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Abstract. The molecule solution of an extended discrete Lotka-Volterra equation is constructed,
from which a new sequence transformation is proposed. A convergence acceleration algorithm for
implementing this sequence transformation is found. It is proved that our new sequence transforma-
tion accelerates some kinds of linear sequences and factorial sequences with good numerical stability.
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1. Introduction. Some intimate relations between certain numerical algorithms
and integrable systems have been revealed in recent years, which lead us to reinvesti-
gate both objects from a novel viewpoint.

On the one hand, behind many algorithms in numerical analysis, there imply a
variety of interesting dynamical behaviours [16]. One of the intriguing properties is
integrability, which distinguishes these numerical schemes from others, and attracts ex-
perts on integrable systems to study integrable properties of numerical algorithms. In
the literature, integrability appears in various guises such as properties of invariance,
compatibility and identity. For example, Guass’ arithmetic-geometric mean algorithm
[3, 5, 28] for computing elliptic integral of the first kind is a discrete-time integrable
system with the corresponding elliptic integral as its conserved quantity, which can
be viewed as an application of invariance. In addition, compatibility condition of the
spectral problem related to the discrete-time Toda equation [20] is nothing but the
qd-algorithm [19, 34], which plays a significant role in the theory of formal orthogonal
polynomials and Padé approximants [4, 8, 31]. For more examples, please consult
[25, 26, 27, 32, 42].

On the other hand, some integrable equations can lead to new algorithms. For
instance, the discrete Lotka-Volterra equation can be used as an efficient algorithm to
compute singular values [23, 24, 43]. Moreover, identity property of integrable systems
indicates that, essentially, integrable systems are some kind of determinantal (or pfaf-
fian) identities at so-called τ -function level [35, 21], from which two new convergence
acceleration algorithms have been constructed in [12, 18]. Based on the observation
that the integrable equation provided by the new algorithm given in [12] is only a
special case of the extended Lotka-Volterra equation which was first proposed in [29]
(more results in [22]), it is natural to consider whether new convergence acceleration
algorithms may be obtained from other cases. This is what we want to do in this
article.

Convergence acceleration algorithm is a kind of important numerical algorithm,
which is used to accelerate the convergence of a given sequence. In numerical anal-
ysis, many methods produce sequences, for example iterative methods, perturbation
methods, discretization methods and so on. Sometimes, the convergence of these
sequences is so slow as to make the corresponding numerical methods ineffective in
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practice. This is why we study sequence transformations, which are based on the idea
of extrapolation [13, 41]. Let (Sn) be a sequence converging to a limit S, satisfying

lim
n→

Sn+1 − S

Sn − S
= λ.

When −1 ≤ λ < 1 and λ 6= 0, we say that the sequence (Sn) converges linearly ;
when λ = 1, we say that this sequence converges logarithmically ; and when λ = 0, it
is said to be hyperlinearly convergent. A sequence transformation T : (Sn) → (Tn),
transforms this sequence to a new sequence (Tn), which converges faster to the same
limit S under some assumptions, that is,

lim
n→∞

Tn − S

Sn − S
= 0.

There are many sequence transformations (see e.g. [9, 10, 11] and the reference
therein), among which the most well known is Aitken’s ∆2 process due to Aitken [1],
who used it to accelerate the convergence of Bernoulli’s method for computing the
dominant zero of a polynomial. Furthermore, Pennacchi [33] considered transforma-
tions of the form

Tn = Sn +
Pm(∆Sn, . . . ,∆Sn+p−1)

Qm−1(∆Sn, . . . ,∆Sn+p−1)
, (1.1)

where Pm and Qm−1 are homogeneous polynomials of degree m and m−1 respectively,
p and m are positive integers. Such a transformation is called rational transformation
of type (p,m), denoted by Cn(p,m). In this sense, Aitken’s ∆2 process is a rational
transformation of type (2, 2), and Pennacchi proved that any rational transformation
of type (2,m) with m ≥ 2 which accelerates the set of linear converging sequences is
equivalent to Aitken’s process. He also gave a rational transformation of type (3, 2)

Cn(3, 2) = Sn +
∆Sn(∆Sn −∆Sn+1) + (∆Sn∆Sn+2 −∆S2

n+1)
∆Sn − 2∆Sn+1 + ∆Sn+2

, (1.2)

which accelerates the set of linear converging sequences.
For many sequence transformations, new sequences can be expressed as ratios of

two determinants. By using some determinantal identities, we can obtain recursive
algorithm for implementing the corresponding sequence transformation, such an algo-
rithm is called extrapolation algorithm, or convergence acceleration algorithm. So far,
many convergence acceleration algorithms have been found and investigated, such as
the famous ε-algorithm proposed by Wynn [46], and some of its generalizations [7, 15].
For more results, please refer to [13, 41, 44, 45].

Then we return to the extended Lotka-Volterra equation, which is expressed as

d

dt

(
q−1∏

i=0

ak− q−1
2 +i

)
=

N−1∏

i=0

ak− q−1
2 +i −

N−1∏

i=0

ak+ q−1
2 −i, q,N = 1, 2, . . . , q 6= N,(1.3)

or

d

dt

(
q−1∏

i=0

ak− q−1
2 +i

)
=
−N−1∏

i=0

a−1

k− q+1
2 −i

−
−N−1∏

i=0

a−1

k+ q+1
2 +i

, q,−N = 1, 2, . . . . (1.4)
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In [12], a new convergence acceleration algorithm was obtained from the discretization
of (1.4) when N = −1. Now we consider equation (1.3), with N = q +1. In this case,
it can be written as

d

dt

(
q−1∏

i=0

ak+i

)
=

(
q−1∏

i=0

ak+i

)
(ak+q − ak−1),

with the following difference equation as its time discretization:




Mk−1∏
m=0

1 + a
(n+mp+p+1)
k−mq−1

1 + a
(n+mp+1)
k−mq−1


 (1 + a

(n+1)
k−1 )

q−1∏

i=0

a
(n+1)
k+i

=

(
Mk∏

m=0

1 + a
(n+mp+p)
k−mq

1 + a
(n+mp)
k−mq

)
(1 + a

(n)
k+q)

q−1∏

i=0

a
(n)
k+i, (1.5)

while p = 0, 1, . . . , and the nonnegative integer Mk is defined as Mk =
[

k
q

]
+1, where

[x] stands for the greatest integer not exceeding x.
In this article, we first derive the bilinear form of the discrete equation (1.5), and

then construct its molecule solution, from which we obtain a new sequence transfor-
mation. We also show that there exists a two-dimensional difference equation, which
shares the same bilinear form with equation and can be used as a recursive algorithm
for the implementation of the new sequence transformation.

