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Abstract

We construct a natural smooth compactification of the space of smooth genus-one curves with
k distinct points in a projective space. It can be viewed as an analogue of a well-known smooth
compactification of the space of smooth genus-zero curves, i.e. the space of stable genus-zero
maps Mo (P, d). In fact, our compactification is obtained from the singular space of stable

genus-one maps M ;(P™, d) through a natural sequence of blowups along “bad” subvarieties.
While this construction is simple to describe, it requires more work to show that the end result
is a smooth space. As a bonus, we obtain desingularizations of certain natural sheaves over the

“main” irreducible component ﬁik(}?", d) of My ,(P",d). A number of applications of these
desingularizations in enumerative geometry and Gromov-Witten theory are described in the
introduction, including the second author’s proof of physicists’ predictions for genus-1 Gromov-
Witten invariants of a quintic threefold.
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1 Introduction

1.1 Background and Applications

The space of degree-d genus-g curves with k distinct marked points in P” is generally not compact,
but admits a number of natural compactifications'. Among the most prominent compactifications
is the moduli space of stable genus-g maps, M, x(P", d), constructed in [Gr] and [FuP]. It has found
numerous applications in classical enumerative geometry and is a central object in Gromov-Witten
theory. However, most applications in enumerative geometry and some results in GW-theory have
been restricted to the genus-zero case. The reason for this is essentially that the genus-zero moduli
space has a particularly simple structure: it is smooth and contains the space of smooth genus-zero
curves as a dense open subset. On the other hand, the moduli spaces of positive-genus stable
maps fail to satisfy either of these two properties. In fact, ﬁg,k(ﬂ”", d) can be arbitrarily singular
according to [V2]. It is thus natural to ask whether these failings can be remedied by modifying
M, 1(P", d), preferably in a way that leads to a range of applications. As announced in [VZ] and
shown in this paper, the answer is yes if g=1.

We denote by 9 (P, d) the subset of My 1 (P", d) consisting of the stable maps that have smooth
domains. This space is smooth and contains the space of genus-one curves with k distinct marked
points in P" as a dense open subset, provided d > 3. However, 9y 1 (P",d) is not compact. Let
ﬁ(ik(lf”",d) be the closure of My 1 (P", d) in the compact space My x(P",d). While ﬁgk(ﬂ”", d) is
not smooth, it turns out that a natural sequence of blowups along loci disjoint from 9, ;(P", d)
leads to a desingularization of Wt(l)vk(]?", d), which will be denoted by ﬁ?vk(]}””, d).

The situation is as good as one could possibly hope. A general strategy when attempting to desin-
gularize some space is to blow up the “most degenerate” locus, then the proper transform of the
“next most degenerate locus”, and so on. This strategy works here, but with a novel twist: we
apply it to the entire space of stable maps ﬁl,k(]}m,d). The most degenerate locus is in fact an
entire irreducible component, and blowing it up removes it2. Hence one by one we erase the “bad”

'We call a space M a compactification of M if M is compact and contains M. In particular, M need not be dense
in 9.

2Blowing up an irreducible component of a stack will result in the component being removed (or “blown out of
existence”), and the remainder of the stack is blown up along its intersection with the component in question.



components of My (P, d). Each blowup of course changes the “good” component ﬁgk(]}””,d),

and miraculously at the end of the process the resulting space ﬁ?k (P™, d) is nonsingular. We note
that this cannot possibly be true for an arbitrary g, as 9, ,(P", d) behaves quite badly according
to [V2]. The sequential blowup construction itself is beautifully simple. It is completely described
in the part of Subsection 1.2 ending with the main theorem of the paper, Theorem 1.1. However,
showing that 931(1)7 x(P",d) is in fact smooth requires a considerable amount of preparation (which
takes up Subsections 2.1-4.2) and is finally completed in Subsection 4.3.

Since the smooth space E/)Jvl(l)vk(]P’”, d) is obtained from ﬁgk(]?", d) by blowing up along loci disjoint
from My 1 (P", d), ﬁ? w(P",d) is a smooth compactification of 9y 4 (P",d). One would hope that
there is a modular intérpretation of this new compactification, and that one could then for exam-
ple use this interpretation to construct the space Dﬁ(l) x(P", d) directly and show that it is smooth.
Unfortunately, we have not managed to do this. 7

The desingularization 93?? p (P, d) of ﬁ?,k(ﬂ”", d) possesses a number of “good” properties and has
a variety of applications to enumerative algebraic geometry and Gromov-Witten theory. It has al-
ready been observed in [Fo] that the cohomology of zmg{ «(P",d) behaves in a certain respect like the

cohomology of the moduli space of genus-one curves, /\_Al,k. The space E/)Jvl(l) x(P",d) can be used to
count genus-one curves in P, mimicking the genus-zero results of [KM] and [RT] (though perhaps
not their simple recursive formulas). Proceeding analogously to the genus-zero case (e.g. as in [P],
[V1], and [Z3]), Theorem 1.1 can then be used to count genus-one curves with tangency conditions
and singularities. In all cases, such counts can be expressed as integrals of natural cohomology
classes on ﬁgk(]}’m,d) or ﬁ?k( ™ d). Integrals on the latter space can be computed using the

localization theorem of [ABo], as E/)Jvl(l)vk(]P’", d) is smooth and inherits a torus action from P™ and
My (P, d).

We next discuss two types of applications of Theorem 1.1 in Gromov-Witten theory, as well as a
bonus result of this paper, Theorem 1.2. It is shown in [Z4] and [Z6] that the space ﬁ?vk(]}’m, d)
has a natural generalization to arbitrary almost Kéhler manifolds and gives rise to new symplectic
reduced genus-one G W-invariants. These reduced invariants are yet to be constructed in algebraic
geometry. However, the spaces im(f (P, d) do possess a number of “good” properties and give rise
to algebraic invariants of algebraic 7manifolds; see the first and last sections of [VZ]. It is not clear
whether these are the same as the reduced genus-one invariants, but it may be possible to verify
this by using Theorem 1.2.

Theorem 1.1 also has applications to computing Gromov-Witten invariants of complete intersec-
tions, once it is combined with Theorem 1.2. Let a be a nonnegative integer. For a general
s€ HO(P", Opn(a)),

Y =s71(0) c P"

is a smooth hypersurface. We denote its degree-d GW-invariant by ngk(d; ), ie.

GW;k(d;w)zw, [ﬁg,k(Y,d)]”"> for all YeH* (M, (Y, d); Q).



Suppose 4 is the universal curve over iﬁg,k(]}””, d), with structure map 7 and evaluation map ev:

ev

U P
ﬁg,k’(IPm’ d)
It can be shown that
GW{ 1 (d;9) = (¢ - e(meev* Opn(a)), [Mo ke (P, d)]) (1.1)

for all v € H*(OMy x(P",d); Q); see [Bea] for example. The moduli space Mg x(P", d) is a smooth
orbifold and L
eV Opn(a) — My 1 (P", d)

is a locally free sheaf, i.e. a vector bundle. The right-hand side of (1.1) can be computed via the
classical localization theorem of [ABo]. The complexity of this computation increases quickly with
the degree d, but it has been completed in full generality in a number of different ways; see [Ber],
[Gal, [Gi], [Le], and [LLY].

If n=4, so Y is a threefold, then

W) = NS GWYL(d50) + (0 el Omn (@), [T, (B, 0)]) (12)

for all ¢ € H*(9 (P4, d); Q); see [LZ, (1.5) and (1.12)]. This decomposition generalizes to arbi-
trary complete intersections Y and perhaps even to higher-genus invariants. The sheaf

7aev* Opn (@) — Dy (P4, d) (1.3)

is not locally free. Nevertheless, its euler class is well-defined: the euler class of every desingulariza-
tion of this sheaf is the same, in the sense of [Z5, Subsect. 1.2]. This euler class can be geometrically
interpreted as the zero set of a sufficiently good section of the cone

—0
Vlli,k — ml,k(]}b47d)7

naturally associated to the sheaf (1.3)3; see the second part of the next subsection and Lemma 5.1.

One would hope to compute the last expression in (1.2) by localization. However, since the variety

ﬁg,k(]}”‘l, d) and the cone Vf . are singular, the localization theorem of [ABo] is not immediately
applicable in the given situation. Let

7 (P d) — Dy 4 (P, d)

be the projection map. As a straightforward extension of the main desingularization construction
of this paper, we show that the cone

ﬁ*Vii,k — ﬁ(1),1<;( 1.d)

. . N 50 .
3Vf7k is a variety such that the fibers of the projection map to Smlyk(P‘l, d) are vector spaces, but not necessarily
of the same dimension.



contains a vector bundle B .
Vii,k - m(l],k( 47d)
of rank da = rk Vﬁkbﬂ; L (P4,d)> see Theorem 1.2. It then follows that
« =30 _ =0
(¢ - e(mev*Opn(a)), [0 (P4, d)]) = (¥ - e(Vi}), [ (P, d)])

= (7 e(Vi), [T (P4, d)]).

The last expression above is computable by localization. In fact, it is computed explicitly in [Z8],
confirming the prediction of [BCOV] for genus-one GW-invariants of a quintic threefold.

(1.4)

Remark: Another approach to computing positive-genus GW-invariants has been proposed in [MaP].
In contrast to the approach of [LZ], it applies to arbitrary-genus invariants, but can at present be
used to compute invariants of only low-dimensional and/or low-degree complete intersections.

The main desingularization construction of this paper is the subject of Section 4, but its key aspects
are presented in the next subsection. The construction itself and its connections with Sections 2
and 3 are outlined in Subsection 1.3. We suggest that the reader return to Subsections 1.2 and 1.3
before going through the technical details of the blowup constructions in Sections 2-4. In the next
subsection, we also describe a natural sheaf over 931(1)7 (P, d) which is closely related to the sheaf
mev*Opn(a) over ﬁ%k(ﬂj’",d). It is shown to be locally free in Section 5. Finally, all the data
necessary for applying the localization theorem of [ABo] to ﬁﬁ(l)k(IP’",d) and e(fiﬁk) is given in
Subsection 1.4. In Appendix A, we list the most commonly used notation.

Throughout this article we work with Deligne-Mumford stacks. They can also be thought of as
analytic orbivarieties. As we work with reduced scheme structures throughout the paper, we will
call such objects simply varieties. Also, all immersions will be assumed to be from smooth varieties.

The authors would like to thank Jun Li for many enlightening discussions and the referee for a
timely response with many detailed suggestions.

1.2 Description of the Desingularization

The moduli space ﬁl,k(]}””, d) has irreducible components of various dimensions. One of these com-
ponents is ﬁ(i x(P",d), the closure of the stratum 9t; ,(IP", d) of stable maps with smooth domains.

We now describe natural subvarieties of 9y x(P", d)> which contain the remaining components of
My ,(P", d). They will be indexed by the set

Ay (d, k) = {a:(m; Jp,JB): m€Z+, m<d; [k]:JPLlJB},
where k] ={1,...,k}.

For each o € Ay(d, k), let 90 »(P™,d) be the subset of My (P", d) consisting of the stable maps
[C,u] such that C is a smooth genus-one curve E with m smooth rational components attached

4The notion of “immersion” is often called “unramified” in algebraic geometry.

