im]‘[(1—lj —1im2 =0

n—oo i-16 1 n—-w N

Xﬂ+l

pn+l

Therefore, by definition 1.2, CR iterative scheme con-
verges faster than Noor iterative scheme to the fixed
point 0 of T.

Secondly, we show that CR iterative scheme is faster
than SP iterative scheme:

For SP iteration (1.7) we have

2

Hence, we have lim =0.

nN—oo

So,

Uy | 1 4 8
% (CR) _H(z_ﬁ_i+iﬁ]

SRS
(15,16 16
P ]

N

3
(iz —10i+32\ﬁ—32J

:H 1-

. .
2i2 +244i —12i-16

It is easy to see that
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3
[i2—10i+32«ﬁ—32]

OﬁlimH 1->—
n—o0 ™ =
1o (2i2+24ﬁ—12i—16

SlimH(l— 1 _jzlimlOIS:O.
N e 1000 +1 now

X.; (CR)
Xo,1 (SP)

definition 1.2, CR iterative scheme converges faster than
SP iterative scheme to the fixed point O of T.

Next, we show that CR iterative scheme is faster than
Agarwal et al. iterative scheme.

For Agarwal et al. iteration (1.5), we have

" (1 4
Sn+1?=H[E_T]S .

i=l6 I

Hence, we have lim

n—oo

=0. Therefore, by

So,

(11 4 8
et X
H(z B
Snat (1 4
———1

i=16

i=16

2 i

It is easy to see that

0<tim]] 1—M H[l—l}

<lim
"=%i=i6 l_, N=%i-16 |
27
. 15
=lim—=0.
n—oo n
Xn+1

Hence, we have lim

nN—o0

=0 . Therefore, again by

S

n+1
definition 1.2, CR iterative scheme converges faster than
Agarwal et al. iterative scheme to the fixed point 0 of T.
2) Here we show that CR iteration is faster than Picard
iteration.
Using Picard iteration (1.1) and condition (1.9) we
have

% =pl<o™ =l @3

Also, from (2.3) we have

Copyright © 2012 SciRes.

[%pe1 = Pl € 3 {1-a, (1-58)=(1-8)(1-at,) B,1a
=5 (1=8)a, B7i %, =l (4.4)
<8q]x, —p<5™'q™" |x, ~ ],
where
q={1-a,(1-5)-(1-8)(1-a,) B.7x
~5(1-8)a, By} <1 '
(Gf a,>0,vneN).
In order to compare CR and Picard iterations, we must

compare the coefficients of the inequalities (4.4) and
(4.3).

n+1 n+l1
—0 as n— o and hence us-

Obviously

5n+1

ing definition (1.1), we can say that CR iteration is faster
than Picard iteration.

Keeping in mind results of example 4.1 as well as
Ciric et al.’s results [23], we conclude that CR iterative
scheme is faster than other iterative schemes for a certain
class of quasi-contractive operators.

5. Applications

In this section, with the help of computer programs in
C++, we compare the rate of convergence of Picard,
Mann, Ishikawa, Noor, Agarwal et al., SP and CR ite-
ration procedures, through examples. The outcome is
listed in the form of Tables 1-4, by taking initial appro-

Ximation Xy = 0.8 and a, =b, =9, = for all

1 °

(1+n)2

iterative schemes.

5.1. Example of Decreasing Function

Let f: [0,1]>[0,1] be defined by f(x)=(1-x)",
m=7, 8,---. Then fis a decreasing function. By taking
m = 7, the comparison of convergence of above men-
tioned iterative schemes to the exact fixed point p =
0.188348 is listed in the Table 1.

5.2. Example of Increasing Function

x> +9

Let f : [0,8]—[0,8] be defined as f (x)= . Then f

is an increasing function. The comparison of conver-
gence of above mentioned iterative schemes to the exact
fixed point p =1 is listed in the Table 2.

5.3. Example of Cubic Equation

To find solution of cubic equation X’ + x* — 1 = 0 means

. . 3\V2 3,2
to find fixed point of the function (1— X ) as X* + X
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Table 2. Increasing function.