Our article is organized as follows: In section 2, we will derive the molecule solu-
tion of equation (1.5) with the help of bilinear method and determinantal identities.
In section 3, a new sequence transformation is constructed, and also its corresponding
recursive algorithm. In section 4, we will give the convergence and stability analy-
sis of the new sequence transformation. In section 5, some numerical examples are
proposed. Section 6 is devoted to conclusion and discussions.

2. Molecule solution of equation (1.5). In this section, we construct the
molecule solution of the extended discrete Lotka-Volterra equation by using Hirota’s
bilinear method (which was invented by Hirota [21] for resolving integrable nonlinear
differential or difference evolution equations having soliton solutions) and determi-
nantal identities [2, 14].

It can be proved that under the dependent variable transformation

a
(n)
k =

f
(n+p+1)
k−1 f

(n)
k+q+1

f
(n+p+1)
k f

(n)
k+q

, (2.1)

with f
(n)
k satisfying initial conditions f

(n)
−q = · · · = f

(n)
0 ≡ 1, the extended discrete

Lotka-Volterra equation (1.5) could be transformed into the following bilinear form

f
(n+1)
k+q f

(n+p)
k − f

(n+p+1)
k f

(n)
k+q = f

(n)
k+q+1f

(n+p+1)
k−1 , k = −q + 1,−q + 2, . . . . (2.2)

We now introduce an intermediate bilinear variable g
(n)
k , and give a class of bi-
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linear equations

f
(n)
mT+ig

(n+1)
mT+i − f

(n+1)
mT+ig

(n)
mT+i = f

(n+1)
mT+i−1f

(n)
mT+i+1, (2.3)

f
(n)
mT+1g

(n+1)
mT+1 − f

(n+1)
mT+1g

(n)
mT+1 = −f

(n+1)
mT f

(n)
mT+2, (2.4)

f
(n)
(m+1)T+ig

(n+p+1)
mT+i − f

(n+p+1)
mT+i g

(n)
(m+1)T+i = f

(n+p)
mT+i+1f

(n+1)
mT+i+q, (2.5)

f
(n)
(m+1)T+1g

(n+p+1)
mT+1 − f

(n+p+1)
mT+1 g

(n)
(m+1)T+1 = −f

(n+p)
mT+2f

(n+1)
(m+1)T , (2.6)

which can yield (2.2) by eliminating g
(n)
k , where m is an arbitrary integer, T = q + 1

and i = 2, . . . , T . In order to get the molecule solution of equation (1.5), we only need
to study bilinear equations (2.3)-(2.6) instead, whose initial conditions are given by

f
(n)
−q = · · · = f

(n)
0 = 1, (2.7)

g
(n)
−q = 0, g

(n)
−q+1 = · · · = g

(n)
−1 = n, g

(n)
0 = Sn. (2.8)

In fact, if we set

Ψ(p,q)
m (vn) =

∣∣∣∣∣∣∣∣∣

vn+(m−1)p vn+(m−1)p+1 · · · vn+(m−1)(p+1)

∆qvn+(m−2)p ∆qvn+(m−2)p+1 · · · ∆qvn+(m−2)p+m−1

...
...

...
∆(m−1)qvn ∆(m−1)qvn+1 · · · ∆(m−1)qvn+m−1

∣∣∣∣∣∣∣∣∣
,

Ψ(p,q)
−1 (vn) = 0, Ψ(p,q)

0 (vn) = 1,

Φ(p,q)
m (vn) =

∣∣∣∣∣∣∣∣∣

n + (m− 1)p n + (m− 1)p + 1 · · · n + (m− 1)(p + 1)
vn+(m−2)p vn+(m−2)p+1 · · · vn+(m−2)p+m+1

...
...

...
∆(m−2)qvn ∆(m−2)qvn+1 · · · ∆(m−2)qvn+m−1

∣∣∣∣∣∣∣∣∣
,

Φ(p,q)
−1 (vn) = 0, Φ(p,q)

0 (vn) = 1,

then we have the following theorem.

Theorem 1 The molecule solution to bilinear equations (2.3)-(2.6) with intitial con-
ditions (2.7)-(2.8) can be expressed as

f
(n)
mT+i = Ψm+1(∆iSn), i = 1, . . . , q + 1,

g
(n)
mT = Ψm+1(Sn), g(n)

mT+1 = Ψm(∆q+2Sn),

g
(n)
mT+i = Φm+2(∆i−1Sn), i = 2, . . . , q.

where the upper index (p, q) has been omitted without confusion.

Proof: Firstly, we prove equations (2.3) and (2.4), which are equivalent to the follow-
ing identities:

Φm+2(∆i−1Sn+1)Ψm+1(∆iSn)− Φm+2(∆i−1Sn)Ψm+1(∆iSn+1)
= Ψm+1(∆i−1Sn+1)Ψm+1(∆i+1Sn), i = 2, . . . , q, (2.9)
Ψm+1(Sn+1)Ψm(∆q+1Sn)−Ψm+1(Sn)Ψm(∆q+1Sn+1)
= Ψm(∆qSn+1)Ψm+1(∆Sn), (2.10)
Ψm+1(∆Sn)Ψm(∆q+2Sn+1)−Ψm+1(∆Sn+1)Ψm(∆q+2Sn)
= −Ψm(∆q+1Sn+1)Ψm+1(∆2Sn). (2.11)
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Since (2.11) can be obtained in a similar way to (2.10), here we only prove (2.9) and
(2.10).

