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Abstract We give discrete variational principle and integral algorithm for the finite dimensional 
Lagrange-Maxwell mechanico-electrical system, which includes nonconservative force and dissipative 
function.  The discrete variational principle and Euler-Lagrange equation are derived by introducing 
discrete action of the system.  The first integral algorithm is obtained by introducing the infinitesimal 
transformation with respect to generalized coordinates and electric quantities of the system.  This work 
firstly expands discrete Noether symmetry to mechanico-electrical dynamical systems.  A practical 
example is presented to illustrate these results.  
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1.  Introduction  
   Dynamical system with symmetry plays an important role in the mathematical modelling of a variety of 
physical and mechanical processes.  For the study of mechanical systems, it is useful to integrate the 
equations of motion, and then obtain the invariants of the systems.[1] Now the invariants are used 
effectively for the numerical integration of various equation in mathematical physics.[2,3] Here the 
approaches to find first integrals for continuous cases are extended to the discrete mechanical systems. 
   Based on certain application, discrete variational principles and discrete first integrals of mechanics 
have been discussed for a long time. The theory of discrete variational mechanics is set up in the 1960s: 
Jordan and Polak[4] first proposed the discrete variational mechanics in the optimal control literature. 
Cadzow[5]motivated and discussed discrete calculus of variations, and obtained the discrete Euler-Lagrange 
equation. In the discrete variational principle and the first integrals of the mechanical systems, some early 
work was done by some authors. Logan[6]obtained the first integrators in the discrete calculus of variation, 
and further studied the multi-freedom and higher-order problems. Maeda[7,8] has given the canonical 
structure and symmetries for discrete systems, and extended Noether’s theorem to the discrete case. Lee[9] 
first studied the version of regarding the time as a discrete dynamical variable.  Subsequently, this theory 
was then pursued to integrable systems by Veselov[10,11], Moser and Veselov[12]. Jaroszkiewiez and 
Norteo[13-15]furthermore extended to discrete mechanics, which include particle systems, classical field and 
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quantum theory. The variational view and numerical implementation of discrete mechanics is further 
developed by Wendlandt and Marsden[16], Kane, Marsden and Ortiz[17], Bobenko and Suris[18], [19-21]. 
Afterward, Marsden, Pekarsky and Shkoller[19,20] Bokenko and Suris[21] presented this problems on 
symmetry reduction of discrete Lagrangian mechanics and discrete Lagrangian reduction etc. Kane and 
Marsden, Ortiz and West[21]spreaded discrete variational integration algorithm to dissipative mechanical 
systems. Marsden and West[22] given a comprehensive and unified view of much of these works on both 
discrete mechanics and integration methods for mechanical systems. Recently, Guo, Wu et al[23-27] given 
many results on difference discrete variational principles, Euler Lagrange cohomology and sympletic, 
multisympletic structures and total variation in Hamiltonian Formalism and symletic-energy integrators etc. 

It is well known that discrete variational principles and first integrals of mechanical systems has 
become a field of intensive research activity for a long time. The increasing interest in this subject is 
mainly due to its dual character. On one hand, discrete variational principles and the first integrators of 
mechanical systems allow for the construction of integration schemes, that turn out to be numerically 
competitive in many problems. On the other hand, many of the geometric properties of mechanical systems 
in the continuous cases admit an appropriate counterpart in the discrete setting, which makes it a rich area 
to be explored. Both aspects of the discrete model play a key role in the explanation of the good behavior 
of the integrators deriver from it in a number of situations. 

Mechanico-electrical systems are so called for the systems in which the mechanical process and 
electromagnetic process are affected by each other. In general case, mechanico-electrical systems there are 
nonlinear term, then that it is very difficulty when we to obtain solution of the systems. From the point of 
view of applications to problems in mechanical systems case definitely deserves special attention. 
Moreover, discrete variational principle and integration method of mechanical systems appear as an 
indispensable tool in modern engineering technology domain. The purpose of this paper is to do first 
attempt which extend the discrete variational principle and the first integration algorithm of the mechanical 
systems to the case of mechanico-electrical systems. Firstly, we use discrete Lagrangian to define a discrete 
action, which includes generalized coordinates and generalized electric quantities. Secondly, we obtain 
discrete variational principle of Lagrange-maxwell mechanico-electrical systems when take variation to 
discrete Lagrangian, and further obtain discrete Euler-Lagranian equations. Thirdly, we derive the first 
integration method of Lagrange-maxwell mechanico-electrical systems when introduce the infinitesimal 
transformations with respect to generalized coordinates and generalized electric quantities. In a further 
work, we will test our algorithm in relevant examples.     
2. The discrete variational principle and Euler-Lagrange equation of mechanico-electrical systems 