CR iteration SP iteration Noor iteration

Picard iteration

Agarwal et al.

Ishikawa iteration . .
iteration

Mann iteration

n o fx Xn+1 Xn Xn+1 Xn Xn+1 n

fxn Xn+1 an Xn+1 n Xn+1 an

0 0.964 0.998591 0.964 0.998591 0.964 0.998591 0.9

4 1 1

0.9 0.964 0.964 0964 099293 0.964  0.99293

0.999999 0.999999 0.999974 0.999922 0.99985 0.99985 0.994714 0.982828 0.999968 0.999937 0.999996 0.999997

0.999984 0.99995 0.99997 0.99997 0.996595 0.988449 0.999987 0.999973 0.999999 0.999999

6 1 1 1 1 0.99999 0.999966 0.999994 0.999994 0.997703 0.991947 0.999968 0.999937 1 1
701 1 1 1 0.999993 0.999976 0.999999 0.999999 0.998396 0.994227 0.999995 0.999988 1 1
8 1 1 1 1 0.999995 0.999983 1 1 0998849 0.995767 0.999998 0.999994 1 1
23 1 1 1 1 1 1 1 1 0999964 0.99985 0.999999 0.999997 1 1
24 1 1 1 1 1 1 1 1 0.99997 0.999874 0.999999 0.999998 1 1
33 1 1 1 1 1 1 1 1 0999994 0.999974 1 1 1 1
68 1 1 1 1 1 1 1 1 1 1 1 1 1 1
69 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Let x, =1,

. 3\V2
— 1 = 0 can be rewritten as (1—X ) = X. The com-

parison of convergence of above mentioned iterative
scheme§/2 to the exact fixed point p = 0.754878 of
(1 - X3) is listed in the Table 3.

5.4. Example of Goat Problem

A farmer has a fenced circular pasture of radius a and
wants to tie a goat to the fence with a rope of length b so
as to allow the goat to graze half the pasture. How long
should the rope be to accomplish this?

The length of the rope “b” must be longer than “a” and
shorter than /2a ,i.e. a<bx< J2a.

Ifwelet x= b , we get the simplified equation
a

(4—2X2) sin”! (gj—X\M—XZ +nx*=n and we are

looking for the solution X, with 1< X< V2 . If we rear-
range the equation, we can produce a sequence that will
converge to the solution:

=+ xy4-x —(4—2X2 )sin_l (gj

T+ x4 —(4-2x*)sin”! [;‘j

T

or Xx=

Copyright © 2012 SciRes.

Xn+] - .

T+ X 4= X2 —(4—2x§)sin‘1 (inj

and f(x)= )
n

The comparison of convergence of above mentioned
iterative schemes to the exact fixed point 1.15863 of the
function f(x) is listed in the Table 4. So the rope length
“b” should be approximately 1.15863 a.

For detailed study, these programs are again executed
after changing the parameters and the readings are re-
corded (discussed in the next section).

6. Observations
6.1. Decreasing Function (1 — x)"

1). For m = 8 and X, = 0.8, the Picard scheme never
converges (oscillates between 0 and 1), the Mann scheme
converges in 9 iterations, the Ishikawa scheme converges
in 35 iterations, the Noor scheme converges in 10 itera-
tions, Agarwal et al. iteration does not converges, the CR
scheme converges in 9 iterations and the SP scheme
converges in 7 iterations.

2). For m = 30 and X, = 0.8, the Picard scheme never

AJCM
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Table 3. Cubic equation.