Set

D1 =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
Sn+mp Sn+mp+1 · · · Sn+mp+m+1

...
...

...
∆mqSn ∆mqSn+1 · · · ∆mqSn+m+1

∣∣∣∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
n + (m + 1)p n + (m + 1)p + 1 · · · n + (m + 1)p + m + 2
∆i−1Sn+mp ∆i−1Sn+mp+1 · · · ∆i−1Sn+mp+m+2

...
...

...
∆i−1+mqSn ∆i−1+mqSn+1 · · · ∆i−1+mqSn+m+2

∣∣∣∣∣∣∣∣∣∣∣

.

Applying Jacobi identity [2, 14]

D ·D
[

i1 i2
j1 j2

]
= D

[
i1
j1

]
·D

[
i2
j2

]
−D

[
i1
j2

]
·D

[
i2
j1

]
, (2.12)

where D

[
i1 · · · in
j1 · · · jn

]
denotes the determinant with the i1 < · · · < in -th rows

and the j1 < · · · < jn -th columns removed from the original determinant D, to D1

and D2, and noticing that

D1 = Ψm+1(∆Sn), D1

[
1 2
1 m + 2

]
= Ψm(∆qSn+1),

D1

[
1
1

]
= Ψm+1(Sn+1), D1

[
2

m + 2

]
= Ψm(∆q+1Sn),

D1

[
1

m + 2

]
= Ψm+1(Sn), D1

[
2
1

]
= Ψm(∆q+1Sn+1),

D2 = Ψm+1(∆i+1Sn), D2

[
1 2
1 m + 3

]
= Ψm+1(∆i−1Sn+1),

D2

[
1
1

]
= Φm+2(∆i−1Sn+1), D2

[
2

m + 3

]
= Ψm+1(∆iSn),

D2

[
1

m + 3

]
= Φm+2(∆i−1Sn), D2

[
2
1

]
= Ψm+1(∆iSn+1),

then we get (2.9)(2.10) immediately.
Next, we consider equations (2.5) and (2.6), which are equivalent to

Ψm+1(∆iSn)Φm+1(∆i−1Sn+p+1)−Ψm(∆iSn+p+1)Φm+2(∆i−1Sn)
= Ψm(∆i+1Sn+p)Ψm+1(∆i−1Sn+1), i = 2, . . . , q, (2.13)
Ψm(Sn+p+1)Ψm(∆q+1Sn)−Ψm+1(Sn)Ψm−1(∆q+1Sn+p+1)
= Ψm(∆Sn+p)Ψm(∆qSn+1), (2.14)
Ψm(∆Sn+p+1)Ψm(∆q+2Sn)−Ψm+1(∆Sn)Ψm−1(∆q+2Sn+p+1)
= Ψm(∆2Sn+p)Ψm(∆q+1Sn+1). (2.15)
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We use Jacobi identity (2.12) to show the validity of (2.13) and (2.14). Set

D3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
n + mp n + mp + 1 · · · n + mp + m 0

∆iSn+(m−1)p ∆iSn+(m−1)p+1 · · · ∆iSn+(m−1)p+m 0
...

...
...

...
∆i+(m−2)qSn+p ∆i+(m−2)qSn+p+1 · · · ∆i+(m−2)qSn+p+m 0
∆i+(m−1)qSn ∆i+(m−1)qSn+1 · · · ∆i+(m−1)qSn+m 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

D4 =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
Sn+mp Sn+mp+1 · · · Sn+mp+m 0

...
...

...
...

∆(m−1)qSn+p ∆(m−1)qSn+p+1 · · · ∆(m−1)qSn+p+m 0
∆mqSn ∆mqSn+1 · · · ∆mqSn+m 1

∣∣∣∣∣∣∣∣∣∣∣

,

we have the following relations

D3 = Ψm−1(∆i+2Sn+p), D3

[
1 2
1 m + 2

]
= Ψm(∆iSn+1),

D3

[
1
1

]
= Φm(∆iSn+p+1), D3

[
2

m + 2

]
= Ψm(∆i+1Sn),

D3

[
1

m + 2

]
= Φm+1(∆iSn), D3

[
2
1

]
= Ψm−1(∆i+1Sn+p+1),

D4 = Ψm(∆Sn+p), D4

[
1 2
1 m + 2

]
= Ψm(∆qSn+1),

D4

[
1
1

]
= Ψm(Sn+p+1), D4

[
2

m + 2

]
= Ψm(∆q+1Sn),

D4

[
1

m + 2

]
= Ψm+1(Sn), D4

[
2
1

]
= Ψm−1(∆q+1Sn+p+1).

Then equations (2.13) and (2.14) are obtained by applying Jacobi identity (2.12) to
D3 and D4 (with i1 = 1, i2 = 2 ; j1 = 1, j2 = m + 2), respectively.

The proof of (2.15) is nearly the same as that of (2.14), thus we omit it.

Consequently, equations (2.3)–(2.6) hold, which complete the proof. 2

From Theorem 1 and the dependent variable transformation (2.1), we obtain the
molecule solution of (1.5) immediately.

3. A new sequence transformation and the corresponding recursive
algorithm. In this section, we construct a new sequence transformation related to
the molecule solution given by Theorem 1, and derive a convergence acceleration
algorithm for its implementation.
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Let us consider a new sequence transformation defined by

T
(p,q)
k (Sn) =

∣∣∣∣∣∣∣∣∣

Sn+kp Sn+kp+1 · · · Sn+k(p+1)

∆qSn+(k−1)p ∆qSn+(k−1)p+1 · · · ∆qSn+(k−1)p+k

...
...

...
∆kqSn ∆kqSn+1 · · · ∆kqSn+k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
∆qSn+(k−1)p ∆qSn+(k−1)p+1 · · · ∆qSn+(k−1)p+k

...
...