These systems are called the mechanico-electrical dynamical systems when the mechanical process and 
electromagnetic process in the systems are related to each other．The mechanical part of N  particles 
component is described with the model of the mechanics. If the system is subjected to d  ideal, bilateral, 
holonomic constraints, the position in space of the system is determined by dNn −= 3  generalized 

coordinates ),,1( nsqs = . The electrodynamical part of electric circuit and magnetic circuit is described 

with the model of electricity by m generalized electric quantities. Suppose the mechanico-electrical system 
has m  closed circuits, every closed circuit consisted of the line conductor and capacitance, there is not 
any relation among electric circuits, and the electromagnetic process of closed circuits are not 

independent．Suppose ki  is the current, kV  is the electric potential, ke  is the electric quantity in the 



capacitance ( kk ie = ), kR  is the resistance, kC  is the capacitance, then the Lagrangian of the 

mechanico-electrical systems is  
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are electric field energy and magnetic field energy of the m-th circuit, respectively, in which Ck=Ck(qs) is 

capacitance of the k-th circuit, Lkr(k≠ r) is mutual inductance between k-th and r-th circuit, )( srkkr qLL = , 

and  Lkk is self inductance of the k-th return circuit. 
Equations of motion of the system are  
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Equation (3) is called the Lagrange-Maxwell equations those are two order n+m dimensions normal 
differential equations of the generalized coordinates and the generalized electric quantities. In Eq. (3) 
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and 
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where Fm is the dissipative function of the viscous frictional damping force, Fe is the lead-through electric 

dissipative function, sqF ∂∂−  and keF ∂∂−  are called dissipative forces, and "
sQ  is non-potential 

general force, ku is general electromotive force of kth circuit.  

Given a configuration space Q, a discrete Lagrangian of mechanico-electrical dynamical systems is a 
map 

                        RQQLd →×:                                          (6) 

In practice, Ld is obtained by approximating a given Lagrangian as we shall discuss later, but regard 
Ld as given for the moment. We regard Ld as a function of 2 nearby points (qk-1,qk;el-1,el) 

For the positive integer N, M, the action sum is the map RQS MN
d →+:  defined by  
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where qk-1,el-1∈Q and k is a nonnegative integer, and 11, −− −=∆−=∆ llkk eeeqqq . The action sum is 

the discrete analog of the action integral in mechanico-electrical dynamical systems. 
The discrete variational principle states that the evolution equations extremize the action sum given 



fixed end points q0, qN, e0,eM. Extremizing Sd over q1,…,qN-1;e1,…,eM-1 leads to as follows  
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From Eq.(8), we obtain the discrete Euler-Lagrangian equations as 
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For convenience later, equation (4) can been written as the following form  
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3．The first integral of discrete nonconservative mechanico-electrical systems 
   We now derive a discrete version of Noether’s theorem. For continuous systems, Noether’s theory 
states that symmetry of Lagrangian leads to a conserved quantity. We now derive a method of the first 
integral of discrete Lagrange-Maxwell mechanico-electrical dynamical systems via investigate of 



invariance of discrete Lagrangian of the systems.  
   For the discrete coordinates and electric quantity, one introduce the following infinitesimal 
transformations 
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Where 兠 is a small parameter, and kξ  and lη  are infinitesimal generators. We first give a definition as 

follows 

   Definition If there are function ( )llkk eeqqv ,,, 11 −− , for each nk ,,1=  and ml ,,1= , and 

subject to the nonconservative force Qd and general electromotive force Vd, then the following equations 
held  
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and Extremize Ld is written as the following form 
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In which ∆  is difference operator, i.e. kkk qqq −=∆ +1 , then we call the discrete Lagrangian as 

generalized difference invariant associated with infinitesimal transformation (12). 
   Based on discrete Lagrange-D’Alembert principle, we can present the following proposition: 
   Proposition For the infinitesimal transformation (12), the discrete Lagrange-Maxwell mechanico- 
electrical dynamical systems possess the first integral as 
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if discrete Lagrangian is a generalized difference invariant, and Eq.(10) hold.  
Proof: We, from Eqs. (13) and (14), have 
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Using Eq. (9) in Eq. (16), and further to reduce the result, one leads to  
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Then Eq. (15) is right. This is the desired result to us. 
It is been show that Eq. (15) is a connection of one order difference, which is a first integral of Euler- 

Lagrange equation (10) for the Lagrange-Maxwell mechanico-electrical systems. 
4. Numerical example 

 
Fig 1 expresses a circuit of electromotion sensor to 

record mechanical vibration. Where m denotes mass of 
armature, k denotes total hardly coefficient, L1=L1(x) denotes 
self-induction in the winding, and x is plumb displacement 
which is calculated from the position of originality length of 
winding in L1. This circuit composed with winding, battery 
and resistance. We using E denotes electromotive force of        
battery, R denotes resistance.                                      

Mechanical part and electrical part there being one freedom in system respectively, we taking armature 
displacement x and electric quantity q denote generalized coordinates, then kinetic energy and magnetic 
energy is 
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potential energy is  
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dissipation function is 
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We will use a Lagrangian that is of the standard form kinetic energy mins potential energy, namely 
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where qxx ,, and q  are real numbers, with the corresponding discrete Lagrangian given by 
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and discrete dissipation function given by 
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where xk-1,xk,qk-1 and qk are also real numbers. Then the discrete action sum is  
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Substituting of the Eq. (24) into Eq. (10), one obtains discrete Euler-Lagrange equation which is a second 



difference equation in the form  
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Discrete varitional principle of the mechanico-electrical system shows discrete Lagrangian  
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is a generalized difference invariant with respect to infinitesimal transformations 1,1 == ηξ , i.e. 

             εε +=+= ∗∗ qqxx ,                                                 (26) 

Therefore, using Eq. (10), we obtain a first integrator  
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When L1(x) is known form, we can give the function ( )11 ,,, −− llkk qqxxv . For example, if L1 (x)=const, then 

we can take function v in the form  

          ( ) EtRqqqLv kkk ++−−= −112
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