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ABSTRACT 

The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It 
solves a discretized Schrödinger equation in an iterative process. However, the method provides only a second-order 
accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition 
in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with 
absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schrödinger equation and obtain a 
more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free 
space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical 
analysis.  
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1. Introduction 

The 1D time-dependent linear Schrödinger equation, 
which is the basis of quantum mechanics [1,2], can be 
expressed as follows [3,4]: 
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where m is the mass of the particle (kg), 341.054 10   
J·sec is Planck’s constant, V is the potential (J),  ,x t  
is a complex number, and 1i    The product of 
 ,x t  with its complex conjugate,    , ,x t x t   

indicates the probability of a particle being at spatial lo-
cation x at time t.  

It can be easily seen that the classic explicit two-level 
in time finite difference scheme, i.e.,  

       
1

2
22

n n
n n

x

k k V
i k i

t m x

 
  

 
 

 



k



, (2) 

is unconditionally unstable, where  is the ap- 
proximation of . Here, 

 n k
 ,k x n t   x  and t  are 

the spatial grid size and time step, respectively, k Z  
that denotes the set of all positive and negative integers, 
and 2

x  is a second-order central difference operator 
such that  

       2 1 2 1n n n n
x k k k k         .   (3) 

There are many numerical schemes develo
solving linear Schrödinger equations [1-33]. In pa
Su

ped for 
rticular, 

llivan [3] and Visscher [4] applied the finite-difference 
time-domain (FDTD) method, which is often employed 
in simulations of electromagnetic fields, to solve the 
above Schrödinger equation. The application of FDTD 
technique for the analysis of quantum devices is often 
called the FDTD-Q scheme, which can be described as 
follows [3]. 

The variable  ,x t  is first split into its real and 
imaginary com  order to avoid using complex 
nu

ponents in
mbers:  

     real imag, , ,x t x t i x t    .      (4) 

Inserting Equation (4) into Equation (1
separating the real and imaginary parts result
lo

) and then 
 in the fol-

wing coupled set of equations:  
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and  
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Thus, the second-order central finite differenc
proximations in space and time result in the FDTD-Q 

e ap- 
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hemes as follows: 
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and 
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Here, we assume that V is dependent only on x for 
simplicity. The computation of the above FDTD-Q 
scheme is very simple and straight-forward because 
one may obtain  real

n k  from Equation (7) and then 
 1/2

imag
n k   from Equation (8). Previously, the second 

author analyzed th ty of the FDTD-Q scheme us- 
screte energy method and obtained a condition 

for determining the time step, t , so that the scheme is 
stable as follows [13]:  
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where c is a constant. It should be pointed o
ano et al. [27] and Visscher [4] also used the eigenvalue 

ut that Sori- 

method to analyze the stability of the FDTD-Q scheme 
and obtained a very similar condition of  
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 However, as pointed out in [13], 

even if the condition 
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    is chosen,  

the numerical solutio quation (9) 
indicates that the cond but not 





n is still divergent. E
ition must be less than 1 

d to develop a generalized FDTD method 
w

thod 

e, we assume that 

close to 1.  
The motivation of this study is to apply the idea of the 

FDTD metho
ith absorbing boundary condition for solving the linear 

Schrödinger equation, so that a more relaxed condition 
for stability may be obtained.  

2. Generalized FDTD Me

To develop a generalized FDTD schem
 ,real x t  and  ,imag x t  are sufficiently smooth 

functions which vanish for sufficiently large x  and the 
 is de ly on x. We first rewrite 

Equations (5) and (6) as  
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where and employ the Taylor series m

expand 

ethod to  

 real , nx t  and  real 1, nx t   at  

 1 2 2nt t t 1n     as follows: 
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We then evaluate those derivatives in Equation (12) by 
using Equations (10) and (11) repeatedly: 
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and so on. Substituting Equation (13) into Equation (12) 
gives 
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Similarly, we employ the Taylor series method to ex- 
pand  imag 1 2, nx t   and  imag 1 2, nx t   at nt t n t    
as follows:  
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Again, using Equations (10) and (11) repeatedly to 
evaluate those derivatives in Equation (15), we obtain 
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and so on. Substituting Equation (16) into Equation (15) 
gives 
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Thus, if  imag 1 2, nA k x t   and  real , nA k x t 
 finite differences, 