...
∆kqSn ∆kqSn+1 · · · ∆kqSn+k

∣∣∣∣∣∣∣∣∣

, (3.1)

where p and q are nonnegative integers satisfying p ≤ q, k = 0, 1, . . . . It is obvious
that when k = 1, p = 1 and q = 2, (3.1) is nothing but the rational transformation
Cn(3, 2) given by (1.2), and when p = 0, it is equivalent to the multistep Shanks’
transformation proposed in [12]. Thus, (3.1) is an extension of the both. We mention
that T

(p,q)
k (Sn) can also be expressed as

T
(p,q)
k (Sn) =

Ψ(p,q)
k+1 (Sn)

Ψ(p,q)
k (∆q+1Sn)

=
g
(n)
kT

f
(n)
kT

,

which motivate us to implement the dependent variable transformation

u
(n)
k =

g
(n)
k

f
(n)
k

(3.2)

to bilinear equations (2.3)-(2.6) to see whether there exists a recursive relation satis-
fied by u

(n)
k . In fact, we have the following theorem.

Theorem 2 If g
(n)
k and f

(n)
k satisfy bilinear equations (2.3)–(2.6), then u

(n)
k defined

by (3.2) can be computed recursively:

u
(n)
k+1 = u

(n+p+1)
k−q − (u(n+p+1)

k−q−1 − u
(n)
k )(u(n+p+1)

k−q − u
(n+p)
k−q )

u
(n+1)
k − u

(n)
k

, k = 1, 2, . . . , (3.3)

with the initial values

u
(n)
−q = 0, u

(n)
−q+1 = · · · = u

(n)
−1 = n, u

(n)
0 = Sn, u

(n)
1 =

1
∆Sn

. (3.4)

Proof: It is obvious that the initial conditions (3.4) can be obtained directly from the
dependent variable transformation (3.2) and Theorem 1. Thus, we only need to prove
equation (3.3), which is equivalent to the following identity

(u(n+1)
k+q − u

(n)
k+q)(u

(n+p+1)
k − u

(n+1)
k+q+1) = (u(n+p+1)

k−1 − u
(n)
k+q)(u

(n+p+1)
k − u

(n+p)
k ).(3.5)

From the dependent variable transformation (3.2) and equations (2.3)–(2.6), we obtain

u
(n+1)
k − u

(n)
k =

f
(n+1)
k−1 f

(n)
k+1

f
(n+1)
k f

(n)
k

, (3.6)

u
(n+p+1)
k − u

(n)
k+q+1 =

f
(n+p)
k+1 f

(n+1)
k+q

f
(n+p+1)
k f

(n)
k+q+1

, (3.7)
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where k 6= mT + 1, and when k = mT + 1, it only needs to change the sign of the
right hand side of (3.6) and (3.7).

Consider the case when k = mT + i, i = 3, . . . , q + 1, in (3.5). We have

(u(n+1)
k+q − u

(n)
k+q)(u

(n+p+1)
k − u

(n+1)
k+q+1)

=
f

(n+1)
k+q−1f

(n)
k+q+1

f
(n+1)
k+q f

(n)
k+q

· f
(n+p)
k+1 f

(n+1)
k+q

f
(n+p+1)
k f

(n)
k+q+1

=
f

(n+1)
k+q−1f

(n+p)
k+1

f
(n+p+1)
k f

(n)
k+q

,

(u(n+p+1)
k−1 − u

(n)
k+q)(u

(n+p+1)
k − u

(n+p)
k )

=
f

(n+p)
k f

(n+1)
k+q−1

f
(n+p+1)
k−1 f

(n)
k+q

· f
(n+p+1)
k−1 f

(n+p)
k+1

f
(n+p+1)
k f

(n+p)
k

=
f

(n+1)
k+q−1f

(n+p)
k+1

f
(n+p+1)
k f

(n)
k+q

,

which shows that (3.5) holds when k = mT + i, i = 3, . . . , q + 1. The proofs of this
identity when k = mT + 1,mT + 2 are nearly the same, and thus be omitted.

Consequently, (3.5) holds for all k ∈ N, which leads to the validity of (3.3). Then
we complete the proof. 2

It is obvious that u
(n)
kT is nothing but the new sequence transformation (3.1).

Thus, according to Theorem 2, T
(p,q)
k : (Sn) → (u(n)

kT ) can be implemented via (3.3)
with initial values (3.4). In other words, (3.3) together with (3.4) can be viewed as a
convergence acceleration algorithm corresponding to sequence transformation T

(p,q)
k .

Since transformation (3.1) can be regarded as an extension of the multistep
Shanks’ transformation, it is natural to investigate the relationship between their
corresponding recursive algorithms. In fact, the following corollary shows that the
multistep ε-algorithm [12] is just a special case of our new algorithm.

Corollary 3 If we set p = 0 in the new algorithm (3.3), then it can be reduced
to the multistep ε-algorithm.

Proof: In this case, (3.3) is written as
(
u

(n)
k+1 − u

(n+1)
k−q

)(
u

(n+1)
k − u

(n)
k

)
=

(
u

(n)
k − u

(n+1)
k−q−1

)(
u

(n+1)
k−q − u

(n)
k−q

)
.

Multiplying both sides of the above equation by
∏q−1

i=1

(
u

(n+1)
k−i − u

(n)
k−i

)
, we obtain

(
u

(n)
k+1 − u

(n+1)
k−q

) q−1∏

i=0

(
u

(n+1)
k−i − u

(n)
k−i

)
=

(
u

(n)
k − u

(n+1)
k−q−1

) q∏

i=1

(
u

(n+1)
k−i − u

(n)
k−i

)
,

which can be simplified further yielding

u
(n)
k+1 = u

(n+1)
k−q +

1
∏q−1

i=0

(
u

(n+1)
k−i − u

(n)
k−i

) .

