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ABSTRACT 

In Kriging interpolation, the types of variogram model are very finite, which make the variogram very difficult to de- 
scribe the spatial distributional characteristics of true data. In order to overcome its shortage, an improved interpolation 
called Support Vector Machine-Kriging interpolation (SVM-Kriging) was proposed in this paper. The SVM-Kriging 
uses Least Square Support Vector Machine (LS-SVM) to fit the variogram, which needn’t select the basic variogram 
model and can directly get the optimal variogram of real interpolated field by using SVM to fit the variogram curve 
automatically. Based on GODAS data, by using the proposed SVM-Kriging and the general Kriging based on other 
traditional variogram models, the interpolation test was carried out and the interpolated results were analyzed contras- 
tively. The test show that the variogram of SVM-Kriging can avoid the subjectivity of selecting the type of variogram 
models and the SVM-Kriging is better than the general Kriging based on other variogram model as a whole. Therefore, 
the SVM-Kriging is a good and adaptive interpolation method. 
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1. Introduction 

Kriging is a method of interpolation which predicts un- 
known values from data observed at known locations, 
and it minimizes the error of predicted values which are 
estimated by spatial distribution of the predicted values. 
Kriging uses variogram to express the spatial variation. 
The key problem of Kriging is selection of variogram 
model, which determines the spatial interpolation accu- 
racy. Variogram model includes linear model, exponent- 
tial model, Gaussian model, spherical model and so on. 
In a general way, the reasonable variogram model is se- 
lected based on the cloud pictures of variogram distribu- 
tion. However, this general method of variogram selec- 
tion is subjective, and may not select the optimal 
variogram model. 

In order to overcome the shortcoming of variogram 
model selection, an improved interpolation method called 
Support Vector Machine-Kriging interpolation (SVM- 
Kriging) was proposed. SVM-Kriging uses least square 
support vector machine (LS-SVM) to fit the variogram, 
which needn’t select the basic variogram model and can 
directly get the optimal variogram of real interpolated 
field by using SVM to fit the variogram curve automati- 

cally. The variogram of SVM-Kriging come from the 
real data, so it can avoid the subjectivity and arbitrariness 
of selecting the type of variogram models and improve 
the interpolated results. Based on GODAS data, the pro- 
posed SVM-Kriging was compared with other general 
vario- gram models in this paper. 

2. General Kriging 

2.1. Basic Idea 

Let  Z x  be the value of the variable Z  at a point x . 
Given the n measurements   1 , , nZ x x Z  at known 
locations 1, , nx x , you want to obtain an estimate of 

*Z  at an unsampled location 0x . 
The Kriging estimator is given by weighed linear 

combinations of the available samples [1]: 
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Considering the unbiasedness condition yields: 
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Under this condition, the variance of estimate error of 
expression can be simplified as follows: 
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where  is variogram. Under the restricted condi- 
tion (2), in order to make the estimate variance minimum, 
by introducing Lagrange multiplier, the Kriging linear 
equations, by which the weight can be calculated, is de- 
rived as follows:  

 h

     0
1

1

1, ,

1

n

i i j j
i

n

i
i

x x x x j   







      

  






 n



  (4) 

where  i jx x   is the value of variogram between 
location ix  and location jx . All weights i  and La- 
grange multiplier   can be calculated, and then *Z  
can be obtained by (1). 

2.2. Variogram 

The key problem of Kriging is to determine the law of 
variable changed with space and then to estimate the un- 
known value based on the known samples. This law is 
variogram. Variogram is used to describe the spatial 
structure of variable. 

The variogram of samples, which is also called expe- 
rimental variogram, can be calculated by the following 
formula: 
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where h  is the number of pairs separated by vector , 
vector  is lag distance, i

N
h

h
x  is the starting location and 

ix h  is the ending location. If   is only dependent on 
the length of lag distance but not its direction,   is iso- 
tropic, also the variable Z  is isotropic. For the sake of 
simplicity, we only consider isotropy of Kriging. 

Generally speaking, after the experimental variogram 
is computed by (5), we usually observe the distribution 
of variogram and then identify a reasonable variogram 
model. After that we use least square method to fit 
variogram in accordance with the principle of minimum 
variance estimate, which yields fitting curve called em- 
pirical variogram. Variogram model is usually a basic 
model or a linear combination of several basic models. 
The common theoretical model of variogram mainly in- 
cludes linear model, spherical model, exponential model, 
Gaussian model and so on. Their mathematic expressions 
are as follows: 

a) Linear model: 

  0 1h C C h    

b) Spherical model: 
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c) Exponential model: 

   0 1 1 h ah C C e     

d) Gaussian model: 

   2
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where 0 1  are unknown parameters that should be 
identified by least squares. 