5In fact, these will be substacks of the stack 9, ,(P™, d). They can also be thought of as analytic sub-orbivarieties
of the analytic orbivariety ﬁlyk(P’ﬂ d). As we work with reduced scheme structures throughout the paper, we will
call such objects simply varieties.



do

2
5 (0,1) o=(3;{2},{1})
dy (0, d2) dy+dy+ds=d
ds dy,dz,d3>0
a0/ 104

Figure 1: The domain of an element of My , (P, d)

directly to E, u|g is constant, the restriction of u to each rational component is non-constant, and
the marked points on E are indexed by the set Jp. Here P stands for “principal component”, B
stands for “bubble component”, and A stands for “admissible set”. Figure 1 shows the domain of
an element of My ,(P",d), where o =(3; {2}, {1}), from the points of view of symplectic topology
and of algebraic geometry. In the first diagram, each shaded disc represents a sphere; the integer
next to each rational component C; indicates the degree of ul¢;. In the second diagram, the compo-
nents of C are represented by curves, and the pair of integers next to each component C; shows the
genus of C; and the degree of ul¢,. In both diagrams, the marked points are labeled in bold face.
Let My ,(P",d) be the closure of My ,(P", d) in My ,(P", d). The space My ,(P",d) has a number
of irreducible components. These components are indexed by the splittings of the degree d into m
positive integers and of the set Jp into m subsets. However, we do not need to distinguish these
components.

It is straightforward to check that

My (B, d) =Dy (P d) U | Tuq (P, d).
oc€A;(d,k)

Dimensional considerations imply that if o = (m;Jp, Jp) € A1(d, k) and m <n, then My (P, d)
is a union of components of My 1, (P",d). The converse holds as well: 9y ,(P",d) is contained in
ﬁg,k(ﬂ”",d) if m>n by [Z4, Theorem 2.3]. However, we will use the entire collection A;(d, k) of

subvarieties of My 1 (P", d) to construct ﬁ? (P, d). The independence of the indexing set A1 (d, k)
of n leads to a number of good propertiesj being satisfied by our blowup construction; see (2) of
Theorem 1.1 and the second part of this subsection. It may also be possible to use this construction
to define reduced genus-one GW-invariants in algebraic geometry; this is achieved in symplectic
topology in [Z6].

We define a partial ordering < on the set A;(d, k) by
o'=(m'; Jp, Jg) < o=(m; Jp, JB) if o'#£0, m'<m, and JpCJp. (1.5)

This relation is illustrated in Figure 2, where an element o of A;(d, k) is represented by an element
of the corresponding space My »(P",d). We indicate that the degree of the stable map on every
bubble component is positive by shading the disks in the figure. We show only the marked points
lying on the principal component. The exact distribution of the remaining marked points between
the components is irrelevant.



<

Figure 2: Examples of partial ordering (1.5)

Choose an ordering < on A;(d, k) extending the partial ordering <. The desingularization
7 0 (B, d) — M, (P", d)

is constructed by blowing up 9, ;(P", d) along the subvarieties ﬁg (P™, d) and their proper trans-
forms in the order specified by <. In other words, we first blow up 9, ;(P", d) along M, 5, (P",d),
where

omin = (1;0, [k])

is the smallest element of Ai(d, k). We then blow up the resulting space along the proper transform
of My 4, (P", d), where o is the smallest element of A;(d, k) —{omin}. We continue this procedure
until we blow up along the proper transform of Mt . (P",d), where

Omax = (d; [k],0)

is the largest element of A4 (d, k). The variety resulting from this last blowup is the proper transform

ﬁ%k(l@",d) of ﬁ?vk(ﬂ””,d), as all other irreducible components of 90 j(P", d) have been “blown
out of existence”.

The first interesting case of this construction, i.e. for ﬁ?o(]}ﬂﬁ), is described in detail in [VZ].

The space ﬁ%o (P2;3) is a smooth compactification of the space of smooth plane cubics. It has a
richer structure than the naive compactification, P?, does.

Theorem 1.1 Suppose n,d€Z*, k€Z*, < is an ordering on the set A1(d, k) extending the partial
ordering <, and

~ . om n an? n
e 9:)’t(l),k( ’d) - 9:nl,k(]P) 7d)

1s the blowup of ﬁ?’k(ﬁ‘m, d) obtained by blowing up My 1 (P",d) along the subvarieties My ,(P", d)
and their proper transforms in the order specified by <.
(1) The variety sm‘{’k(IPm, d) is smooth and is independent of the choice of ordering < extending <.

2) For all m<n, the embedding . P™. d o P™, d) lifts to an embedding
1Lk 1,k
my (P, d) — MY, (P", d)

and the image of the latter embedding is the preimage of ﬁ?’k(ﬂ”m,d) under .

(3) The blowup locus at every step of the blowup construction is a smooth subvariety in the corre-
sponding blowup of My (P, d).

(4) All fibers of T are connected.



Remark: While in Section 4 we analyze the blowup construction starting with the reduced scheme
structure on My 1 (P", d), Theorem 1.1 applies to the standard scheme structure on My ,(P",d) as
well. It is known that the space

') _an0 n o ')
gﬁﬁc(P d) = 9:Ttl,lf(]P) ,d) — U mLU(P . d),
c€A1(d,k)

consisting of stable maps with no contracted genus-one component, is a smooth stack (as such
maps are unobstructed, see for example [V1, Prop. 5.5(c)]). Thus, its scheme-theoretic closure,
ﬁ?, w(P",d), is reduced. During the blowup process all other components of M (P, d) are “blown
out of existence”, as is any non-reduced scheme structure.

In Theorem 1.1 and throughout the rest of the paper we denote by ZT the set of nonnegative
integers. We analyze the sequential blowup construction of Theorem 1.1 in Section 4 using the
inductive assumptions (11)-(I15) of Subsection 4.3. One of these assumptions, (I3), implies the
second part of the first statement of Theorem 1.1, as different choices of an ordering < extending
the partial ordering < correspond to different orders of blowups along subvarieties that are disjoint.
For example, suppose

op = (2;0,{1,2}), o1 = (2;{1},{2}), and o2 = (2{2},{1}).

While My ,, (P7, d) and My 4, (P", d) do intersect in My 2(P", d), their proper transforms are disjoint
after the blowup along ﬁl,gw (P™,d). The second statement of Theorem 1.1 follows immediately
from the description of the blowup construction in this and the next subsections, as each step of
the construction commutes with the embeddings of the moduli spaces induced by the embedding

P —P".

The main claim of this paper is that ﬁ?k (P™,d) is a smooth variety. The structure of Em‘ﬁ (P™,d)

is well understood; see [V1, Prop. 5.5(c)] for example. In particular, i)ﬁ‘ﬁ(]P’”, d) is smooth. Below

we describe the structure of the complement 8971?7,6 (P™,d) of i)ﬁ‘ffi (P™,d) in zm‘f,k (P, d).

If J is a finite set and ¢ is a nonnegative integer, we denote by M g,7 the moduli space of stable
genus-g curves with |J| marked points, which are indexed by the set J. Similarly, we denote by

M, 7 (P", d) the moduli space of stable maps from genus-g curves with marked points indexed by J
to P If j€J, let

evj: My (P, d) — P"
be the evaluation map at the marked point labeled by j.
If o=(m; Jp, Jp) is an element of A;(d, k), we define
ﬂg;p = Ml’[m]ujp and
My (P, d) = {(bl,...,bm) e [T 1oyus, (B, di): di>0. Y di=d; | | Ji=Js;
i=1 i=1 i=1

evo(bi, ) =evo(by,) Vit, iz € [m]}.



dy (0,0) 0.d) o=(3;0,0)
s U2
0,d di+da+ds+ds=d
ds (0,0) (0.d) dy.dy. ds, dy>0
(1,0) (0, dy)

Figure 3: A point in MM »(P", d) CIMy o(P", d) with two preimages under 7,

There is a natural node-identifying surjective immersion
Lot Mo p XMy, g(P",d) — MMy »(P",d) C Iy (P, d).

As before, P denotes “principal component”, and B denotes “bubble components”. This immersion
descends to the quotient:

lo: (MU;P XﬁU;B(Pn’ d)) /GU — ﬁI,CT(IPW’ d)?

where G, =.5,, is the symmetric group on m elements. If m >3, 7, is not an isomorphism as some
subvarieties of the left side are identified. An example of a point on the right which is the image of
two points on the left is given in Figure 3. In addition to the conventions used in Figure 1, in the
first, symplectic-topology, diagram of Figure 3 we leave the components of the domain on which the
map is constant unshaded. The subvarieties identified by the map 7, get “unidentified” after taking
the proper transform of 9% »(P", d) in the blowup of 90 x(P",d) at the step corresponding to

¢ =max {o'€A(d,k): o' <0}.

This is insured by the inductive assumption (713) in Subsection 4.3 and implies the third statement
of Theorem 1.1. For example, if m =3 and k=0 as in Figure 3, the “identified” subvarieties are
“unidentified” after the blowup of the proper transform of 9y (5.9 9) (P™, d).

Remark: Throughout the paper, we use 9 (fraktur font) to denote moduli spaces of stable maps,
of genus-zero or one, into P". We use M (calligraphic font) to denote moduli spaces of stable curves.

For each i€ [m], let
m: Mop(P",d) — | | Mo o300, (P i)
d;>0,J,CJp

be the natural projection onto the ith component. We put

m
*
FU;B = @ﬂ'i LO;
i=1

where Ly — ﬁo,{o}u J;(P™,d;) is the universal tangent line bundle for the marked point 0. In
Subsections 2.3 and 3.4, we construct blowups

Toip =M1 (] up) : Moip =M gp) — Mop =My, and
frU;BEﬂ'O,([m],JB) . E)JIU;B(]P’”, d)zﬂﬁo,([m]JB)(]P’”, d) — ]P)FU;B E]P)F([m],JB)'



— lo

Mop X Zpp(Phd) ——— M, (P"d)

)

Jﬁ'o;P lﬁ-o;B Jﬁ'

MU;P X ﬁo‘;B(]Pm,d) “ ﬁ17k(Pn7d)

Figure 4: Changes in the boundary structure of ﬁ?,k (P™, d) under the desingularization

We also construct a section
250;B = 5([m},JB) el (ﬁa;B (]Pm7 d)u E:;;B ®fr;;B7T]>IkDFg;BeVEk)TPn) ) (16)

where
evo: My p(P",d) — P and pE,. 5 PFop — My 5(P", d)

are the natural evaluation map and the bundle projection map, respectively, and
Eop=E — M, 5(P", d) =DMy (1) (P", d)
is a line bundle. This line bundle is the sum of the tautological line bundle
Yo:B — PFy.B

and all exceptional divisors. The section D,.p is transverse to the zero section. Thus, its zero set,

ZU;B(]an d) D;IB(O) C ﬁU;B(Pn7 d)> (17)

is a smooth subvariety. The boundary aifT)vT(lJ’k( " d) of ifDVT(le (P™,d) is a union of smooth divisors:

oMY (P",d) = | ) Z,(P",d)/Gy,  where Z,(P",d) = Mypx Zgip(P", d);
oc Ay (d,k)

see the inductive assumptions (I7) and (I8) in Subsection 4.3 and Figure 4. By the inductive
assumption (16) and (I7), the normal bundle of Z,(P", d) in ﬁlvk(ﬂ”", d) is the quotient of the line
bundle - B
Lo;p ® T5.5Y0;8 — Moyp X Z5:5(P", d)
by the G,-action, where s .
Lo p=L — Myp E-/\/ll,([m],Jp)

is the universal tangent line bundle constructed in Subsection 2.3. Thus we conclude that §JVT? w(P".d)

is smooth, as the open subset Sm‘ffi (P™, d) is smooth, and its complement is a union of smooth divi-
sors whose normal sheaves are line bundles (i.e. with their reduced induced scheme structure, they
are Cartier divisors).

