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ABSTRACT 

We consider direct solution to third order ordinary differential equations in this paper. Method of collection and inter- 
polation of the power series approximant of single variable is considered to derive a linear multistep method (LMM) 
with continuous coefficient. Block method was later adopted to generate the independent solution at selected grid points. 
The properties of the block viz: order, zero stability and stability region are investigated. Our method was tested on 
third order ordinary differential equation and found to give better result when compared with existing methods. 
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1. Introduction 

This paper considers the general third order initial value 
problems of the form 
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     (1) 

Conventionally, higher order ordinary differential equ- 
ations are solved directly by the predictor-corrector me- 
thod where separate predictors are developed to im- 
plement the correct and Taylor series expansion adopted 
to provide the starting values. Predictor-corrector me- 
thods are extensively studied by [1-5]. These authors 
proposed linear multistep methods with continuous co- 
efficient, which have advantage of evaluation at all 
points within the grid over the proposed method in [6] 
The major setbacks of predictor-corrector method are 
extensively discussed by [7]. 

Lately, many authors have adopted block method to 
solve ordinary differential equations because it addresses 
some of the setbacks of predictor-corrector method 
discussed by [6]. Among these authors are [8-10]. 

According to [6], the general block formula is given 
by 

   .m n n my h y h y   Y e df bF      (2) 

where  is e s s  vector,  is vector and  is 
 vector, 

d r  b
r r s  is the interpolation points and  is the r
collection points. F  is a k-vector whose is  thj  entry 

 ,n j n j n jf f t y   ,    is the order of the ifferential 

Given a

 d

uation in the form 

          (3) 

equation. 
 predictor e

Putting(3) in (2) gi

q

ves 

   0 .y h y Y e df  m n n

   .n n nh y h y  bF e dfm n

Equation (4) is
co

 paper, we p
wi

2. Methodology 

y h y Y e df   (4) 

 starting block-predictor- 

ose an order six block method 

Continuous Coefficient 

fun- 

 called a self

rop

he 

 

rrector method because the prediction equation is 
gotten directly from the block formula as claimed by 
[11,12]. 

In this
th step length of four using the method proposed by 

[11] for the solution of third order ordinary differential 
equation. 

2.1. Derivation of t

We consider monomial power series as our basis 
ction in the form 
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The solution to (1) is soughted on the partition πN : 
ithin the 0 1 2 1n n Na x x x x x x b           

integration interval [a,b] with constant step le
giv

Substituting (6) into (1) gives  
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Interpolating (5) at ;  collo
, gives a  
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Solving (8) and (9) for ja
 con

’s and substituting back into 
(5) gives a LMM with tinuous coefficients 
form 

of the 

   
3 4

3
1

1 0

.t t
j n j n j

j j

y h f  
 

         (10) 

where ja ’s and j ’s are given as  
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2.2. Derivation of the Block Method 

The general block formula proposed by [6] in the nor- 
malized form is given by 

     0 .m n n my h y h y      A Y e df bF   (11) 

Evaluating (10) at 1, 0, 4nx x i ; 
 , 0 1 4;x i 

 the first and 
second derivative at n i  and substituting 
into (10) gives the coefficient of (11) as 

 
T

113 331 1431 248 367 53 147 56 251 29 25 14
,

1120 630 1120 105 1440 90 160 45 720 90 80 45
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107 332 1863 2176 3 8 117 64 232 62 51 64
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103 8
560 315 8 5 40 15 360 45 40 45
243 32 47 27 16 9 81 11 4
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43 52 45 128 39 8 3 64 53 642 21

168 315 112 105 360 45 8 45 360 45 40 45
47 19 81 8 7 1

10080 630 1120 63 480 30
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3. Analysis of the Properties of the Block 

.1. Order of the Method 




3

We define a linear operator on the block (11) to give 

      m my h y df bF: m my x h y h   Y e (12) 

ylor 

series , (12) gives 

Expanding  ny x ih  and  nf x jh  in Ta
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r oper
 if 