This formula is nothing but the multistep ε-algorithm, corresponding to m = q. Thus
completing the proof. 2

As the end of this section, we give the kernel of the new sequence transformation,
that is the set of sequences which would be transformed into a constant.
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Theorem 4 A necessary and sufficient condition for all n > N , T
(p,q)
k (Sn) = S

is that for ∀n > N ,

Sn+kp = S + a1∆qSn+(k−1)p + · · ·+ ak∆kqSn,

where a1, . . . , ak are constants independent of n and ak 6= 0, S = limn→∞ Sn.

4. Convergence and stability analysis. The analysis of convergence and sta-
bility is an important topic in the theory of convergence acceleration. In this section,
we consider the convergence and stability of the sequence transformation (3.1) as it
is applied to the following three different sequences.

I: Logarithmic sequences for which

Sn ∼ S +
∞∑

i=0

αin
γ−i as n →∞; α0 6= 0, γ 6= 0, 1, 2 . . . . (4.1)

II: Linear sequences for which

Sn ∼ S + ξn
∞∑

i=0

αin
γ−i as n →∞; α0 6= 0, ξ 6= 1. (4.2)

III: Factorial sequences for which

Sn ∼ S + (n!)−r
ξn

∞∑

i=0

αin
γ−i as n →∞;α0 6= 0, r = 1, 2 . . . . (4.3)

4.1. Convergence analysis. We give the following two lemmas, which are use-
ful in the subsequent proofs. In fact, the first lemma is an obvious result of asymptotic
expansions.

Lemma 5 Given (An), assume An ∼
∑∞

i=0 ain
γ−i, as n →∞; a0 6= 0, then

(i) if γ 6= 0,∆An ∼
∑∞

i=0 âin
γ−i−1, as n →∞; â0 = γa0 6= 0;

(ii) if γ = 0,∆An ∼
∑∞

i=µ âin
−i−1, as n → ∞; âµ = −µaµ 6= 0 (aµ is the first

nonzero ai with i ≥ 1);

(iii) if ξ 6= 1,∆k(ξnAn) ∼ ξn
∑∞

i=0 âin
γ−i, as n →∞; â0 = (ξ − 1)ka0 6= 0;

(iv) if r = 1, 2 · · · ,∆( ξn

(n!)r An) ∼ ξn

(n!)r

∑∞
i=0 âin

γ−i, as n →∞; â0 = −a0 6= 0;

(v) if r = 1, 2 · · · ,∆( (n!)r

ξn An) ∼ (n!)r

ξn

∑∞
i=0 âin

γ+r−i, as n →∞; â0 = 1
ξ a0 6= 0.

Lemma 6 If u
(n)
k is computed by algorithm (3.3), then u

(n)
(k+1)T can be expressed as

u
(n)
(k+1)T =

1
q∏

i=1

∆u
(n)
kT+i

{
u

(n+p+1)
kT ∆u

(n)
kT+1

q∏

i=2

∆u
(n)
kT+i

+ u
(n)
kT+1∆u

(n+p)
kT

q∏

i=2

∆u
(n+p)
(k−1)T+i

−∆u
(n+p)
kT u

(n+p+1)
kT−q

q∏

i=2

∆u
(n+p)
(k−1)T+i

}
, (4.4)
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where the forward difference operator ∆ is applied to superscripts.

Proof: Equation (3.3) can be rewritten as

u
(n)
m+1 − u

(n+p+1)
m−q =

∆u
(n+p)
m−q

∆u
(n)
m

(u(n)
m − u

(n+p+1)
m−q−1 ). (4.5)

Multiplying together these equations for m = (k + 1)T − 1, (k + 1)T − 2, · · · kT + 1,
we will obtain

u
(n)
(k+1)T − u

(n+p+1)
kT =

T∏
i=2

∆u
(n+p)
(k−1)T+i

q∏
i=1

∆u
(n)
kT+i

(u(n)
kT+1 − u

(n+p+1)
kT−q ), (4.6)

which is equivalent to the expression (4.4). 2

Then we have the following convergence theorem.

Theorem 7 Applying the new algorithm (3.3) with (3.4) to sequence (Sn), then
for any nonnegative integer k, we have:

(i) If (Sn) behaves like (4.1), then

u
(n)
kT − S ∼ (−1)k

α0
qk · k!

(γ − q)(γ − 2q) · · · (γ − kq)
nγ as n →∞. (4.7)

(ii) If (Sn) behaves like (4.2), then

u
(n)
kT − S ∼ ξn

∞∑

i=0

α
(0)
k,in

γk−i as n →∞, α
(0)
k,0 6= 0, (4.8)

u
(n)
kT+1 ∼ ξ−n

∞∑

i=0

α
(1)
k,in

−γk−i as n →∞, α
(1)
k,0 =

1

α
(0)
k,0(ξ − 1)

6= 0, (4.9)

u
(n)
kT+j ∼ n +

∞∑

i=0

α
(j)
k,in

−i as n →∞,

α
(j)
k,0 = (k + 1)(p + 1 +

ξ

1− ξ
), j = 2, 3 . . . q, (4.10)

with γ0 = γ, γk = γk−1−2−µk, k = 1, 2 . . . , where µk are some nonnegative integers.

(iii) If (Sn) behaves like (4.3), then

u
(n)
kT − S ∼ ξn

(n!)r

∞∑

i=0

α
(0)
k,in

γk−i as n →∞, α
(0)
k,0 6= 0, (4.11)

u
(n)
kT+1 ∼

(n!)r

ξn

∞∑

i=0

α
(1)
k,in

−γk−i as n →∞, α
(1)
k,0 = − 1

α
(0)
k,0

6= 0, (4.12)

u
(n)
kT+j ∼ n + p + 1 +

∞∑

i=0

α
(j)
k,in

−r−ias n →∞,

α
(j)
k,0 = (k + 1)ξ, j = 2, 3 . . . q, (4.13)
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with γ0 = γ, γk = γk−1−r−2−µk when p = 0 and γk = γk−1−(p+1)r−1−µk when p 6=
0, where µk are some nonnegative integers.