Remark 1: In the Gromov-Witten theory, the symbol E is commonly used to denote the Hodge
vector bundle of holomorphic differentials. It is the zero vector bundle in the genus-zero case.

10



The line bundles over moduli spaces of genus-zero curves and maps we denote by E, with various
decorations, play roles analogous to that of the Hodge line bundle over moduli spaces of genus-one
curves. The most overt parallel is described at the end of Subsection 2.2. There are deeper, more
subtle, connections as well; compare the structural descriptions of Lemmas 3.8 and 4.10, for exam-
ple.

Remark 2: Throughout this paper, the symbols D and ®, with various decorations, denote vector
bundle sections related to derivatives of holomorphic maps into P" and of holomorphic bundle
sections. In most cases, such bundle sections are viewed as vector bundle homomorphisms.

The final claim of Theorem 1.1 follows from the fact that ﬁgk(ﬂ”", d) is unibranch (locally irre-
ducible). If 7: Y — X is a surjective birational map of irreducible varieties, and 7 ~1(z) is not
connected for some x € X, then X is not unibranch at =x.

We next describe a desingularization of the sheaf 7,ev*Opn(a) and of the corresponding cone Vﬁk
over ﬁgk (P",d). Let =7*$( be the pullback of & by 7:

~ T ev

U

R

n T a0 n
my . (P yd) ——= My 1, (P", d).

)

]P)TL

For each o€ Ay(d, k), let o
VO’;B — S):ncr;B(]Pm) d)

be the cone induced by the sheaf Opn(a), similarly to V;k; see Subsection 5.2 for details. It is a
vector bundle of rank da+1. We note that
~*yd * [ ~% *
T Vl,k"jﬁ(pn’d) = 7TB{wU;BTrIP’Fg;BVU;B|§J;B(Pn7d)}/Gcra
where - B B
TRB: Mg;p XZU;B(IP)”, d) — U;B(]Pm, d)

is the projection map. Let £=~*®% where v—P" is the tautological line bundle.

Theorem 1.2 Suppose d,n,a€Z" and ke Z*.
e sheaf m,*ev*Opn(a) over ,d) is locally free and of the expected rank, i.e. da.
1) The sheaf 7.7 ev*O MO (P, d) is locally free and of th d rank, i.c. d

(2) If ﬂik Cﬁ*V{l’k is the corresponding vector bundle and o € A1(d, k), then there exists a surjective
bundle homomorphism

L * . * ~ % * *
DoiB: WU;BW]P’FU;BVWB|ZU‘B([[J>n,d) — K. ®7TU;B7T]P’FU;BGVO‘C

over ZNU;B(]P’", d) such that B
Vii,k‘z}(w,d) = (75 ker D4.8) /G

(8) T ev*Opn(a) = mev*Opn(a) over ﬁ?,k(]}’m, d).
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The first two statements of this theorem can be used to compute expressions like (1.4) via the
classical localization theorem and the short exact sequence (1.10) below. We prove them by working
with the cone

p: mTl,k(ﬁ, d) — mLk(]Pm,d).

The sheaves m.ev*Opn(a) and m, 7 ev*Opn (a) are the sheaves of (holomorphic) sections of

— _0 n
Vi =My (L, d — My, (P", d)

”ﬁt?,k(w,co
and ﬁ*Vf’k, respectively; see Lemma 5.1. In Subsection 5.4, we lift the blowup construction of
Subsection 3.4 to M (L, d). In particular, we blow up My x(L,d) along the subvarieties

My o (L,d) =p " (M ,(P",d)), o€ Ai(d, k),

and their proper transforms. The end result of this construction, which we denote by ﬁ? w(L,d),

is smooth for essentially the same reasons that UTt(l)vk,(]P’”, d) is. The only additional input we need

is Lemma 5.7, which is a restatement of the key result concerning the structure of the cone Vf &
obtained in [Z5]. The bundle
Be I (L, d) — 90, (P, d)

of vector spaces of the same rank contains g)JvI(l) x(P",d) as the zero section. Thus, p is a vector
bundle. There is a natural inclusion

MY (L, d) — 7Ty 4 (L, d).

All sections of 7*90 (L, d) must in fact be sections of if)JvT(le (L,d) and thus the sheaf 7, 7*ev*Opn (a)
is indeed locally free. The bundle map

Do:8 =D (m).Jp)

of the second statement of Theorem 1.2 is described in Subsection 5.2. It is the “vertical” part
of the natural extension of the bundle map D,.p from stable maps into P™ to stable maps into L.
Finally, the last statement of Theorem 1.2 is a consequence of the last statement of Theorem 1.1;
see Lemma 5.2. At this point, this observation does not appear to have any applications though.

Remark: By applying the methods of Section 5 and of [Z5], it should be possible to show that the
standard scheme structure on M (P",d) is in fact reduced.

1.3 Outline of the Main Desingularization Construction

The main blowup construction of this paper is contained in Subsections 4.2 and 4.3. It is a sequence
of idealized blowups along smooth subvarieties. In other words, the blowup locus ﬁ‘;;l at each
step comes with an idealized normal bundle A'9¢. Tt is a vector bundle (of the smallest possible
rank) containing the normal cone N for ﬁ?;l After taking the usual blowup of the ambient space

along ﬁi;l, we attach the idealized exceptional divisor
gide = ]P)Nide
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along the usual exceptional divisor _
E=PN C &

The blowup construction summarized in Theorem 1.1 is contained in the idealized blowup construc-
tion of Section 4. The latter turns out to be more convenient for describing the proper transforms

of ﬁgk(ﬂ”", d), including at the final stage, i.e. ﬁ?k( " d).

The ambient space ﬁ‘fk at each step o € {0}U.A;(d, k) of the blowup construction contains a
subvariety ﬁia* for each o* € A;1(d, k). We take W‘ia to be the idealized exceptional divisor for
the idealized blowup just constructed, i.e. along ﬁi;l If o*¥ <o or o* >0, ﬁio* is the proper

transform of ﬁio* or My o+ (P, d), respectively.

Every immersion ¢, of Subsection 1.2 comes with an idealized normal bundle N, L‘jf It is a vector
bundle of the smallest possible rank containing the normal cone to the immersion ¢, (see Defini-
tion 4.1). It is given by

N = P rpLierpriLo i o = (m*Jp, Jp),
1€[m*]

where o o o o
TP, TB: MU*;P X fJJtU*;B(]Pm7 d) — MU*;Pa E);na*;B(]Pma d)

are the component projection maps. In the case of Figure 1, N, L‘jf is a rank-three vector bundle
encoding the potential smoothings of the three nodes. At each step ¢ of the blowup construction,
Lo+ induces an immersion (g o+ onto ﬁ?a Like the domain of ¢4+, the domain of ¢4 .+ splits as
a Cartesian product. If ¢* > o, the second component of the domain does not change from the
previous step, while the first is modified by blowing up along a collection of disjoint subvarieties, as
specified by the inductive assumption (19) in Subsection 4.3. The idealized normal bundle N, Lifea* is
obtained from ./\/'Liff1 _. by twisting the first factor in each summand by a subset of the exceptional
divisors, as speciﬁed by the inductive assumption (/11). These blowup and twisting procedures
correspond to several interchangeable steps in the blowup construction of Subsection 2.3. For
o* =0, the first component in the domain of ¢,_1 , has already been blown up all the way to M,.p

and the first component of every summand of N, Liff _ has already twisted to the universal tangent
line bundle L, i.e.

1,

Nigtio = @ mpl@npmi Lo = mpl @ T Fop — MU;P x My, 5(B", d),

lo—1,0

i€[m]
if c=(m; Jp, Jp). In particular, the domain of ¢4,

]PNide = MVU;P X]P)FO';B7

lo—1,0

still splits as a Cartesian product! The idealized normal bundle for ¢, , is the tautological line for
]P)'/\/’th(riﬁl,o" .

NS = e =mpLOTRYF, 5 = THLOTE0,5-
On the other hand, if 0* < o, the domain of ¢, ,+ is obtained from the domain of t;_1 5+ by
blowing up the second component along a collection of disjoint subvarieties, as specified by the
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inductive assumption (I/4) in Subsection 4.3. This corresponds to several interchangeable steps
of the blowup construction in Subsection 3.4. By the time we are done with the last step of the
blowup construction in Subsection 4.3, PF;.p has been blown up all the way to M. g(P",d). In
the o* <o case,

NS = NEE, L
since ﬁi;i is transverse to ﬁi;l
We study the proper transform ﬁi,(o) of ﬁgk (P™,d) in ﬁ‘;k by looking at the structure of
Z%. = L;;* (ﬁi(o)).
Given a finite set J, there are natural bundle sections
sj € DMy, j; L;QE"), jel, and Do € T' (Mo (o307 (P", d); L @evgTP™);
see Subsections 2.2 and 3.2, respectively. By Lemma 4.10, the intersection of
20 = 17 () (P, d)
with the main stratum M+, p X My« 5(P", d) of My+.p x M. 5(P?, d) is
20, = {be Mye,p xMye, (P, d) : ker Dy |, # {0} },
where

Dy € T (Mge;p X Mgr,p(P", d); Hom(N, 9, mpE* @ rhevi TP™)),

Do+ = ps;i@mpT; Do, Vie[m].

7 Li@npm; Lo

In addition, if N'Z7. C/\/Lij‘:; is the normal cone for the immersion ¢4 5+[z- into ﬁi(o), then

*

NZD.

= ker D~

20 20
o o*

and N Z0. is the closure of N'Z0.| ., in N’jff By Lemma 4.5, N Z9. is still the closure of N Z2.

but now in NV/4¢ _ for all o <o*. In Subsection 2.3, we construct a non-vanishing section
0,0

200

5 € T(My j;L*®E*) ~ T'(My_;C)

obtained by twisting s; by some exceptional divisors. Since §; agrees with s; on Mgy+.p, we can
replace s; with §; in the descriptions of D+, Zg*, and N Zg* above. In particular, N'ZJ. i

20,

o

the closure of

NZ2.

g

z0 = mpL®my ker DU*;B‘ZO C npL®nsFo+.B, where
o* o*

Da*;B € F(ﬁa*;B(Pn, d); HOH](FU*;B, eVST]P’")), 'Dg*;B

vizo =T Do, Vi€m']
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The bundle homomorphism D+, p induces a section
Do € T(PFye3; V. p®@Tp, . evoTP").

By the previous paragraph and Lemma 4.5, Z%. is the closure of

Mo'*;P X ,50_1(0)QPF0*;B‘932 v s C ./f\/lva*;p X ]PFU*;B and

Pn 7d)

NZg* = 7T73L®7T*B'Yg;B |Z_c: .

Since ﬁ? L (P, d) Eﬁ({‘};‘"‘x (P™, d) is the proper transform of ﬁi*(o) in ﬁ‘fffax,

Zow =1 " (537(1),6( ”,d))

Omax,0*

is still the closure of

MU*;p X 50_1(0)QPF0* - MU*;P X ﬁa*;B(]va d)

;B‘mo*;B(and)
On the other hand, in the process of constructing the blowup ﬁg; g(P",d) of PF,«.p in Subsec-
tion 3.4, we also define a bundle section

250*;B € P(ﬁa*;B(Pna d)7 E:’;;B ®%;;BWE’F0*4BeVSTPn)
by twisting 50 by the exceptional divisors. In particular,

Dg*;B(O)mPFg*§B|§mg*;B(]Pm,d) = DO (O)QPFUﬁB‘DﬁU*;B(P",d)'

Since Dy+.p is transverse to the zero set, we conclude that

Zor = Moeip x DL 5(0),

o*;

as stated in Subsection 1.2.