, ,C C a

2.3. Existing Problem 

At present, there are not very good methods to select the 
variogram models in general interpolation. In a general 
way, the reasonable variogram model is often identified 
based on the comparison of different variogram models. 
However, this method is time-consuming (because it 
need compute Kriging interpolation several times) and 
the types of variogram models are very finite, which 
make the variogram very difficult to describe the spatial 
distributional characteristics of true data .The general 
methods contain some subjectivity and arbitrariness. In 
order to overcome the existing problem, the least-square 
Support Vector Machine (LS-SVM) was introduced to fit 
the experimental variogram, and then the shortcoming of 
variogram model selection can be avoided. Based on 
least-square support vector machine, it does not need to 
identify the type of basic variogram models but to fit the 
experimental variogram according to its own distribution 
picture directly. 

3. Least Squares Support Vector Machine 

Support Vector Machines, as a novel learning machine 
developed by Vapnik and his coworkers in 1995 [2], 
have been introduced for pattern recognition and regres- 
sion. Least squares support vector machine (LS-SVM), 
originally proposed by Suykens in 2001 [3], is one kind 
of SVM. LS-SVM transforms inequality constraints of 
standard SVM to equality constraints. 

Given a training data set of samples, 
   1 1, , , , n

l lx y x y R R   , where n
ix R  is the i-th 

input data. The LS-SVM approach aims at identify the 
parameters of the model: 

   Tf x w x b                (6) 

where  is weight vector, w ( )x  is a function which 
maps the input data into a higher dimensional feature 
space. 

LS-SVM is to solve the following optimization prob- 
lem: 
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where i R   denotes regression error for sample ix , 
 is a bias scalar, and  is a given positive constant. 

After introducing Lagrangian multipliers i , based on 
Karush-Kuhn-Tuchker conditions, we obtain the nonlin- 
ear function based on LS-SVM: 

b C
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          (8) 

where  ,i j K X X  is kernel function. 
A Large number of imitation tests have shown that 

Radial Basis Function (RBF) kernel function is more 
effective than others as a whole, so we select RBF kernel 
as the kernel of LS-SVM. 

   2
, exp ,i j i jK x x x x     0 . 

Note that   and C  are two parameters. They can 
be optimized by Genetic Algorithms [4]. 

4. Support Vector Machine-Kriging Method 

There are mainly three steps in SVM-Kriging method as 
follows: 

1) Use (5) to compute experimental variogram  
;  * h

2) Use LS-SVM with parameters optimized by Genetic 
Algorithm to fit the experimental variogram  * h , and 
then get ;  h

3) Use (4) to get the weights 1, , n   for every point 

0x  and then obtain the estimated value  0*Z x  at 0x  
by using (1). 

5. Application in Oceanic Missing Data 
Recovery 

In order to test the effect of improved Kriging based on 
LS-SVM, this paper takes data derived Global Ocean 
Data Assimilation System (GODAS) as the experimen-
tal data. GODAS is developed at National Centers for 
Environmental Prediction (NCEP) Centers, and GO-
DAS data are time series of monthly average derived 
from GODAS operational datasets. The area coverage is 
[120.5˚E-71.5˚W, 60˚S-58˚N]. We selected four repre-
sentative months January, April, July, and October of 
2006 as test time, sea surface salinity (5 m deep in this 
paper) and the sea surface height relative to Geoid (sshg) 
as variables. 

5.1. Interpolation Process 

As the process of different months and different variables 

are similar, we take sshg in January 2006 as an example 
to introduce interpolation in detail and draw a compare- 
son of different variogram model.The area coverage of 
sshg is [120.5˚E-71.5˚W, 60˚S-58˚N], and the spatial 
resolution is 2˚ × 2˚.The number of total grid points are 
5100 (85 × 60), including a total of 4215 points in ocean 
availably. We selected 75% of them (3161) randomly as 
cross-validation data, and the remaining data (1054) are 
taken as known observed data. Figure 1 shows the re-
maining data after take out of 75% of available data. 

Firstly, compute the experimental variogram. The ex- 
perimental variogram was computed by (5) based on 
1054 known data (Figure 2). Secondly, obtain empirical 
variogram. The empirical variogram was obtained by fit-
ting based on different variogram models (Figure 3). At 
last, obtain the estimated values. Kriging interpolations  
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Figure 1. The remaining available sshg data. 
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Figure 2. Experimental variogram. 
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Figure 3. Experimental and different model variograms. 
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were carried out by using the obtained empirical vario- 
grams of different variogram models. 

As the other interpolation processes of different months 
and variables are similar, the descriptions about them are 
omitted. 

5.2. Cross-Validation Results 

In order to analyze the interpolation quality, an evalua- 
tion by cross validation has been carried out. The cross 
validation starts by eliminating some available sample 
points randomly, the Kriging methods are then applied to 
estimate the missing value on basis of the remaining 
known sample points. The errors between estimated val- 
ues and the observed values at missing points are calcu- 
lated. The kinds of quantitative Error calculated mainly 
contain mean error (ME), mean absolute error (MAE), 
root mean square prediction error (RMSPE).The defini- 
tions of ME, MAE and RMSPE are as follows: 
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RMSPE is a quantity used to compare the quality of dif-
ferent interpolation methods. RMSPE is smaller, the in-
terpolation method is better. Based on differential vario- 
gram models, the Kriging interpolations with selected 
data are carried out. Following tables are error results of 
different months and different variables by cross-valida- 
tion (See Table 1 and Table 2). The values with underline 
denote that they are minimal in their columns. 