Proof : (i) For logarithmic sequences in (4.1), the convergence results can be ob-
tained by following the similar steps given by Garibotti-Grinstein [17] in the proof of
ε-algorithm. Here we omit the details.

(ii) Now we prove the convergence results for linear sequences in (4.2). We proceed
by induction on k.

Base step. Consider the case when k = 0. On the one hand, since u
(n)
0 = Sn and

u
(n)
1 = 1/∆Sn, it is obvious that (4.8) and (4.9) hold for k = 0 with γ0 = γ, α

(0)
k,i = α0.

On the other hand, according to the recursive relation (3.3) and initial values (3.4),
expression (4.10) for k = 0 can be easily obtained with the help of Lemma 6.

Inductive step. Assume that expressions (4.8)–(4.10) hold for k = 1, 2, . . . , m,
where m is a positive integer. Next, we will prove that they also hold for k = m + 1.

Firstly, consider the proof of (4.8) when k = m + 1 . Subtracting S form both
sides of equation (4.4) in Lemma 6, we get

u
(n)
(k+1)T − S =

1
q∏

i=1

∆u
(n)
kT+i

{(
u

(n+p+1)
kT − S

)
∆u

(n)
kT+1

q∏

i=2

∆u
(n)
kT+i

+ u
(n)
kT+1∆

(
u

(n+p)
kT − S

) q∏

i=2

∆u
(n+p)
(k−1)T+i

−∆
(
u

(n+p)
kT − S

)
u

(n+p+1)
kT−q

q∏

i=2

∆u
(n+p)
(k−1)T+i

}
. (4.14)

For simplicity, set

A
(n)
k =

(
u

(n+p+1)
kT − S

)
∆u

(n)
kT+1

q∏

i=2

∆u
(n)
kT+i + u

(n)
kT+1∆

(
u

(n+p)
kT − S

) q∏

i=2

∆u
(n+p)
(k−1)T+i,

B
(n)
k = ∆

(
u

(n+p)
kT − S

)
u

(n+p+1)
kT−q

q∏

i=2

∆u
(n+p)
(k−1)T+i,

C
(n)
k =

q∏

i=1

∆u
(n)
kT+i,

then (4.14) can be written as

u
(n)
(k+1)T − S =

A
(n)
k −B

(n)
k

C
(n)
k

. (4.15)

Thus, in order to prove (4.8) for k = m+1, we only need to analyze the asymptotic
behaviours of A

(n)
m , B

(n)
m and C

(n)
m as n →∞, respectively.
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In fact, according to the inductive hypothesis and Lemma 5, we have

∆(u(n)
kT − S) ∼ ξn

∞∑

i=0

α̂
(0)
k,in

γk−i, as n →∞, α̂
(0)
k,0 = (ξ − 1)α(0)

k,0, (4.16)

∆u
(n)
kT+1 ∼ ξ−n

∞∑

i=0

α̂
(1)
k,in

−γk−i, as n →∞, α̂
(1)
k,0 = (

1
ξ
− 1)α(1)

k,0, (4.17)

∆u
(n)
kT+j ∼ 1 +

∞∑

i=2

α̂
(j)
k,in

−i, as n →∞, j = 2, 3 . . . q. (4.18)

Furthermore,

(u(n+p)
kT − S)u(n)

kT+1 ∼
∞∑

i=0

bk,in
−i, as n →∞, (4.19)

which leads to

∆[(u(n+p)
kT − S)u(n)

kT+1] ∼
∞∑

i=2

b̂k,in
−i, as n →∞, (4.20)

where k = 1, . . . , m.
With the help of the above relations, we obtain

A(n)
m ∼

(
u

(n+p+1)
mT − S

)
∆u

(n)
mT+1

q∏

j=2

(
1 +

∞∑

i=2

α̂
(j)
m,in

−i

)

+u
(n)
mT+1∆

(
u

(n+p)
mT − S

) q∏

j=2

(
1 +

∞∑

i=2

α̂
(j)
m−1,i(n + p)−i

)

∼
(
u

(n+p+1)
mT − S

)
∆u

(n)
mT+1

(
1 + O(n−2)

)
+ u

(n)
mT+1∆

(
u

(n+p)
mT − S

) (
1 + O(n−2)

)

∼ ∆
[(

u
(n+p)
mT − S

)
u

(n)
mT+1

] (
1 + O(n−2)

)

∼
∞∑

i=2

βm,in
−i, as n →∞, (4.21)

B(n)
m ∼

[
ξ−n−p−1

∞∑

i=0

α
(1)
m−1,i(n + p + 1)−γm−1−i

]

·
[
ξn+p

∞∑

i=0

α̂
(0)
m,i(n + p)γm−i

]
q∏

j=2

(
1 +

∞∑

i=2

α̂
(j)
m−1,i(n + p)−i

)

∼
[
ξ−n−p−1

∞∑

i=0

α
(1)
m−1,i(n + p + 1)−γm−1−i

]
·
[
ξn+p

∞∑

i=0

α̂
(0)
m,i(n + p)γm−i

]
(
1 + O(n−2)

)

∼
∞∑

i=0

θm,in
γm−γm−1−i, as n →∞, (4.22)
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C(n)
m ∼

[
ξ−n

∞∑

i=0

α̂
(1)
m,in

−γm−i

]
q∏

j=2

(
1 +

∞∑

i=2

α̂
(j)
m,in

−i

)

∼
[
ξ−n

∞∑

i=0

α̂
(1)
m,in

−γm−i

]
(
1 + O(n−2)

)

∼ ξ−n
∞∑

i=0

τm,in
−γm−i, as n →∞. (4.23)

Substituting expressions (4.21)–(4.23) into (4.15), from the fact that γm−γm−1 ≤
−2, we finally get the following result

u
(n)
(m+1)T − S ∼ ξn

∞∑

i=0

ρ
(0)
m,in

γm−2−i

= ξn
∞∑

i=0

α
(0)
m+1,in

γm+1−i, as n →∞, α
(0)
m+1,0 6= 0, (4.24)

with γm+1 = γm − 2− µm+1 for some nonnegative integer µm+1, which implies that
(4.8) holds for k = m + 1.