 are 
approximated using some accurate one 
may obtain a generalized FDTD scheme for solving
tim nt linear Schrödin ation as follow

 the 
e-depende ger equ s:  
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It should be pointed out that in Equation (18a) 
 imag 1 2, nx t   may be approximated by a highe

accurate Lagrange polynomial or some other higher-or- 
de
fr

r-order 

r accurate approximations. Once  real
n k  is obtained 

om Equation (18a), one may construct a similar higher- 
order accurate Lagrange polynomial or some other 
higher-order accurate approximations for  real , nx t  
and then substitute it into Equation (18b) to obtain 

 1 2
imag
n k  . Here, for simplicity, we limit ourselves to 

using finite difference approximations for the Laplace 
operator A. Furthermore, it can be seen from  

derivations that Equation (18) can be readily generalized 
lti-dimensional cases. For the case where the 

potential V is dependent on both temporal and spatial 
variables, the derivations are similar to those in Equation 
(16) except that the product rule of derivative with re- 
spect to t should be used. 

3. Stability 

In order to prevent the numerical solution from diverging, 
we need to analyze the sta

the above

to the mu

bility of the generalized FDTD 
uation (18). Here, we consider that the 
tor A is only approximated by either a  

method in Eq
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and similar finite difference approximations for  
 +1 2

imag
nA k . 

Von Neuman
generalized 

We assume that V is a constant and use the 
n analysis [34] to analyze the stability of the 
FDTD schemes. To this end, we first let 

 real real
n n ik xk e     and  +1 2
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  and imag  are amplification factors for  real
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Equation (19a). This gives  
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Replacing A with
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tuting Equation (20) into the resulting equation
then deleting the common factor 
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ik xe  , we obtain  
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. Since Equation (21a) is true for any 

time level n, we rewrite Equation (21a) as  
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substract it by Equation (21a), and then use Equation 
(21b) to eliminate imag . As such, we obtain a quadratic 
equation for real  as follows:  
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implying that, when  Equation (24) i
matically satisfied, and e scheme with 
is unconditionally stabl wever, we cannot  
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is stable if Equation (26) is satisfied. 
It can be seen that when N = 0 the condition in Equa- 

tion (26) reduces to that in Equation (9). Also, the accu- 
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we obtain a quadratic equation for 
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Hence, we use a similar argument as before and obtain 
the following theorem.  

Theorem 2. The generalized FDTD scheme 
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5. Numerical Examples 
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Based on the above formula, the electron moves in 
free space and then hits an energy potential with a total 

of about 15 he energy 
 that there energy available be- 

in 
time, the electron will propagate in the positive spatial 
direction. The waveform begins to spread, but the total 
kinetic energy remains constant. After the electron 
strikes the potential barrier, part of the energy will be 
converted to potential energy. The waveform ind

probability that the electron is reflected 
ome probability that it penetrates the potential bar- 

rier. However, the total energy should remain constant.   
In our computations, we chose N = 2 in Equation (2

and Equation (30), and let 

(42b) 

energy 0 eV. T is purely kinetic due 
to the fact  is no potential 
fore the energy barrier is reached. With an increase 

icates 
that there is some 
and s

7) 

22
,

m x
t  

 


             (43) 

where   is a parameter used in [3]. Using Equation 
(43), we rewrite the conditions in Equation (26) and 
Equation (31) for N = 2 as  
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Figures 1 and 2 show the simulation of an electron 
moving in free space and then hitting a potential of 100 
eV, which was obtained by using the original FDTD-Q 
scheme (N = 0) with μ = 0.46875. It can be seen that   

when μ = 0.46875 (in which 
max

2
V t t


2 2
r

m


 


 

   

26max 0.9375 1.7 10 1)V  

hen the absorbing boundary 
condition is not imposed, the wavepacket is distorted at 

On the other hand, Figure 2 shows that the 
wavepacket disappears at whe

ondition milar results  

   , the FDTD-Q scheme 
is stable and indeed the numerical solution does not di- 
verge. Figure 1 shows that w

 and 
 2 1 2

imag

2

n k

x

 