CR iteration SP iteration Noor iteration Picard iteration Mann iteration Ishikawa iteration Ag?tg:tli;tl al.
n Xn Xn+1 Xn Xn+1 Xy Xn+1 Xn Xn+1 Xn Xn+1 Xn Xn+1 Xn Xn+1
0 0.69857 0.68185 0.69857 0.681845 0.69857 0.681845 0.69857 0.69857 0.69857 0.69857 0.69857 0.811848 0.69857 0.811848

3 0.754709 0.754883 0.754992 0.754878 0.754385 0.754963 0.826439 0.826439 0.76192 0.755248 0.723666 0.769363 0.756614 0.75569

4 0.754872 0.754878 0.754878 0.754878 0.754782 0.754902 0.659955 0.659955 0.754458 0.754895 0.737969 0.762659 0.753957 0.75435

5 0.754878 0.754878 0.754878 0.754878 0.75485 0.754886 0.844134 0.844134 0.754858 0.75488 0.745922 0.759043 0.755475 0.755263

8 0.754878 0.754878 0.754878 0.754878 0.754876 0.754878 0.593724 0.593724 0.754878 0.754878 0.753476 0.755566 0.754592 0.75466

9 0.754878 0.754878 0.754878 0.754878 0.754877 0.754878 0.889217 0.889217 0.754878 0.754878 0.754097 0.755268 0.755124 0.755071

12 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.482241 0.482241 0.754878 0.754878 0.754728 0.754956 0.754691 0.754722

13 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 0.942259 0.942259 0.754878 0.754878 0.754789 0.754925 0.755054 0.755027

27 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 1

1 0.754878 0.754878 0.754877 0.754878 0.759426 0.759083

28 0.754878 0.754878 0.754878 0.754878 0.75488 0.754878 0.000113 0.000113 0.754878 0.754878 0.754878 0.754878 0.750074 0.750431

29 0.754878 0.754878 0.754878 0.754878 0.754878 0.754878 1

1 0.754878 0.754878 0.754878 0.754878 0.759867 0.759516

converges (oscillates between 0 and 1), the Mann scheme
converges in 11 iterations, the Ishikawa scheme con-
verges in 37 iterations, the Noor scheme converges in 12
iterations, Agarwal et al. scheme never converges, the
CR scheme converges in 13 iterations and the SP scheme
converges in 9 iterations.

3). Taking initial guess X, = 0.2 (nearer to the fixed
point), Picard scheme never converges (oscillates be-
tween 0 and 1), Mann scheme converges in 10 iterations,
Ishikawa scheme converges in 40 iterations, Noor sche-
me converges in 10 iterations, Agarwal et al. scheme
does not converge, the CR scheme converges in 10 itera-
tions and the SP scheme converges in 8 iterations.

4). Taking a, =p, =7, :;1

(1+n)4
obtain that the Mann scheme converges in 23 iterations,
the Ishikawa scheme converges in 56 iteration, the Noor
scheme converges in 21 iterations, Agarwal et al. scheme
converges in 12 iterations, the CR scheme converges in
11 iterations and the SP scheme converges in 15 itera-
tions.

and X, = 0.8, we

2
X*+9
6.2. Increasing Function ——

1). For x, = 0.8, the Picard scheme converges to a
fixed point in 8 iterations, the Mann scheme converges in

Copyright © 2012 SciRes.

69 iterations, the Ishikawa scheme converges in 34 itera-
tions, the Noor scheme converges in 24 iterations, Agar-
wal et al. scheme converges in 7 iterations, the SP
scheme converges in 6 iterations and the CR scheme con-
verges in 5 iterations.

2). Taking initial guess X, = 0.6 (away from the fixed
point), the Picard scheme converges to a fixed point in 8
iterations, the Mann scheme converges in 75 iterations,
the Ishikawa scheme converges in 38 iterations, the Noor
scheme converges in 27 iterations, Agarwal et al. scheme
converges in 6 iterations, the SP scheme converges in 7
iterations and the CR scheme converges in 5 iterations.

3). Taking, a,=f,=y, = X, = 0.8, we ob-

T
(1+n)s
tain that the Mann scheme converges in 23 iterations, the
Ishikawa scheme converges in 12 iterations, Noor sche-
me converges in 9 iterations, Agarwal et al. scheme con-
verges in 6 iterations, the SP scheme converges in 5 it-
erations and the CR scheme converges in 4 iterations.

6.3. Cubic Equation x> +x*-1=10

1). For x, = 0.8, the Picard scheme never converges to
the solution of cubic equation (oscillates between 0 and
1), the Mann scheme converges in 9 iterations, the Ishi-
kawa scheme converges in 29 iterations, the Noor sche-
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Table 4. Goat problem.