Finally, the role played by the blowup construction of Subsection 2.4 in the blowup construction
of Section 3 is similar to the role played by the construction of Subsection 2.3 in the construction
of Section 4. In the case of Section 3, we blow up a moduli space of genus-zero stable maps,
PFx, ), along certain subvarieties 93?8, o and their proper transforms. These subvarieties are images
of natural node-identifying immersions ¢g ,. The domain of ¢ , splits as the Cartesian product of
a moduli space of genus-zero curves and a moduli space of genus-zero maps, defined in Subsec-
tions 2.4 and 3.3, respectively. As we modify 93?87 o by taking its proper transforms in the blowups
of PFy, sy constructed in Subsection 3.4, the first factor in the domain of the corresponding im-
mersion changes by blowups along collections of smooth disjoint subvarieties, as specified by the
inductive assumption (I6). This change corresponds to several interchangeable steps in the blowup
construction of Subsection 2.4. By the time we are ready to blow up the proper transform of 53?8, 0
the first component of the domain of the corresponding immersion has been blown up all the way
to Mg p, the end result in the blowup construction of Subsection 2.4.
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In the blowup construction of Subsection 3.4, we twist a natural bundle section
250 € F(]P’F(N,J);’y&”]) ®7TI>E»F(N7J)6V8TP”)
by the exceptional divisors to a bundle section
D,z € T(Mw ) (P, d); E* @75 0 1y, VO TE").

The two sections enter in an essential way in the main blowup construction of this paper. It is
also essential that D(N 7) 1s transverse to the zero set. The section Dy is transverse to the zero set

outside of the subvarieties 97107 0,0 and vanishes identically along zm . Its derivative in the normal
direction to ¢g , is described by Lemma 3.11, using Lemma 3.8. The bundle sections s; over a moduli
space of genus-zero curves defined in Subsection 2.2 and modified in Subsection 2.4 enter into the
expression of Lemma 3.8. In fact, this expression is identical to the expression for D,+ above,
i.e. in the genus-one case. We use Lemma 3.11 to show that with each newly twisted version of 250
is transverse to the zero set outside of the proper transforms of the remaining subvarieties ﬁ& 0
i.e. the ones that have not been blown up yet; see the inductive assumption (I4) in Subsection 3.4.
In particular, at the end of the blowup construction of Subsection 3.4, we end up with a twisted
version of Dy, which we call D(N 7), which is transverse to the zero set.

1.4 Localization Data

Suppose the group G = (S1)"! or G = (C*)"*! acts in a natural way on the projective space P™.
In particular, the fixed locus consists of n+1 points, which we denote by po,...,pn, and the only
curves preserved by G are the lines passing through pairs of fixed points. The G-action on P"
lifts to an action on My x(P",d) and on 93??7,6 (P™,d). The fixed loci of these two actions that are

contained in smeff (P, d) and their normal bundles are the same and are described in [MirSym,
Sects. 27.3 and 27.4]. We note that the four-term exact sequence [MirSym, (27.6)] applies to such
loci.

In this subsection, we describe the fixed loci of the G-action on ﬁ? (P, d) that are contained in

aﬁ?,k(ﬂ””, d) and their normal bundles. To simplify the discussion, we ignore all automorphism
groups until the very end of this subsection.

The boundary fixed loci 2 will be indexed by refined decorated rooted trees T'. Figure 5 shows such
a tree I and the Correspondmg decorated graph T'=7(T"). In [MirSym, Section 27.3] the fixed loci
Zr of the G-action on img,k(IP’ ,d) are indexed by decorated graphs I'. If T" is a decorated graph
such that Zr is a G-fixed locus contained in 8ﬁl,k (P™, d), we will have

Zr N (P, d ( |_|z)

where T denotes a refined decorated rooted tree.
We now formally describe what we mean by a refined decorated rooted tree and its corresponding

decorated graph. A graph consists of a set Ver of vertices and a collection Edg of edges, i.e. of
two-element subsets of Ver. In Figure 5, the vertices are represented by dots, while each edge
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Figure 5: A refined decorated rooted tree and its decorated graph

{v1,v2} is shown as the line segment between v, and vy. A graph is a tree if it contains no loops,
i.e. the set Edg contains no subset of the form

{{vl7v2}7{v27v3}7‘ . ‘7{UN71}1}}7 V1y.-.,UN EVGI', Nzl

A tree is rooted if Ver contains a distinguished element vg. It is represented by the large dot in
the first diagram of Figure 5. A rooted tree is refined if Ver—{vg} contains two, possibly empty,
distinguished subsets Ver; and Verg such that

Ver;NVerg =0 and {uvg,v}€Edg Vwve VeryUVer.

We put
Edg, = {{vo,v}: veVery} and Edgy= {{vo,v}: vE Verp}.

The elements of Edg, and Edg, are shown in the first diagram of Figure 5 as the thick solid lines
and the thin dashed lines, respectively. Finally, a refined decorated rooted tree is a tuple

[' = (Ver, Edg; vo; Very, Vero; 41,,7), (1.8)
where (Ver, Edg; vg; Ver, Verg) is refined rooted tree and
i: Ver—Verg — {0,...,n}, 0: Edg—Edg, — Z*, and #n:{1,...,k} — Ver

are maps such that

(1) p(v1)=p(ve) and d({vp, v1})=0({vp,v2}) for all vy, vy € Very;
(ii) if vy € Very., vy € Ver—Verg— Ver, and {vg,v2} € Edg, then

p(vi) # p(vz)  or 9({vo,v1}) #0({vo, v2});
(iii) if {v1,v2} €Edg and vy & VergU{vp}, then
p(ve) #p(vy) if vy & Verg and p(v2) # p(vg) if v € Verp;
(iv) if v1 € Verg, then {v1,v9} € Edg for some vg € Ver—{vg} and
val(vy) = [{vo € Ver: {v1,vo} €Edg}| + [{l€ [k]: n(l)=v1| > 3;

(V) EeEEdg+a(e) > 2.
In Figure 5, the value of the map p on each vertex, not in Verg, is indicated by the number next to
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the vertex. Similarly, the value of the map ? on each edge, not in Edg, is indicated by the number
next to the edge. The elements of the set [k] =[3] are shown in bold face. Each of them is linked
by a line segment to its image under 7. The first condition above implies that all of the thick edges
have the same labels, and so do their vertices, other than the root vy. By the second condition, the
set of thick edges is a maximal set of edges leaving vy which satisfies the first condition. By the
third condition, no two consecutive vertex labels are the same. By the fourth condition, there are at
least two solid lines, at least one of which is an edge, leaving from every vertex which is connected
to the root by a dashed line. The final condition implies that either the set Edg, contains at least
two elements or its only element is marked by at least 2.

A decorated graph is a tuple
I' = (Ver,Edg; g, 11,0,7),

where (Ver, Edg) is a graph and
g:Ver — Z%,  pu: Ver — {0,...,n}, 9:Edg — Z", and #:{1,...,k} — Ver

are maps such that
p(vr) # p(v2) if {vr,v2} €Edg.

The domain [k] of the map 7 can be replaced by any finite set. A decorated graph can be represented
graphically as in the second diagram of Figure 5. In this case, every vertex v should be labeled
by the pair (g(v), u(v)). However, we drop the first entry if it is zero. If I is a refined decorated
rooted tree as in (1.8), the corresponding decorated graph I' is obtained by identifying all elements
of Verg with vy, dropping Edg, from Edg, and setting

1, if v=wg;
g(v)Z{ ’

0, otherwise.

In terms of the first diagram in Figure 5, this procedure corresponds to contracting the dashed
edges and adding 1 to the label for vg.

The fixed locus Zr of ﬁlvk(ﬂ”", d) consists of the stable maps u from a genus-one nodal curve ¥,
with & marked points into P" that satisfy the following conditions. The components of 3, on which
the map w is not constant are rational and correspond to the edges of I'. Furthermore, if e={vq,v9}
is an edge, the restriction of u to the component ¥, . corresponding to e is a degree-d(e) cover of
the line
]P)Zl’u(m)’pu(vz) =

passing through the fixed points p,(,,) and pj(y,). The map ulg, . is ramified only over Pufvr)
and p(,,)- In particular, uls, . is unique up to isomorphism. The remaining, contracted, compo-
nents of X, correspond to the vertices v € Ver such that

val(v) + g(v) > 3.

For such a vertex v, g(v) specifies the genus of the component corresponding to v. The map u
takes this component to the fixed point p(v). Thus,

Zr =~ Ml" = H Mg(v),val(v);

vEVer
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Figure 6: A refined decorated rooted tree and some of its components graphs

see [MirSym, Section 27.3]. For the purposes of this definition, Mg and My denote one-point
spaces. For example, in the case of the second diagram in Figure 5,

— - —2 38 -
ZF ~ MF = M1710 XM073 XMO,Q XMO,l ~ Ml’]_(]-

In this case, Zr is a locus in My 3(P", 22), with n>3.

If T is a refined decorated rooted tree as in (1.8), we put
Edg(vo) = {{vo,v1} €Edg: v1 € Ver} and Joo = {LE[k]: p(l)=wv0}.
Similarly, for each ’UEVGI”(), we set
Edg(v) = {{v,v1} €Edg: v1 € Ver—{vo}} and Jy = {le[k]: pl)=v}.

If e ={v,v1} is an element of Edg(v) for some v € Very or of Edg(vy) —Edg, with v = vy, let
(Vere, Edg,) be the branch of the tree (Ver, Edg) beginning at v with the edge e. We put

Je = {l€[k]: u(l) € Vere—{v}} and  d. = Z o(e').

e’cEdg,
Let fe be the decorated graph defined by
fe = (Ver@?Edge;gezo7M67aeza|Edg5;T]e)7 where

/ f / . f e.

,ue(v,) — lu’(v )7 1Iv #U7 77@: {O}LlJe Ver57 7]5(1) — n(l)7 1 leJ 9
o - .

w(vg), if v’ =wv; v, if 1=0;

see Figure 6 for two examples.
If e is an element of Edg(vo) —Edg, or of Edg(v) for some v & Very, let
Z5 C Mo goyus, (P, de)

be the fixed locus corresponding to the decorated graph L. We put
o(T) = (|Edg(vo)]; Juog, [k] = Juop) € As(d, k),  Mpp =M (f)P

Zf“;B - H Zp, X H (MO {0}UEdg(v)uJ, X HZ e) ﬁ " d);
ecEdg(vo)— Edgo vEVerg ecEdg(v)
Ff‘;B = @ Le;O C Fg’(f‘); — ZFB’
ecEdg,
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where L. —>Zfe is the tangent line bundle for the marked point 0. If e={vg,v;} is an element
of Edg, , let

pp(@) = p(vr), 04 (I)=0(e), and dimy(T)=

5 N . Edg, |2, ifoy(T)=1;
[Edg, -1, ifo(I)>2.

By the assumption (i) above, the numbers 4 (I') and 94 (T) are independent of the choice of
e € Edg,. Furthermore, if e,¢’ € Edg, , then the line bundles L¢o and L.,y are G-equivariantly
isomorphic. Thus,

Fpy~CPeler., if ecEdg,.

The group G acts trivially on CEdg+l Let
FL o = {(we)eeEdg+ E(CEdg+ : ZeeEdg+w€:0}’ if 0+(f):1;
gf“;B =P(Ff, ;®Leo) ® Zp p X pdim (5),

While ~the moduli space ﬁa(f‘); g(P",d) is a blowup of PF o(F);B> Done of the blowup loci inter-
sects Zf;B- Thus,

Z:,

)

In fact,

We put

Z= = Mf;P X ZNf;B.