45.0 10n    

sorbing boundary c

45.0 10n    
is imposed. Si

 are evaluated us- 

ing the fourth-order finite difference approximations:  
n an ab- 

Copyright © 2012 SciRes.                                                                                AJCM 



F. I. MOXLEY III  ET  AL. 169

0.2

n=1E3 V=100e

0 200 400 600 800 1000 1200 1400 1600
-0.2

0

KE=64.9eV PE=83.2eV


 

V

0 200 400 600 800 1000 1200 1400 1600
-0.2

0

0.2

n=2E3

KE=65.6eV PE=82.9eV


 

V=100eV

0 200 400 600 800 1000 1200 1400 1600
-0.2

0

0.2

n=5E4 V=100eV

KE=86.85eV PE=62.61eV


 
Figure 1. Simulation of an electron moving in free space
and then hitting a potential. The original FDTD-Q schem
was employed with µ = 0.46875 and no absorbing boundary 
condition. Here, the horizontal coordinate is k and the ver- 
tical coordinate is ψreal.  
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Figure 2. Simulation of an electron moving in free space
and then hitting a potential. The original FDTD-Q schem
was employed with µ = 0.46875 and absorbing boundary 
condition.  

are obtained when we used the generalized FDTD 
scheme (N = 2) with μ = 0.46875.  

It is noted that when μ = 0.5 the original FDTD-Q 
scheme produces a divergent solution, because  
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max 2 max 1
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r V V
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 which violates the  

stability condition. Thus, we employed the generalized 
FDTD scheme, Equation (27) with N = 2 and Equation 
(30) with N = 2 for this case. It is noted that when μ = 
0.5,  
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implying the stability condition Equation (26) is satisfied, 
and 
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implying the stability condition Equation (31) is satis- 

pp



fied.  

 

Figures 3 and 4 show the simulation of an electron mov- 
ing in free space and then hitting a potential of 100 eV, 
which was obtained using the generalized FDTD scheme,  
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Figure 3. Simulation of an electron moving in free space 
and then hitting a potential. The second-order FDTD sche- 
me was employed with µ = 0.5 and no absorbing boundar
condition.   
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Figure 4. Simulation of an electron moving in free space 
and then hitting a potential. The second-order FDTD sche- 
me was employed with µ = 0.5 and absorbing boundary 
condition.   
 
Equation (27) with N = 2 and μ = 0.5. It can be seen from 
Figure 3 that when the absorbing boundary condition is 
not imposed, the wavepacket is distorted at 
On the other hand, when an absorbing boun
is imposed, the wavepacket disappears at 
as shown in Figure 4.  

Figures 5 and 6 show the simulation of an electro
moving in free space and then hitting a potential of 100 
eV, which was obtained using the generalized FDTD 
scheme, Equation (30) with N = 2 and μ = 0.5. Again, it 
can be seen from Figure 5 that when the absorbing 
boundary condition is not imposed, the wavepacket is 
distorted at On the other hand, when an 
absorbing boundary n is imposed, the wave- 
packet disa as shown in Figure 6

hat one may obtain a larger value of μ if N is 

e 1D time-
quation and obtain a more re- 

la

45.0 10n    
dary condition 

45.0 10n    

n 

45.0 10n    
conditio

ppears at n 45.0 10   . 
The above numerical example indicates that both gen- 

eralized FDTD schemes break through the limitation (μ < 
0.5) of the original FDTD-Q scheme. It should be 

ointed out tp
chosen to be larger in the generalized FDTD scheme.  

6. Conclusion 

We have developed a generalized FDTD method with 
absorbing boundary condition for solving th  
dependent Schrödinger e

xed condition for stability when central difference  
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Figure 5. Simulation of an electron moving in free space 
and then hitting a potential. The fourth-order FDTD sche- 
me was employed with µ = 0.5 and no absorbing boundary 
condition.  
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Figure 6. Simulation of an electron moving in free space 
and then hitting a potential. The fourth-order FDTD sche- 
me was employed with µ = 0.5 and absorbing boundary 
condition. 
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approximations are employed for spatial derivatives
Numerical results coincide with those obtained based on
the theoretical analysis.   
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