The error results have shown that the RMSPE of 
SVM-Kriging is smaller than others as a whole and the 
SVM-Kriging method is of adaptive advantage for real 
data of different variables at different time. 

6. Conclusion 

Kriging interpolated results are dependent on the selec- 
tion of variogram model largely, and different variogram 
model will lead to different results. In this paper, the sea 
surface salinity and the sea surface height relative to Ge- 
oid are applied to test the interpolation effect. Tests have 
shown that the empirical variogram based on LS-SVM 
model improve the Kriging results by contrast with other 
variogram models, and it also avoids the subjectivity of 
selecting the type of basic variogram models. Therefore, 
the improved SVM-Kriging is a good and adaptive in- 
terpolation method for the real data, especially for the 

Table 1. The comparison of interpolation quality based on 
different variogram models to the sea surface height re- 
lative to Geoid (meter). 

(a) 

January ME(×10–3) MAE(×10–2) RMSPE(×10–2)

Gaussian model –0.9866 5.6032 8.0570 

exponential model –0.5896 3.0390 5.5112 

linear model –0.6265 3.0344 5.4946 

spherical model –0.5960 3.0323 5.4929 

LS-SVM –0.5070 3.0263 5.4650 

(b) 

April ME(×10–3) MAE(×10–2) RMSPE(×10–2)

Gaussian model 0.5304 4.8351 7.1637 

exponential model 3.3320 2.5465 4.7073 

linear model 3.2360 2.5436 4.6932 

spherical model 3.2675 2.5436 4.6933 

LS-SVM 3.2381 2.5364 4.6640 

(c) 

July ME(×10–3) MAE(×10–2) RMSPE(×10–2)

Gaussian model 1.0249 5.6143 8.0398 

exponential model –1.0010 2.6297 4.7588 

linear model –1.0566 2.6295 4.7624 

spherical model –1.0286 2.6268 4.7582 

LS-SVM –1.0159 2.6279 4.7582 

(d) 

October ME(×10–3) MAE(×10–2) RMSPE(×10–2)

Gaussian model –1.0656 5.7940 8.4461 

exponential model 0.5359 2.8382 5.0358 

linear model 0.4651 2.8382 5.0338 

spherical model 0.4993 2.8375 5.0323 

LS-SVM 0.5095 2.8376 5.0332 

(e) 

Average in total ME(×10–3) MAE(×10–2) RMSPE(×10–2)

Gaussian model 0.9019 5.4617 7.9266 

exponential model 1.3646 2.7633 5.0033 

linear model 1.3460 2.7614 4.9960 

spherical model 1.3479 2.7601 4.9942 

LS-SVM 1.3176 2.7570 4.9801 
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Table 2. The comparison of interpolation quality based on 
different variogram models to sea surface salinity (Kg/kg). 

(a) 

January ME(×10–6) MAE(×10–5) RMSPE(×10–4)

Gaussian model –3.1830 11.392 2.2437 

exponential model –1.4831 6.3555 1.3900 

linear model –1.5149 6.3536 1.3891 

spherical model –1.4191 6.3435 1.3878 

LS-SVM –1.2199 6.3259 1.3856 

(b) 

April ME(×10–6) MAE(×10–5) RMSPE(×10–4)

Gaussian model 6.2451 10.928 1.8567 

exponential model 8.1825 6.7105 1.4267 

linear model 7.7905 6.7071 1.4299 

spherical model 7.7854 6.6926 1.4265 

LS-SVM 7.1287 6.6496 1.4206 

(c) 

July ME(×10–6) MAE(×10–5) RMSPE(×10–4)

Gaussian model 3.0329 10.568 2.0281 

exponential model 0.0949 6.4795 1.4361 

linear model –0.2326 6.4566 1.4316 

spherical model –0.1731 6.4548 1.4306 

LS-SVM 0.0353 6.3882 1.4111 

(d) 

October ME(×10–6) MAE(×10–5) RMSPE(×10–4)

Gaussian model 10.092 11.410 2.2117 

exponential model 8.6852 6.6331 1.5610 

linear model 8.7131 6.6254 1.5585 

spherical model 8.7829 6.6176 1.5573 

LS-SVM 9.2950 6.6164 1.5540 

(e) 

Average in total ME(×10–6) MAE(×10–5) RMSPE(×10–4)

Gaussian model 5.6382 11.075 2.0851 

exponential model 4.6114 6.5446 1.4535 

linear model 4.5628 6.5356 1.4523 

spherical model 4.5401 6.5271 1.4505 

LS-SVM 4.4197 6.4950 1.4428 

data containing complicated spatial structure 
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