Secondly, we prove (4.9) for k = m + 1. Replacing k by (m + 1)T , equation (3.3)
can be written as

u
(n)
(m+1)T+1 = u

(n+p+1)
mT+1 +

∆u
(n+p)
mT+1

∆u
(n)
(m+1)T

(u(n)
(m+1)T − u

(n+p+1)
mT ). (4.25)

Using the hypothesis and expression (4.24) we have just proved, we obtain

u
(n)
(m+1)T+1 ∼ ξ−n

∞∑

i=0

α
(1)
m+1,in

−γm+1−i as n →∞, (4.26)

where α
(1)
m+1,0 = 1

α
(0)
m,0(ξ−1)

, which can be derived by the relation α
(1)
m+1,0α

(0)
m+1,0 =

α
(1)
m,0α

(0)
m,0.

Finally, we investigate the asymptotic behaviours of u
(n)
(m+1)T+j with j = 2, . . . , q,

as n → ∞. In fact, similar to the analysis of u
(n)
(m+1)T+1 given above, the asymp-

totic behaviour of u
(n)
(m+1)T+j can be easily derived from that of u

(n)
(m+1)T+j−1 and the

inductive hypothesis, that is

u
(n)
(m+1)T+j ∼ n +

∞∑

i=0

α
(j)
m+1,in

−ias n →∞, j = 2, 3 . . . q, (4.27)

with α
(j)
m+1,0 = (m + 2)(p + 1 + ξ

1−ξ ), which can be obtained from α
(j+1)
m+1,0 − α

(j+1)
m,0 =

α
(j)
m+1,0 − α

(j)
m,0 = p + 1 + ξ

1−ξ , j = 2, 3 . . . q − 1.
Consequently, expressions (4.8)–(4.10) hold for k = m + 1, which complete the

proof of (ii) by inductive principle.
(iii) The proof of (4.11)–(4.13) to factorial sequences in (4.3) can be achieved in

a similar way as we did in the case of linear sequences in (ii).
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Thus proving the theorem. 2

Theorem 7 indicates that our new method accelerate the convergence of both
linear sequences (4.2) and factorial sequences (4.3), but fails in logarithmic sequences
(4.1).

4.2. Stability. We now turn to the investigation of stability. From equation
(3.3), we obtain

u
(n)
(k+1)T = λ

(n)
k u

(n+p+1)
kT + µ

(n)
k u

(n+p)
kT , λ

(n)
k + µ

(n)
k = 1, (4.28)

where

λ
(n)
k =

u
(n+1)
kT+q − u

(n+p+1)
(k−1)T+q

∆u
(n)
kT+q

and µ
(n)
k = −

u
(n)
kT+q − u

(n+p+1)
(k−1)T+q

∆u
(n)
kT+q

. (4.29)

Using mathematical induction on k and noticing that u
(n)
0 = Sn, we have

u
(n)
kT =

k∑

i=0

γ
(n)
k,i Sn+kp+i,

k∑

i=0

γ
(n)
k,i = 1. (4.30)

From the context of other extrapolation methods [36, 38, 39], the quantities of
relevance to stability are

Γ(n)
k =

k∑

i=0

|γ(n)
k,i |. (4.31)

In fact, if S̃n = Sn + εn are the initial values with small perturbations, then the
calculated values ũ

(n)
kT are given by

ũ
(n)
kT ≈

k∑

i=0

γ
(n)
k,i S̃n+kp+i = u

(n)
kT +

k∑

i=0

γ
(n)
k,i εn+kp+i. (4.32)

Therefore,

|ũ(n)
kT − u

(n)
kT | ≈ |

k∑

i=0

γ
(n)
k,i εn+kp+i| ≤ Γ(n)

k ε, with ε = max
0≤i≤k

|εn+kp+i|, (4.33)

which implies that Γ(n)
k control the propagation of errors in computing process. When

supnΓ(n)
k = ∞, the sequence

(
u

(n)
kT

)∞
n=0

is unstable, and when supnΓ(n)
k < ∞, it is

stable. Since
∑k

i=0 γ
(n)
k,i = 1, we hope these Γ(n)

k are as close to 1 as possible to get

good numerical stability. Next, we will consider the asymptotic behaviour of Γ(n)
k , as

n →∞.
As the following lemma can be proved in a way similar to [40], we simply list it

without proof.

Lemma 8 Let P
(n)
k (z) =

k∑
i=0

γ
(n)
k,i zi, then

P
(n)
k+1(z) = λ

(n)
k zP

(n+p+1)
k (z) + µ

(n)
k P

(n+p)
k (z). (4.34)
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Lemma 9 For any nonnegative k,
(i) if (Sn) behaves like (4.2), then

λ
(n)
k ∼ 1

1− ξ
and µ

(n)
k ∼ −ξ

1− ξ
, as n →∞. (4.35)

(ii)if (Sn) behaves like (4.3), then

λ
(n)
k ∼ 1 and µ

(n)
k ∼ 0, as n →∞, if q = 1, (4.36)

λ
(n)
k ∼ −p and µ

(n)
k ∼ p + 1, as n →∞, if q > 1. (4.37)

Proof: The proof can be easily obtained by using the expressions (4.29) and the re-
sults of Theorem 7. 2

Finally, we give the main stability results.

Theorem 10 (i) If (Sn) behaves like (4.2), then

P
(n)
k (z) ∼

(
ξ − z

ξ − 1

)k

and Γ(n)
k ∼

( |ξ|+ 1
|ξ − 1|

)k

, as n →∞. (4.38)

(ii) If (Sn) behaves like (4.3), then

P
(n)
k (z) ∼ zk and Γ(n)

k ∼ 1, as n →∞, if q = 1, (4.39)

P
(n)
k (z) ∼ (p + 1− pz)k and Γ(n)

k ∼ (2p + 1)k as n →∞, if q > 1. (4.40)

Proof: Combining Lemma 8 and Lemma 9, expressions (4.38)–(4.40) hold immedi-
ately by induction on k. 2

Remark. Since our new method is ineffective on logarithmic sequences (4.1), we only
consider the stability corresponding to linear sequences (4.2) and factorial sequences
(4.3) in the above theorem.