The block (11) and associated linea ator are said 
to have order p 0 1 1 20, 0p pC C C C      . 
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The term is called the error constant and implies 
that the lo uncation error for the block is given

  (14) 

k  has order 6,  with erro
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n k

 by 
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3.2. Zero Stability of the Block 

The block  is said to be zero stable if the r ots 
of the characteristic polynomial  

 satisfies 

315
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3. Convergence 

From the theorem above, our meth

4. Numerical Exp

4.1. Test Problem 

We test our schemes with third order initial value pr
ems: 
Problem 1. Consider a special third order 

problem  
3siny x   

     0 1, 0 0, 0 20 1y y y x        

Exact solution:  
2

3cos 2
2
xy x x     

 
 

This problem was solved by [13] using self-starting 
predictor-corrector method for special third order diffe- 
rential equations where a scheme of order six was pro- 
posed. 

Problem 2. Consider a linear third order initial value 
problem 

0y y    

       0 1, 0 1, 0 1, 0,1y y y x      

Exact solution:    2 1 cos siny x x   x

Table 1. Showing result of problem 1, h = 0.01. 

NRC NRC ERR IN [13] 

 

This problem was solved by [14] where a method of 
order six was proposed. They adopted predictor corrector 
method in their implementation. Our result is shown in 
Table 1. 

4.2. Numerical Results 

The following notations are used in the table. 
XVAL: Value of the independent variable where nu- 

merical value is taken 
ERC: Exact result at XVAL 
NRC: Numerical result of the new result at XVAL 
ERR: Magnitude of error of the new result at XVAL 

5. Discussion 

We have proposed a new block method for solving third 
order initial value problem in this paper. It should be 
noted that the method performs better when the step-size 
is chosen within the stability interval. The Tables 1 and 2 
had shown our new method is more efficient in terms of 
accuracy when compared with the self starting predictor 

 

XVAL ERC 

0.1 0.990012495834077 0.990012495834077 0.0000+00 9.992007(–16) 

0.2 0.960199733523725 0.960199733523724 9.99200(–16) 7.660538(–15) 

0. 911009467376818 1.55431(–15) 2.287059(–14) 

0. 843182982008655 0.843182982008652 3.10862(–15) 5.906386(–14) 

0.7577 71118 0.7577 71113 4.6 5) 

6  

3 0.

4 0.

 0.911009467376816 

0.5 476856 476856 6293(–1 1.153521(–13) 

0.6 0.656006844729035 0.656006844729028 .88338(–15) 1.982858(–13) 

0.7 0.539526561853465 0.539526561853456 9.10382(–15) 3.127498(–13) 

0.8 0.410120128041496 0.410120128041484 1.14908(–14) 4.635736(–13) 

0.9 0.269829904811992 0.269829904811978 1.42108(–14) 6.542544(–13) 

1.0 0.120906917604418 0.120906917604401 1.74582(–14) 8.885253(–13) 
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Table 2. Showin  2, h = 0.1. 

XVAL 

g result of problem

ERC NRC ERR ERR IN [14] 

0.1 0.004987516654767 0.004987518195317 1.54055(–09) 1.189947(–11) 

0.2 0.019801063624459 0.019801073469968 9.84550(–09) 3.042207(–09) 

0.3 0.043999572204435 0.043999595857285 2.36528(–08) 7.779556(–08) 

0.4 0.076867491997406 4.32732(–08) 7.749556(–07) 

0.1174 49723 0.1174 67842 3.90 8) 

0.076867535270603 

0.5 433176 433566 181(–0 3.398961(–06) 

0.6 0.164557921035623 0.164557928005710 6.97008(–08) 9.501398(–06) 

0.7 0.216881160706204 0.216881108673223 5.20329(–08) 1.756558(–06) 

0.8 0.272974910431491 0.272974775207245 1.35224(–07) 2.745889(–05) 

0.9 0.331350392754953 0.331349917920840 4.74834(–07) 3.888082(–05) 

1.0 0.390527531852589 0.390526462491195 1.06936(–06) 5.137153(–05) 
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