By the above, va is a fixed point locus in gT)vT? «(P",d). For example, in the case of the first diagram
in Figure 6,

o(f) = (1:{2},{1,3}),  Mp,p=My(rop:
- — —6 —5 — 9 —4 —3
Zip= <M0,3XM0,2 XMO,I) x (Mo,?, XMoo XMO,I) ~ {pt};
I'ka‘;B = rkFé;B = 3, ZNI;;B =~ ]Pﬂ, Z~1; ~ /’\'A‘/l,([’r]’{z}) XP2,

The weight of the G-action on the line L is 1/2 of the weight of the G-action on Tpopéo,pﬁ see
[MirSym, Sects 27.1 and 27.2].

We next describe the equivariant normal bundle A/ 21: of 21; in ﬁtgk (P™,d). Let
Nﬁo’(f‘);B(and)Zﬁ;B - Zf,B

be the normal bundle of Zf, pin m o(F); p(P",d). This normal bundle can easily be described using
[MirSym, Section 27.4]. Let

Ley, if D+(f) =1

Fo =F & o/(F. ®Leg) ~ Lo @ _
s = Fotvyn/ Frip®Len) D Lo {{0}, ito, (1) >2,

e/ €Edg(vo)—Edg™
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where e is an element of Edg,. The normal bundle of gf, pin m o(F); 5 (P",d) is given by

~~ —_ I 7~ * * —
N’ﬁc(f);B(PTL’d)ZF;B - Ngﬁd(f);B(Pn’d)ZF;B @ ’Ydim_‘_ f®L6;O®Ff§B’
where Ydim, © pdimi T g the tautological line bundle. Since none of the exceptional divisors
intersects ZNF_ B
EU;B 21:;3 = 7dim+f®Le?0' (19)
Since the section 750; B is transverse to the zero set, the normal bundle of ZNf_ p in Na(f) pP",d) is

)

Nz

o(T);

@ 2ts =N o en ) Z0n/ (Vim, @ Leo® T ")
by (1.6) and (1.7). Finally,

Nz = N§g<f);B(P",d)Zf;B @ ILff(f“);P®’ydlim+ r@Leo,
since the normal bundle of ZNU(f)(]P’”, d) in ﬁ%k(]}””, d) is L (5. p @Yo 1), 8-

In order to compute the last number in (1.4), we also need to determine the restriction of the vector
bundle ka to Zz. By Theorem 1.2 and (1.9), there is a short exact sequence of vector bundles:

0—Viklz, —V,

U(f)§B‘Z~f;B — 7§im+f®L:;0®£u(vo) —0 (1.10)

over Zf, This exact sequence describes the euler class of the restriction of ﬂik to 21:.

IfO':(m;JP,JB)E.Al(d, k),

— TPl . (1 —1)!
+|J * m (m 1)
<C|1m| | P|(L0;P)7MU;P> = a5,
24
by Corollary 1.2 in [Z7]. This is the only intersection number on MVU; p needed for computing the

last number in (1.4) and the integrals of the cohomology classes on ﬁgk(ﬂ”", d) that count elliptic
curves in P” passing through specified constraints. For more general enumerative problems, such as
counting curves with tangency conditions, as in [V1], and with singularities, as in [Z3], one would
need to compute the intersection numbers of the form

<c§0( :;;P) : H wlﬁl7ﬂg;P>, where Bo + Z By = |m| + |Jp|.

leJp leJp

Theorem 1.1 in [Z7] gives a recursive formula for such numbers. The recursion is on |m|+|Jp],
i.e. the total number of marked points. The starting data for the recursion is the well-known num-

ber <?,[)1, M171> = 1/24.

In the above discussion we ignored all automorphism groups. As in [MirSym, Chapter 27], the
rational function for each refined decorated rooted tree I' obtained following the above algorithm
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and applying the localization theorem of [ABo| should be divided by the order of the appropriate
automorphism group Ay :

|Ar| = ]Auwt(@)]- ] 2(e).

ecEdg—Edg,

For example, in the case of the first diagram in Figure 6,

|Ap| =1-(1%-2°.3%) = 864.

2 Blowups of Moduli Spaces of Curves

2.1 Blowups and Subvarieties

In this section we construct blowups of certain moduli spaces of genus-one and genus-zero curves;
see Subsections 2.3 and 2.4. The former appear in Subsection 4.3 as the first factor in the domain
of the proper transforms of the immersion ¢, of Subsection 1.2. The latter play the analogous role
in Subsection 3.4, where we blow up certain moduli spaces of genus-zero maps. In turn, these last
blowups describe the second factor of the domain of maps induced by ¢, in Subsection 4.3; see
Subsection 1.3 for more details.

We begin by introducing convenient terminology and reviewing standard facts from algebraic ge-
ometry. If M is a smooth variety and Z is a smooth subvariety of M, let

NzgZ =TM|z/TZ
be the normal bundle of Z in M. We denote by

15 TM|z — NZ
the quotient projection map.

Definition 2.1 Let M be a smooth variety.
(1) Smooth subvarieties X and Y of M intersect properly if XNY is a smooth subvariety of
M and

T(XNY)=TX|xny NTY |xny .5

(2) If Z is a smooth subvariety of M, properly intersecting subvarieties X and Y of M intersect
properly relative to Z if

7TJZ‘ (T(XﬂY)’Xnsz) = 7TJZ‘ (TX|XOsz) N 7TJZ‘ (TY|XOY0Z) C NMZ.

In other words, the scheme-theoretic intersection of X and Y is smooth. If the set-theoretic intersection X NY
is smooth, the second part of this condition is also equivalent to the injectivity of the natural homomorphism

TX|xny/T(XNY) — TM/TY.
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For example, if X and Y are two smooth curves in a projective space that intersect without being
tangent to each other, then X and Y intersect properly (but not transversally, unless the dimension
of the projective space is 2). If X, Y, and Z are three distinct concurrent lines that lie in a plane,
then they intersect properly pairwise, but X and Y do not intersect properly relative to Z.

Definition 2.2 If M is a smooth variety, a collection {/\_/lp}peA of smooth subvarieties is properly
intersecting if M, and M,, intersect properly relative to M, for all py,p2, p3€.A.

If Z is a smooth subvariety of M, let
m: BlyM — M

be the blowup of M along Z. If X is a subvariety of M;We denote by PrzX the proper transform
of X in BlzM, i.e. the closure of 771(X —Z) in BlzM.” The next lemma follows from a local
computation. (The local geometry of a proper intersection is particularly simple.)

Lemma 2.3 Let M be a smooth variety.
(1) If X and Z are properly intersecting subvarieties of M, then PrzX is a smooth subvariety of
Blyz M and

Per = BlezX.

(2) If X, Y, and Z are pairwise properly intersecting subvarieties of M and X and Y intersect
properly relative to Z, then Prz X and PrzY are properly intersecting subvarieties of Prz M and

Prz X NPrzY = Prz(XﬂY).

(3)If X,Y, Z, and Z' are pairwise properly intersecting subvarieties of M and X and Y intersect
properly relative to Z and Z', then PrzX and PrzY intersect properly relative to PrzZ’.

Corollary 2.4 If M is a smooth variety, {/\_/(p}peA is a properly intersecting collection of subvari-
eties of M, and p€ A, then {PrmpMp/}pleA_{p} is a properly intersecting collection of subvarieties
of Blﬂpﬂ.

Remark: By our definitions, properly intersecting subvarieties are necessarily smooth subvarieties
of smooth varieties.

2.2 Moduli Spaces of Genus-One and Zero Curves

In this subsection, we describe natural subvarieties of moduli spaces of genus-one and -zero curves
and natural bundle sections over these moduli spaces. These bundle sections and their twisted
versions introduced in the next two subsections are used in Subsections 3.4 and 4.3 to describe
the structure of the proper transforms of ﬁ%k (P™,d). Below we also state the now-standard facts
about these objects that are used in the next two subsections.

"For the purposes of these definitions we do not require that M and X be smooth.
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Ip={i1,is}

K=1{1,2,3)
I ={i3,i4}
I ={is,i6}

I3Z{i77 Z.871.9}

Figure 7: A typical element of Ml,p

If I is a finite set, let

Ai(D) = {(Ip, {Ix: ke K}): K#0; I

|| I 1Tkl =2VEeK};
ke{P}UK

|| In; 1Ie|>2VEeK; |K|+|Ip|>2}.
ke{P}UK

(2.1)

Ao(I) = {(Ip,{Ix: keK}): K#0; I

If p=(Ip,{Ix: k€ K}) is an element of {(I,0)}UA;(I), we denote by M, , the subset of My s
consisting of the stable curves C such that

(i) C is a union of a smooth torus and |K| projective lines, indexed by K;

(ii) each line is attached directly to the torus;

(iii) for each k€ K, the marked points on the line corresponding to k are indexed by I.
Let MLP be the closure of M , in Ml, 7. Figure 7 illustrates this definition, from the points of
view of symplectic topology and of algebraic geometry. In the first diagram, each circle represents
a sphere, or P'. In the second diagram, the irreducible components of C are represented by curves,
and the integer next to each component shows its genus. Similarly, if

p=Ip,{I;: ke K}) € {(1,0)}UA(I),

let My, be the subset of mo,{o}u 7 consisting of the stable curves C such that

(i) the components of C are indexed by the set { P}UK;

(ii) for each k€ K, the component Cy of C is attached directly to Cp;

(iii) for each k€ K, the marked points on Cj, are indexed by I.
We denote by ﬂom the closure of My , in Mo,{o}u 7. This definition is illustrated in Figure 8. In
this case, we do not indicate the genus of the irreducible components in the second diagram, as all
of the curves are rational.

The next lemma follows from the fact that for any nodal curve, the deformations of the nodes are
independent. More precisely, in the dual to the first-order deformation space of a nodal curve, the
vectors corresponding to the smoothings of each node are linearly independent.

Lemma 2.5 If g=0,1 and I is a finite set, the collection {/\_/lg,P}pGAg(I) is properly intersecting.
We define a partial ordering on the sets Ay(I) for g=0,1 by setting
p'=Ip,{I: k€K'}) < p=(Ip,{I;: ke K}) (2.2)

if p' # p and there exists a map ¢ : K — K’ such that I}, C I(’p(k) for all k€ K. This condition
means that the elements of M, can be obtained from the elements of M, by moving more points
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Ip={i1}

K={1,2,3)
I ={is, i3}
I ={i4,i5}

I3Z{i67 i77i8}

Figure 8: A typical element of Mo,p

onto the bubble components or combining the bubble components; see Figure 9. In the g=0 case,
we define the bubble components to be the components not containing the marked point 0.

In the blowup constructions of the next two subsections we will twist certain line bundles over
moduli spaces of curves and homomorphisms between them. In the rest of this subsection we
describe the relevant starting data.

For each i €1, let L; —>M17 7 be the universal tangent line bundle at the marked point labeled i.
Let E — M ; be the Hodge line bundle of holomorphic differentials. The natural pairing of
tangent vectors with cotangent vectors induces a section

s; € F(ij;Hom(Li,E*)).
Explicitly,
{si((C;uw]) }([C,¥]) = Yy w  if
[C]EMLI’ [C>w]€Li|C:Tmi(C)C7 [C7¢]EE|C:HO(C;T*C)7
and x;(C) €C is the marked point on C labeled by i.

