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Abstract: The proximal point algorithm (PPA) is a classical method for solving convex minimization, which F RSS
frequently finds an exact solution of implicit subproblems. To reduce the difficulty and complexity in e MET=E
computing implicit subproblems, the approximate proximal point method(APPA) establishes an approximate

solution of implicit subproblems under some approximate rules. In this paper, two directions were designed

by making greater use of historical information of approximate rules and the prediction-correction step

length extension with the random number series, and a hybrid descent method(HD Method) for convex

minimization was developed through convex combinations of the two directions with the random number

series. Subsequently we established the strong convergence of HD method for convex minimization under

some approximate rules. Moreover, it is also worth noting that the efficiency of HD method is confirmed

through a series of numerical experiments.
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