355

CR iteration

SP iteration

Noor iteration

Picard iteration

Mann iteration

Ishikawa iteration

Agarwal et al.
iteration

X fXn

Xn+1

Xn+1

Xn

Xn+1

Xn

Xn+1 Xn

Xn+1 Xq Xn+1

Xn

Xn+1

10

11

12

13

14

15

16

17

18

47

48

60

89

90

1.103589 1.150601 1.103589

1.155492 1.157384 1.103589

1.158629 1.158629 1.15861

1.15863 1.15863 1.158622

1.15863 1.15863 1.158626

1.15863 1.15863 1.158628

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.150601

1.150601

1.158608

1.15862

1.158625

1.158628

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.103589

1.155492

1.158414

1.158472

1.158512

1.158539

1.158559

1.158574

1.158585

1.158594

1.1586

1.158606

1.15861

1.158613

1.158616

1.15863

1.15863

1.15863

1.15863

1.15863

1.150601

1.155275

1.158229

1.158328

1.158399

1.158449

1.158487

1.158515

1.158537

1.158554

1.158567

1.158578

1.158586

1.158593

1.158599

1.15863

1.15863

1.15863

1.15863

1.15863

1.103589
1.137884
1.15844
1.158556
1.158601
1.158619
1.158626
1.158629
1.15863
1.15863
1.15863
1.15863
1.15863
1.15863
1.15863
1.15863
1.15863

1.15863

1.15863

1.15863

1.103589 1.103589

1.137884 1.137884

1.15844 1.155693

1.158556 1.156366

1.158601 1.156852

1.158619 1.157211

1.158626 1.157484

1.158629 1.157693

1.15863 1.157857

1.15863 1.157987

1.15863 1.158092

1.15863 1.158176

1.15863 1.158245

1.15863 1.158302

1.15863 1.158349

1.15863 1.15862

1.15863 1.158621

1.15863 1.158627

1.15863 1.15863

1.15863 1.15863

1.103589 1.103589 1.137884 1.103589 1.137884

1.137884 1.150601 1.149315
1.152847 1.157988 1.157426
1.154091 1.158157 1.15772
1.155011 1.158273 1.157929
1.155707 1.158355 1.15808
1.156243 1.158414 1.158193
1.156661 1.158458 1.158278
1.156993 1.158492 1.158344
1.157259 1.158518 1.158395
1.157474 1.158538 1.158436
1.157649 1.158554 1.158468
1.157794 1.158567 1.158494
1.157914 1.158577 1.158516
1.158013 1.158585 1.158533
1.158607 1.158629 1.158627
1.158609 1.158629 1.158628

1.158623 1.15863 1.15863

1.15863 1.15863 1.15863

1.15863 1.15863 1.15863

1.150601

1.158603

1.15862

1.158627

1.158629

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15304
1.158608
1.158621
1.158627
1.158629

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

1.15863

me converges in 13 iterations, Agarwal et al. scheme
never converges, the CR scheme converges in 6 itera-
tions and the SP scheme converges in 5 iterations.

2). Taking initial guess X, = 0.1 (away from the solu-
tion of cubic equation), Picard scheme never converges
(oscillates between 0 and 1), the Mann scheme converges
in 10 iterations, the Ishikawa scheme converges in 30
iterations, Noor scheme converges in 21 iterations,
Agarwal et al. scheme never converges, the CR scheme
converges in 10 iterations and the SP scheme converges
in 5 iterations.

3.Taking o, =pf, =7, 1 and X, = 0.8, we

1

(I+n)4

Copyright © 2012 SciRes.

obtain that the Mann scheme converges in 14 iterations,
the Ishikawa scheme converges in 27 iterations, the Noor
scheme converges in 9 iterations, Agarwal et al. scheme
converges in 10 iterations, the CR scheme converges in 8
iterations and the SP scheme converges in 8 iterations.