In the genus-zero case, the line bundle L —>M07{0}u ; will be one of the substitutes for E. We
note that for every p€P!, there is a natural isomorphism between the tangent space Tp]P’1 of P! at
p and the space of holomorphic differentials H°(P!; T*P'®O(2p)) on P! that have a pole of order
two at p. More precisely, let w be a meromorphic function on P! such that p is the only zero of w
and this zero is a simple one. We can then view w as a coordinate around p in P'. Every tangent
vector v e T, p]P’1 can be written as

Figure 9: Examples of partial ordering (2.2)
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We define the isomorphism

w: Tp]Pl _ HO(PI,T*P1®O(QP)) by v — T;ZJ”U — Cw(vldw'

w

If w' is another meromorphic function on P! such that p is the only zero of w’ and this zero is a
simple one, then

w = v — du = fdw

Cw (V) Cw (V) dw' (V) dw
aw+f (qw+3)?’ '

cur(v) = — -

B w/? w?

Thus, the isomorphism ) is well-defined. If ¢ € I, we define the section

si € T(Mo qoyur; Hom(Ly, Lg)) by {si([C;w]) }([C,v]) = wv‘m(c)w

. . (2.3)
if [C]GM()’{O}‘_U, [C,w]GLﬂc:Txi(C)C, [C,U]EL0|CZTIO(C)C.

We note that in both cases the section s; vanishes precisely on the curves for which the point ¢ lies
on a bubble component. In fact,

sH0) = Y My, where  By(Iii) = {(Ip, {Ip}) € A,(I): i€Ip}. (2.4)
pEBy(13i)

2.3 A Blowup of a Moduli Space of Genus-One Curves

Let I and J be finite sets such that I is nonempty. In this subsection, we construct a blowup
T1,(1,J)* Ml,(I,J) B ml,]u]

of the moduli space ﬂuu], |7|+1 line bundles
E, L — My, i€l

and |I| nowhere vanishing sections

Si € F(ML(],J);HOHI(I:Z',IE*)), iel.

Since the sections §; do not vanish, all [I|+1 bundles L; and E* are explicitly isomorphic. They
will be denoted by IL and called the universal tangent line bundle.

The smooth variety /f\/lv17(17 J7) 1s obtained by blowing up some of the subvarieties M 1,0, defined
in the previous subsection, and their proper transforms in an order consistent with the partial
ordering <. The line bundle E is the sum of the Hodge line bundle E and all exceptional divisors.
For each given i€ I, L; is the tangent line bundle L; for the marked point i minus some of these
divisors. The section §; is induced from the pairing s; of the previous subsection.

With I and J as above and A (/UJ) as in (2.1), let

Ag(I,J) = {((IpuJp),{IxUJx: ke K}) e A(IUJ): Iy #DVkeK}. (2.5)
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We note that if pe Ay(ILJ), then pe A4(I, J) if and only if every bubble component of an element
of M, carries at least one element of I. Furthermore,

By(IUJ;i) C Ag(1,J) Viel. (2.6)
If |I|+|J| > 2, with respect to the partial ordering < the set A; (7, J) has a unique minimal element:
Pmin = (@, {IUJ}) .

Let < be an ordering on A;(1,J) extending the partial ordering <. We denote the corresponding
maximal element by pmax. If p€.A1(1,J), we put

! I,J): pf if min ;
po1— {max{p e AL, J): p'<p}, ifp#p 27)

07 lf p:pmim

where the maximum is taken with respect to the ordering <.

We now describe the starting data for the inductive blowup procedure involved in constructing the
space M (7 y) and the line bundle L over M, 1 jy. Let

—-—0 - -0 -0 -
Ml,(I,J) = M, Ey=E — Ml,(LJ), and Ml,p =My, VpeAl,J).
For each i€1, let
-0 ——0 *
Loﬂ; = Lz — ML(LJ) and 8071' =8s; € P(Mlv(LJ); HOIH(LOJ;,EO)).

By (2.4), L
s94(0) = Z M .

p*€By (ILLT3i)

Suppose p€ A (I, J) and we have constructed

(I1) a blowup m,—1: HTI},J) —>ﬂ?,(17j) of H%(LJ) such that m,_1 is an isomorphism outside
of the preimages of the spaces Mﬁ{ o, With P <p-—1,;

(12) line bundles L,_1 —>MT;}7J) for iel and E,_; —>m§_)7_(117j);

(I3) sections s,—1 EF(MTE},J); Hom(L,-1,,E}_;)) for i€l
For each p*>p—1, let Mi—pi be the proper transform of M(i pe I MT_(II 7)- We assume that

(14) the collection {ﬂf;,{ }pre Ay (1,7),p*>p—1 18 properly intersecting;
(I5) for all €1,
— ——p—1
s,4.4(0) = > ML
p*eB1(IUJsi),p*>p—1

The assumption (I5) means that we will gradually be killing the zero locus of the section s;. We
note that all five assumptions are satisfied if p—1 is replaced by 0.

If p is as above, let
~ P ——p—1
Tp: My, — M)
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be the blowup of M’f—(} 7) along M’f;. We denote by ﬂi , the corresponding exceptional divisor.
If p*>p, let ﬂf, P Cﬂi( 1,7) be the proper transform of /\_/l/f;}. If

p= (IpuUJp, {IxUJy: kEKY}) (2.8)
and 1€, we put
7L —1.4 1fz€Ip - —_
L,; =3 P/ " _ ’ E,=#‘E,_ ® O(M} ). 2.9
7 {ﬁ;Lp_17i®O(—Mip), if i€ Ip; 0 =Ty B © O(M) (29)

*

The section 7 s

5,—1,; induces a section

5p,i € F(HT,(I,Jﬁ Hom(L,;, 7, E}_1)).

This section vanishes along M’; p» by the inductive assumption (I5) if i¢ Ip. Thus, 5,, induces a
section
AP *
Sp,i € F(MMI’J); Hom(LpJ-,IEp)).

We have now described the inductive step of the procedure. It is immediate that the requirements
(I1)-(I3) and (I5) are satisfied, with p—1 replaced by p, are satisfied. Corollary 2.4 and the as-
sumption (7/4) imply that the assumption (/4) with p—1 replaced by p is also satisfied.

We conclude the blowup construction after the ppax step. Let
ML(LJ) = ﬂ’l’f‘{}’f]); fE =E jjz = meaxﬂ', S; = S prmax,i Viel.

By (I5), with p—1 replaced by pmax, and (2.6), the section §; does not vanish. We note that by (11),
the stratum

My 1.0 C ml,(LJ)

consisting of the smooth curves is a Zariski open subset of /Wi( 1,5y for all pe{0YUA(L, J).

By the next lemma, different extensions of the partial order < to an order < on A1 (I, J) correspond
to blowing up along disjoint subvarieties in different orders. Thus, the end result of the above
blowup construction is well-defined, i.e. independent of the choice of the ordering < extending the
partial ordering <.

Lemma 2.6 Suppose p,p' € A1(I,J) are such that pAp" and p' £p. If p#£p’, then the spaces Mip

and ﬂf,p, are disjoint for some p=<p,p’.
Proof: (1) Suppose
p=(IpuJp,{IxUJy: ke K})  and  p = (IpUJp, {[UJ;: kEK'}).
For each k€ K and k'€ K, let
pr = ((I=Ip)U(J = Jp), {IxUJy}) € A (1, J) and
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By definition, M(l),pk and Ma)’p;c/ are divisors in M‘f,(m =Mi.1uJ,
——0 ——0 ——0 ——0
My, = ﬂ My and My, = ﬂ M-
keK KEeK’
Furthermore, if M?m ﬂﬂ?%, #(), then either
Ikl_ljkCI]/g/l_lJ]/g/, or IkUJkDI];/UJ];/, or (IkUJk)ﬂ(I];/UJ];/):@

(2) Suppose M? pﬂﬂ?, »7#0. By the above, there exist decompositions

K=K UKyu | |[Ky and K =K,UuKju | |K]
UVeK!, leKy

and a bijection ¢: Ky — K, such that

I UJ, C Il,’l—ljl,’ Vke Ky, ZIEKQ_, LuJ; 2 IIIC/UJIQ/ Vk',EKl,, le Ky,

We note that the subsets K and K/, of K and K’ are nonempty. For example, if K were empty,
then we would have p’ < p, contrary to our assumptions. Let

p= (IpUJp, {I;UJy: ke KoUK UK’ }) € Ai(1,J)
be given by

IyUJy,, ifke KgUKy;

IpUJp = (IpNIp) U (JpNJp), L,UJ, =
pUJp = (IpNIp) ULIPNTF) S {f,guJ,g, if ke K,

For example, if p corresponds to the second diagram on the right side of Figure 9 and p’ corresponds
to either the first or the third diagram on the right side, then p corresponds to the diagram on the
left side of Figure 9. By definition, p< p, p’. Furthermore,

—-—0 —-—0 —-—0
Ml,pmM17pl C M17ﬁ.

Thus, by Lemma 2.5, Corollary 2.4, and (2) of Lemma 2.3,

is the closure of the empty set.

2.4 A Blowup of a Moduli Space of Genus-Zero Curves

Suppose XN is a nonempty finite set and o= (I}, J;);ex is a tuple of finite sets such that I; #( and
|I;|+]J;] >2 for all [eX. Let

_ _ i} _
Mo, = HMo,{O}ulquz and Fo= @m Lo — Mo,
lex len
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where L —>ﬂ0,{0}u 1,00, 18 the universal tangent line bundle for the marked point 0 and
™ Mo,y — Mo,{o}ullqu
is the projection map. In this subsection, we construct a blowup
T0,0° Mvo,g — PF,
of the projective bundle PF, over MO,Q' We also construct line bundles
IE, I:(l,z') — Mo, 1€l leN,
and nowhere vanishing sections
$(i) € T (Mo,o; Hom(L( ), EY)), iel;, leX.

In particular, all line bundles E(l,i) and E* are explicitly isomorphic. They will be denoted by IL
and called the universal tangent line bundle.

Similarly to the previous subsection, the smooth variety /f\/lvoyg is obtained by blowing up the
subvarieties My , defined below and their proper transforms in an order consistent with a natural
partial ordering <. The line bundle E is the sum of the tautological line bundle

Yo — PF,

and all exceptional divisors. For every [ €R and i€ I}, L ;) is ] L; minus some of these divisors.
The section 3(; ;) is induced from the pairings s; of Subsection 2.2.

With p as above and Ay ([;, J;) as in (2.5), let
Ao(0) = { (R4, (p)iex) : Ry CR, Ry #£0; pre {(LUJ, 0)}UAG(I, J) VIEN;
pr=LUJy,0) VIER=R 5 (Ny, (pr)ien) # (R, (LT, 0)iex) }-

We define a partial ordering on 4(g) by setting

p'= (X, (Pier) < p= (R4, (p)iex) (2.11)

if p'#p, X, CXy, and for every [ €R either p;=p;, p;<pi, or py=(L;UJ;,0). Let < be an ordering
on Ap(p) extending the partial ordering <. We denote the corresponding minimal and maximal
elements of Ag(0) by pmin and pmax, respectively. If pe Ap(p), we define

p—1€ {0tUAy(0)

(2.10)

as in (2.7).
If pe Ag(p) is as in (2.11), let
MO,p:HMO,pw F, = @Wl*LO‘mO’pCFQ?