We close this section by concluding that our new sequence transformation is stable
for both linear sequences (4.2) and factorial sequences (4.3). Concretely, for linear
sequences, the stability is better when ξ is a real negative number, while becomes
weak when ξ approaches 1, since Γ(n)

k → ∞ as ξ → 1. Noticing that ξl with some
positive integer l ≥ 2 is farther away from 1, we propose to apply the method to the
subsequences (Sln) for better numerical stability. This strategy is APS [41], which was
first proposed by Sidi [37]. As for factorial sequences, our new sequence transformation
(3.1) with q = 1 has better stability than that with q > 1. In addition, for a fixed
q > 1, the sequence transformation becomes more and more stable as p shrinks to 0.

5. Numerical examples. In this section, we give some numerical examples,
which illustrate the performance of algorithm (3.3)-(3.4) numerically.

Example 1. Consider the following alternating series

Sn =
n∑

k=1

(−1)k+1

k
,
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Table 5.1
Numerical results of example 1.

n |Sn − S| |T (1,1)
k1

(Sn−2k1)| |T (1,2)
k2

(Sn−3k2)| |T (2,2)
k3

(Sn−3k3)|
5 0.0902 1.8615× 10−4 9.4288× 10−4 0.0069

10 0.0475 3.8072× 10−8 6.0792× 10−7 2.7318× 10−5

15 0.0322 3.7446× 10−12 4.0163× 10−10 2.4731× 10−8

20 0.0244 5.5511× 10−16 3.6915× 10−13 3.2922× 10−11

Table 5.2
Numerical results of example 2.

n |Sn − S| |T (1,1)
k1

(Sn−2k1)| |T (1,2)
k2

(Sn−3k2)| |T (2,2)
k3

(Sn−3k3)|
10 0.0306 1.7538× 10−4 0.0079 0.0061
20 0.0019 1.3000× 10−8 3.3291× 10−5 7.8235× 10−6

30 1.4341× 10−4 1.8611× 10−10 3.0440× 10−7 1.6116× 10−7

40 1.1916× 10−5 3.1393× 10−12 2.0094× 10−8 7.4446× 10−10

with limn→∞ Sn = S = ln 2 = 0.693147181 · · · . According to the Euler-Maclaurin
summation formula (see [6] [30] for details), we have

Sn − ln 2 ∼ (−1)n−1


 1

2n
−

∞∑

j=1

B2j(22j − 1)
(2j)n2j


 , as n →∞,

where B2j are Bernoulli numbers. This asymptotic expansion is a special case of
(4.2), with ξ = −1, γ = −1 and α0 = − 1

2 6= 0. The numerical results corresponding
to Sn, T

(1,1)
k1

(Sn−2k1), T
(1,2)
k2

(Sn−3k2) and T
(2,2)
k3

(Sn−3k3) are presented in Table 5.1,
where k1 = [(n− 1)/2], k2 = [(n− 1)/3] and k3 = [(n− 2)/3].
Example 2. Consider the linearly convergent series

Sn =
n∑

k=1

(0.8)k

k
,

which converges to S = ln 5 = 1.60943791 · · · as n → ∞. As shown in [41, p.84], Sn

has the following asymptotic expansion

Sn − ln 5 ∼ (0.8)n

n

(−4 + O(n−1)
)
, as n →∞,

which is a special case of (4.2) with ξ = 0.8. The corresponding numerical results are
presented in Table 5.2.
Example 3. Consider the logarithmically convergent series

Sn =
n∑

k=1

1
k2

,

which converges to S = π2/6 as n → ∞. Also from Euler-Maclaurin summation
formula, we have

Sn − π2

6
∼ n−1


−1 +

1
2
n−1 −

∞∑

j=1

B2jn
−2j


 , as n →∞.



17

Table 5.3
Numerical results of example 3.

n |Sn − S| |T (1,1)
k1

(Sn−2k1)| |T (1,2)
k2

(Sn−3k2)| |T (2,2)
k3

(Sn−3k3)|
10 0.0951 6634 0.0304 5977 0.0786 4240 0.0707 6553
20 0.0487 7082 0.0086 4618 0.0307 2823 0.0251 5819
30 0.0327 8394 0.0053 7525 0.0187 2470 0.0138 3597
40 0.0246 9010 0.0042 1038 0.0142 6067 0.0109 0439

It is obvious that (Sn) is a logarithmic sequence with the asymptotic expansion (4.1),
and the corresponding numerical results are shown in Table 5.3.

The above numerical examples indicate that our new algorithm indeed accelerates
the linear sequences having asymptotic expansion (4.2) (Example 1 and Example 2),
while fails in the logarithmic sequences in (4.1) (Example 3). That is to say, the
numerical results presented here coincide with the theoretical results given in section
4.

6. Conclusion and discussions. In this article, we construct the molecule so-
lution of an extended discrete Lotka-Volterra equation by Hirota’s bilinear method,
from which a new sequence transformation is derived. From the bilinear form of
this extended discrete Lotka-Volterra equation, a two dimensional difference equa-
tion which can be used as a convergence acceleration algorithm to implement the
new sequence transformation is generated. In addition, our new transformation is
nothing but an extension of the multistep Shanks’ transformation, and the multistep
ε-algorithm is just a special case of our new algorithm. Then we present a rigorous
convergence and stability analysis, which implies that our new method accelerates
both linear sequences (4.2) and factorial sequences (4.3) with good numerical stabil-
ity while fails in logarithmic sequences (4.1). Finally, we give numerical examples to
demonstrate some of the preceding theoretical results.
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