6.4. Goat Problem

1). For X, = 0.8, the Picard scheme converges to a
fixed point in 13 iterations, the Mann scheme converges
in 90 iterations, the Ishikawa scheme converges in 61
iterations, the Noor scheme converges in 48 iterations,
Agarwal et al. scheme converges in 11 iterations, the SP
scheme converges in 11 iterations and the CR scheme
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converges in 8 iterations.

2). Taking initial guess X, = 0.6 (away from the fixed
point), the Picard scheme converges to a fixed point in 14
iterations, the Mann scheme converges in 104 iterations,
the Ishikawa scheme converges in 71 iterations, the Noor
scheme converges in 57 iterations, Agarwal et al. scheme
converges in 12 iterations, the SP scheme converges in
12 iterations and the CR scheme converges in 9 itera-
tions.

3). Taking o, =f, =7, :;1

(1+n)+
obtain that Mann scheme converges in 29 iterations, the
Ishikawa scheme converges in 18 iterations, Noor sche-
me converges in 14 iterations, Agarwal et al. scheme
converges in 10 iterations ,the SP scheme converges in 7
iterations and the CR scheme converges in 7 iterations.

and X, = 0.8, we

7. Conclusions

For decreasing functions, we conclude the followings:
1). Picard and Agarwal et al. schemes do not converge

;1 , rate of convergence of the SP scheme
(I+n)2

is better than other iterative schemes, while CR and
Mann schemes shows equivalence. Also, Noor scheme is
faster than Ishikawa iteration.

2). On increasing the value of m, Mann, Ishikawa,
Noor, SP and CR schemes require more number of
iterations to converge.

3). For initial guess nearer to the fixed point, Mann
scheme, Noor scheme shows an increase, while Ishikawa
scheme shows an decrease in the number of iterations to
converge. Of course, the CR scheme shows no change.

4). The speed of iterative schemes depends on «,
and g, . If we increase the value of «, and f,, the
fixed point is obtained in more number of iterations for
all schemes. Agarwal et al. scheme converges for increased

value of ¢, iefor o, =;1.
(1+n)2

In this case, increasing order of rate of convergence
for iterative schemes is Ishikawa, Mann, Noor, Agarwal
et al., SP and CR scheme.

For increasing functions, we conclude the followings:

1). Increasing order of rate of convergence for iterative
schemes is Mann, Ishikawa, Noor, Picard, Agarwal et al.,
SP and CR scheme.

2). For initial guess away from the fixed point, the
number of iterations increases in each iterative scheme.
Hence, closer the initial guess to the fixed point, quicker
the result is achieved.

3). If we increase the value of ¢, and f,, the fixed

foroa, =

Copyright © 2012 SciRes.

point is obtained in less number of iterations for all
schemes. except CR iterative scheme which remains un-
affected.

For solution of cubic equation, we conclude the
followings:

1). Picard and Agarwal et al. iterative schemes do not

converge for «, = and rate of convergence of

1
(1+n)2
SP iterative scheme is better than Ishikawa, Noor, Mann
and CR schemes.

2). For initial guess away from the solution, the num-
ber of iterations increases in each iterative scheme.

3). If we increase the value of ¢, and g, the solu-
tion is obtained in less number of iterations for Noor and
Ishikawa schemes while solution is obtained in more
number of iterations for Mann, SP and CR schemes.
Agarwal et al. iteration converges for increased value of
o, In this case, increasing order of rate of convergence
for iterative schemes is Ishikawa, Mann, Agarwal et al.,
Noor and CR scheme while CR and SP schemes show
equivalence.

For the goat problem we conclude the followings:

1). Increasing order of rate of convergence for iterative
schemes is Mann, Ishikawa, Noor, Picard, SP and CR
scheme while SP and Agarwal et al. schemes show equi-
valence.

2). For initial guess away from the fixed point, the
number of iterations increases in each iterative scheme.
Hence, closer the initial guess to the fixed point, quicker
the result is achieved.

3). If we increase the value of o, and g, the fixed
point is obtained in less number of iterations for all
schemes. In this case increasing order of rate of con-
vergence for iterative schemes is Mann, Ishikawa, Noor,
Agarwal et al. and CR scheme while CR and SP schemes
show equivalence.
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