1EXN lex+
and /f\/lvgvp:]P’Fp C /K/lv&gz]P’FQ.
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R={1,2,3} N={1,2,3}

+ |I1|_|J1|:2 o |Il|_|J1|:2
|I2|_|J2|:|I3|_|J3|:3 |.[2|_|J2|:|I3|_|J3|:3

+ R, ={1,2,3) + Ry ={2,3)
pr=(I1U.J1,0) p1=(I1UJ1,0)

+ ng(IQI_IJg,(Z)) + pg#([gl_lefg,@)
p3=(I3UJ3,0) p3=(I3UJ3,0)

Figure 10: Typical elements of /f\/lv& o and /,\\/1/87 o

The spaces /f\/lv& o and /K/lvg, , can be represented by diagrams as in Figure 10. The trees of circles
attached to the vertical lines correspond to the tuples p;, with conventions as in the first, symplectic-
topology, diagram in Figure 8. For each such tree, the marked point 0 is the point on the line. We
indicate the elements of N, C R with plus signs next to these points. Note that by (2.10), every dot
on a vertical line for which the corresponding tree of circles contains more than one circle must be
labeled with a plus sign. From Lemma 2.5, we immediately obtain

Lemma 2.7 Suppose X is a nonempty finite set and o= (I}, J;)1ex is a tuple of finite sets such that
L#D and |L)|+|J;] > 2 for all 1eX. If Ag(o) is as above, the collection {Mg,p}pEAo(g) is properly
intersecting.

We now describe the starting data for the sequential blowup construction of this subsection. Let
Eo=7, — M ,=PF, and  Logy=n4,miLi — M}, Viel, leX.

We take .
S0,(1,4) € F(M8,9§ Hom(Ly (5, Eg))

to be the section induced by 7§ ,m's;, with s; defined by (2.3). It follows immediately from (2.4)
that

80’_(171,)(0): Z /T/l/g,p*, where

p*€Bo(esl i)
Bo(o;l,i) = {(N+, (pr)vex) € Ao(0): Ry =R—{I} and py=(IyUJy,0) VI'€R, or

Ny =N, preBo(LUJ i), pr=(IyUJy,0) VZ’GN—{Z}}.

The rest of the construction proceeds as in Subsection 2.3. The analogue of (2.9) now is

W) = TpLp—1,0.0); . if 1gRy or py# (LU}, 0), i1, p; (2.12)
e 7Ly 1,1,9) ®0(—M87p), otherwise;
E, =75 E, 1®0(M§,). (2.13)

As before, we take

Mo, =M= E=E

Pmax?

E(lvi) = LPmax,(lﬂ') and g(l,i) = SPmax,(lﬂ') v ieIl, ZGN
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The analogue of the inductive assumption (/5) insures that each section 3(; ;) does not vanish. The
statement and the proof of Lemma 2.6 remain valid in the present setting, with only minor changes.
Thus, the end result of the above blowup construction is again well-defined, i.e. independent of the
choice of the ordering < extending the partial ordering <.

3 A Blowup of a Moduli Space of Genus-Zero Maps

3.1 Blowups and Immersions

In this section we construct blowups of certain moduli spaces of genus-zero maps; see Subsec-
tions 3.3 and 3.4. As outlined in Subsection 1.3, these blowups appear in Subsection 4.3 as the
second factor in the domain of the immersions induced by the immersions ¢, of Subsection 1.2.

As in Section 2, we begin by introducing convenient terminology and reviewing standard facts from
algebraic geometry. If 90 is a variety, we denote its Zariski tangent space and its tangent cone by
T and TCIM, respectively. If X is a smooth variety (but not necessarily equidimensional), we
recall that a morphism ¢x: X — 91 is an immersion if the differential of ¢ x,

dix:TX — 15 TCIM,
is injective at every point of X. Let
Im® oy = {peM: [t (p)|>2} and N, =(xTCM/Imdux
be the singular locus of :x and the normal cone of ty in 9N, respectively. We denote by
Tt xTCM — N,
the projection map. If Z is a subvariety of 9, let
Ly 7 — M
the inclusion map.

Definition 3.1 Let 9 be a variety.
(1) An immersion v1x : X — 9 is properly self-intersecting if for all x1,x9 € X such that
tx (x1)=1tx(x2) and sufficiently small neighborhoods Uy of x1 and Uy of xg in X

TCLX(xl)(LX(Ul)mLX(UQ)) = Im dLX|:c1 N Imdax\m C TCL)(((L’l)ﬁ' 8

(2) If tx: X — M and vy : Y — M are immersions such that tx is properly self-intersecting, x
is properly self-intersecting relative to ty if for all z1,22€ X and y€Y such that

ex (1) = ex(22) = 1y (y)
and for all sufficiently small neighborhoods Uy of x1 and Us of x5 in X,

WLJ;,|y(TCLY(y)(Lx(Ul)ﬂLx(UQ))) = Wﬁ;,‘ylmdebl ﬂ?‘l’i‘,‘ylmde|x2 C MY‘y'

8We emphasize that intersections are taken to be set-theoretic intersections unless otherwise noted.

32



This definition generalizes Definition 2.1; see the paragraph following the latter for some examples.

Definition 3.2 If 9 is a variety, a collection {to: Xy — %}QEA of immersions is properly
self-intersecting if for all p1,p2,p3 € A the immersion v, Uiy, is properly self-intersecting
relative to i, .

The next lemma follows from a local computation. (The local geometry of a proper self-intersection
is particularly simple.)

Lemma 3.3 Suppose M is a variety and Z is a smooth subvariety of M.
(1) If 1x : X — I is an immersion such that the immersion 1x Uiy : XUZ — M is properly
self-intersecting, then vx lifts to an immersion

Pryux: BIL;(l(Z)X — BlyMm s.t. ImPrzix =PrzImey.

(2) If in addition vx is properly self-intersecting relative to vz, then Przix is properly self-
intersecting and
Im°Przix = PrzIm®.x.

(3) If in addition vy : Y — M is an immersion such that 1x U vy ULy is properly self-intersecting
and vx 1s properly self-intersecting relative to vy, then Pryzux is properly self-intersecting relative
to Pryziy . Furthermore,

{PrZLX}_l (PrZIm Ly) = PrL;{l(Z)L;(l (Im ey).

Remark: Since we always require that the blowup locus be smooth, an implicit conclusion of (1) of
Lemma 3.3 is that L;(—l(Z ) is a smooth subvariety of X; this is immediate from the local situation.
Note that X itself is smooth, as it is the domain of the immersion ¢ x.

Corollary 3.4 If M is a variety, {to: X, —>ﬁ}Q€A 18 a properly self-intersecting collection of
immersions, and o € A is such that v, is an embedding, then {PrImLQLQ/}QIGA_{Q} is a properly
self-intersecting collection of immersions into BlImLQﬁ.

Like Lemma 3.3, the next lemma follows from a local computation, using the simple geometry of
a proper self-intersection.

Lemma 3.5 Suppose MM is a smooth variety, Z is a smooth subvariety of M, tx: X — M is an
immersion such that the immersion tx Uty is properly self-intersecting. Let

L)_cl(Z) = |_| Zo

€A

be the decomposition of L)_(l(Z ) into path components. If there exist a splitting

Ny=PL —X

iel
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and a subset I, of I for each o€ A such that

ix|5,TZ)TZy = P Lilz, VoeA, (3.1)
iel—1I,
then
Ny = @D (7 Liw @ O(-Ey)),
il i€l,

where E, is the component of the exceptional divisor for the blowup 7 : BlL;(Z)X — X that projects
onto Z,.

We note that by (1) of Definition 3.1, the homomorphism
ox|3,TZ|TZy — Ny =X T /Im dux

induced by the inclusions is injective. Thus, we can identify ¢ x]| }QTZ /TZQ with a subbundle
of NV, as we have done in Lemma 3.5.

3.2 Moduli Spaces of Genus-Zero Maps

In this subsection, we describe natural subvarieties of the moduli space of genus-zero maps and a
natural bundle section over them. This bundle section induces other bundle sections, introduced
in the next two subsections, that are used in the blowup construction of Subsection 4.3 to describe
the structure of the proper transforms of ﬁ%k (P™, d); see Subsection 1.3 for more details. Below
we also state two well-known facts in the Gromov-Witten theory, Lemmas 3.6 and 3.7, and a more
recent result, Lemma 3.8.

If deZ™ and J is a finite set, let

Ao(d, J) = {(m; Jp, Jp): meZ*, m<d; J=JpUJg, m+|Jp|>2}; (3.2)
My (0,7 (P", d) = My 10105 (P, d).

If 0 =(m;Jp,Jp) is an element of Ay(d, J), let My ,(P™,d) be the subset of ﬁ07{0}uJ(Pn,d) con-
sisting of the stable maps [X, u] such that

(i) the components of ¥ are 3; =P! with i€ {P}U[m];

(ii) uly, is constant and the marked points on ¥ p are indexed by the set {0}L.Jp;

(iii) for each i€ [m], ¥; is attached to ¥p and uly, is not constant.
We denote by Mo (P", d) the closure of Mo (P, d) in My goy,7 (P, d). Figure 11 illustrates this
definition, from the points of view of symplectic topology and of algebraic geometry. In the first
diagram, each disk represents a sphere, and we shade the components on which the map w is non-
constant. In the second diagram, the irreducible components of 3 are represented by lines, and
the integer next to each component shows the degree of u on that component. In both cases, we
indicate the marked points lying on the component X p only.

We define a partial ordering on the set Ag(d, J) by setting

o'=(m';Jp,Jg) <o=(m;Jp,Jg) if o' #o, m'<m, JpCJp. (3.3)

34



m=3, Jp={j1}
ds dy,dz,d3>0
di+do+ds=d

Figure 11: A typical element of Mg (P, d)

Similarly to Subsection 2.2, this condition means that the elements of Mg 5 (P",d) can be obtained
from the elements of My ,(P", d) by moving more points onto the bubble components or combining
the bubble components; see Figure 12. Asin the g=0 case of Subsection 2.2, the bubble components
are the components not containing the marked point 0.

Lemma 3.6 IfO'l,O'g E.Ao(d, J), 01750'2 0'1%0’2, and oo 740’1, then
ﬁo,al (]P)n7 d) N ﬁ0,:72 (]P)n’ d) - ﬁ0,6(0'1,02)(]Pmu d)7
where 5(01,02) = max {0’ € Ag(d, J): 0’ < 01,02}

If 5(01,09) is not defined, Mo 5, (P™,d) and Mo 5, (P",d) are disjoint.

For example, if o1 and oy correspond to the two diagrams on the right side of Figure 12, then
o(01,09) corresponds to the diagram on the left side of Figure 12. Lemma 3.6 is immediate from
the definition of the topology on ﬁo,{o}u J(P™ d). Tt can also be easily deduced from [P, Sub-
sect. 3.2] by an argument similar to the proof of Lemma 2.6.

If o=(m;Jp, Jp) is an element of Ay(d,J), let

My, 5(P",d) C H |_| Mo g0, (P, ds) and
ZE[m] di>0,JiCJB

Tt My p(P", d) — uﬁo,{o}uJi(Pn7di)a i€ [m],
di>0,J7;CJB

Figure 12: Examples of partial ordering (3.3)
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be as in Subsection 1.2. Since each of the spaces STTtO,{O}u J;(P",d;) is smooth and each of the
evaluation maps

evo: Mo royus, (P, di) — P

is a submersion, the space ﬁg; (P, d) is smooth. We denote by
Lot MO,{O}u[m]qu Xﬁg;B(]Pm, d) — ﬁop(]}m, d) C ﬁ07{0}uJ(Pn, d) (34)
the natural node-identifying map. It descends to an immersion
io: (Mo toyumiugp X Me;3(P™,d)) /S — Mo (o107 (P", d).
Let o o o o
7p, B Mo oyupmutp X Me. (P, d) — Mo 1oyuimiusps Mo, (P, d)

be the natural projection maps.

Lemma 3.7 If d € Z" and J is a finite set, the collections {to}caod,.s)y @A {ToYocao(d,s) Of
immersions are properly self-intersecting. If o € Ag(d, J) is as in (3.3),

m*i, C | Moo (P",d)  and N, = @ mpLi@nhm; Lo.
o' <o 1€[m]
If in addition o' € Ap(d, J), o' <o, and o’ is as in (53.3), then
L;l(ﬁop/(]}m,d)) = ( U ﬂQp) X ﬁg;B(]Pm,d), where
pEA(o;07)
Ao(os0') = {p=(IpUJp, {[iUJs: k€ K}) € Ao([m], Jp): |K|+|Ip|=m'}

and Ao([m], Jp) and My, are as in Subsection 2.2. Finally, if p€ Ao(o;0’) is as above,

to ety i, ey TR0 (B ) [ T (Mo x Mp (P, d) = D Li@im Lo.

’L'E[m]—[p

The first claim in the second sentence and the claim of the third sentence in Lemma 3.7 follow
immediately from the definition of the topology on ﬁo,{o}u 7(P™ d). The remaining claims are also
restatements of standard facts in GW-theory; they all follow from the description of the tangent
bundle of My (03,7 (P", d) in [MirSym, (27.6)].

We finish this subsection by describing a natural bundle section
Dy € P(ﬁOV{O}uJ(Pn, d), HOII](L(); evéT]P’"))

which plays a central role in the rest of the paper. An element [b] € ﬁo,{o}u J(P™ d) consists of a
prestable nodal curve ¥ with marked points and a map u: ¥ — P". One of the marked points is
labeled by 0. We denote it by z¢(b). We define Dy by

,D0|b = du]mo(b) . Txo(b)z — Tevo(b)]P)n'

If u—>ﬁ07{0}u 7(P™ d) is the universal curve and ev: {{— P" is the natural evaluation map, then
Dolp is simply the restriction of dev]mo(b) to the vertical tangent bundle of Y. The bundle section Dy
vanishes identically along the subvarieties 9 ,(P", d) with o€ Ag(d, J).
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Lemma 3.8 Ifd € Z" and J is a finite set, the section Dy is transverse to the zero set on the
complement of the subvarieties Mo (P, d) with o € Ag(d, J). Furthermore, for every

o=(m;Jp,JB) € Ao(d, J),
the differential of Dy,
VDy: N,, — ¢, Hom(Lg,eviTP") = npLy@mpevyTP",
i the normal direction to the immersion i, 1S given by

VDy

ok k¥ .
ro Limimr Ly = TPSiOTET Do Vie[m],

where s; is the homomorphism defined in Subsection 2.2.

The first claim of the lemma is an immediate consequence of the fact that
H' (S;w*"TP"®0(—2z)) = {0}

for every genus-zero stable map (X, u) and a smooth point z € ¥ such that the restriction of u to
the irreducible component of ¥ containing z is not constant. The second statement of the lemma
follows from Theorem 2.8 in [Z1].

3.3 Initial Data

If X and J are finite sets and d is positive integer, let
Mo, 2, (P", d) = {(bl Jiex € [ [ Do oy, (P di): di€Zt, Y di=d; | | Ji=
ler lex lex
evo (b)) =evo(by) VZ,Z’EN};

Mo, x,.) (P, d) = {(bl Jien € Hfmo o, (P",dy): di e Z7, Zdl d; |_| Ji=
lex len len

evo(by) =evo (by) W,Z’GN},

where M 0317, (P", d;) is the subset of ﬁo,{o}qu (P™,d;) consisting of stable maps with smooth
domains. For each [ €N, let

™ Mo v,y (P, d) — |_| Mo, 1030, (P, dy)
d;>0,J;,CJ

5 =i Lo,

len

be the projection map. We put

where Ly —>ﬁ07{0}u J, (P, dp) is the universal tangent line bundle for the marked point 0. In the
next subsection, we construct a blowup

0, (R,J) * ﬁ0,(N7J) (P",d) — PFx,
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of the projective bundle PF(y j) over ﬁO,(K 7 (P",d) and a line bundle
E — My, ) (P", d).
We also describe a natural bundle section
ﬁ(N,J) S F(m()’(mj) (Pn, d)7 IE*®WS,(N7J)7T]§F(N‘J)eVSTPn)7

where
TRy g P PEw.7) — Do 0, (P, d)

is the bundle projection map. This section is transverse to the zero set.
Similarly to Subsection 2.4, the smooth variety ffDVTO,(N’ 7 (P",d) is obtained by blowing up the

subvarieties ﬁ& Q(]P’”,d) defined below and their proper transforms in an order consistent with a
natural partial ordering <. The line bundle E is the sum of the tautological line bundle

g — PEw, )

and all exceptional divisors. The section ﬁ(N, ) is induced from the sections m; Dy, with [ € R, where
Dy is as in Subsection 3.2.

If X, J, and d are as above, let
Ao(R;d, J) = {((Ul)lemJB): (01,0)€{(0,0)}U A (di, J1,p), (01)1en 7 (0)ien;

N di=d, J=Jpu] | Jlﬁp}.

lexX len

We define a partial ordering < on Ay(X;d, J) by setting

0'=((0])iex, J5) < 0= ((01)1ex, IB) (3.5)

if o' # o and for every [ €R either o} =0y, (07,0) < (0y,0), or 0;=0. If p€ Ag(X;d, J) is as in (3.5),
we put
Np(o) = {leN: 0;#0} and Ng(0) = {l€R: 0;=0}.

Here P and S stand for the subsets of principal and secondary elements of X, respectively; see the
next paragraph. Note that
o <o = Rp(d)CRp(o), Np(o) #0 VocA(X;d,J), and
0 = ((ms; Ji.P)iexp (o) (0)iens (o), IB) (3.6)

for some m; and J; p. Choose an ordering < on Ay(X;d, J) extending the partial ordering <. We
denote the corresponding minimal and maximal element by onin and gmax, respectively. For every
o€ Ap(R; d, J), define

o—1 e {0}uAy(R;d, J)

as in (2.7).
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If o€ Ap(R;d, J) is as in (3.5), let

) = m, (o1, J1 B 3 . =a, ,B= )
Mo, (", d) {(bl)l@zeHDﬁo( L)Y di=d; || Jup=Ts;
lex leN lex

evo(bll) :eVO(le) Vi, o€ N} - ﬁ()’(&t]) (Pn, d)

With e=P, S, we define
Fro= P LO‘m,mn,d) C Fian o, 2.0y
1€RG(0)

Let
MY ,(P",d) = PFop C MY oy gy (", d) =PFy gy

From Lemma 3.6, we immediately obtain

Lemma 3.9 If 01,00€ Ao(R;d, J), 01702 01 A02, and 02 A 01, then

MY, (P, d) NG, (P, d) € M 5

0,01 0,02 91792)(]1)”’ d),

where 0(01, 02) :maX{Q'EAO(N;d,J): Q’%Ql,QQ}.
If 0(01, 02) is not defined, ﬁ&gl (P™,d) and 5)?8@ (P™,d) are disjoint.
With o as (3.6), let

op = ([ml]7 lep)l@tp(g)’ NB(Q) = NS(Q) U U([gnl]v JB(Q) =Jp, and GQ = 11(5)th
leXp(o leRp(e

With Mg, op @8 in Subsection 2.4, we denote by
0,01 M0, g % Mo, (5(0),750)) (P d) — D (P, d) © Mg ) (" d)

the natural node-identifying map induced by the immersions ¢(4, 5, ;) in (3.4). It descends to an
immersion

10,01 (M0 X Mo, (5 (0),750)) (P 4)) [ Go — Mgy (P ).

Let
T2y T8 Moo, X Mo, (50,75 0) (B ) — M0 s Mo, (35 0), 15 01) (B )

be the projection maps.

For the rest of this section, as well as for Section 4, we take

Mo, x0,) = Mo, (P, ), Mo, x,7) = Mo, 0,y (P, ), ﬁg,(N,J) = ﬁg,(N,J) (P, d) vV (N, J);
MY, =M,(P"d) ¥ o€ Ay(N;d, J).

39



Lemma 3.10 If X and J are finite sets and d€Z™, the collections

{t0,0} 0e Ao (i, ) and {20,0} 0c A0 (%:d,.7)

of immersions are properly self-intersecting. If
0 = ((mf; I piexp(0*)> (Miexg(o+), J5) € Ao(R;d, J),
then

Im® 7 o« C U 9318,9, and

o' <o*

Nigp = @ @W}LO,(l,i)@)W*BW?l,i)LO @ mpEy® 7 @Wl*Lm
1ERp (%) i€[m] leRs(0%)

where Eo and Ly ;) are as in Subsections 2.4. If 0, 0" € Ao(X;d, J), o is as (3.6), and 0= 0", then
-1 (g0 A 40 o
Lo, (M,,) = ( U MO,p) X Mo, (%5 (0%).J5(e"))
pEAo(0*;0)

where
Ao(0%;0) = {P: (Rp(o), (I} pUJi,p, {1} LT}y kEKl*})lGNP(Q*)) € Ao(op):

(K |+ pl =y VIERp(0") }
and Ao(op) and /f\/lv87p are as in Subsection 2.4. Finally, if p€ Ao(0*;0) is as above,

* p— ~0 —
P T, / T (MG, X Do, (041,75
0.0° |58 %o 010 0o L P00/ T (MG X Do 350%) 5 (04)

= @ @”?LO,UJ@W*BWEJ)LO S @ @”FLQ(ZJ)@W*BW@J)LO'

1eRp(0*)—Rp(0) i€[m]] leRp (o) i€lmy]-1I1p

The normal bundle MO,Q* for the immersion ¢ o+ splits into horizontal and vertical bundles:
_ArL T
MO,Q* - MO,Q* EB MO,Q* :

It is immediate from the definitions that

T * * * TPk * *
MO,Q* = [’O,Q* (/Y(N,J) ®FQ;S) = ﬂ-PEO® 7TB @ﬂ-l LO.
leRs(0*)

is the pullback of the normal bundle for the node identifying

*

The horizontal normal bundle N, Lﬂ)‘
. . 4
immersion

Mo,oz % Mo (85 (07, 75(e7)) — Moo+ (P",d) € Mg (.7

induced by the immersions Lot JF ) in (3.4) by the bundle projection map 7pr, . The normal
bundle for this immersion is the sum of component-wise normal bundles given by Lemma 3.7. The
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remaining claims of Lemma 3.10 follow easily from the corresponding statements of Lemma 3.7
as well.

We note that for every o* € Ag(X;d, J),

Ao(ep) = | | Aole™;0)-

0=o*

Furthermore, if g1, 02 € Ag(X;d, J) are such that o1, g2 < 0*, then

pr€Ao(0™01), ps€Ao(0;02), pI=p3 == 01<02.

Thus, we can choose an ordering < on Ag(0}) extending the partial ordering < of Subsection 2.4
such that

01<02, pi€A(0™;01), ps€Ao(o”;02) == p1<Ps;

whenever o1, 02 € Ao(X;d, J) are such that g1, 02 < 0*. In the next subsection, we will refer to the
blowup construction of Subsection 2.4 corresponding to such an ordering.

Via the projection maps 7, the bundle sections Dy of Subsection 3.2 induce a linear bundle map
Dew,gy: Fn,) — evTP"
over ﬁo,(N, 7)- In turn, this homomorphism induces a bundle section
Do € F(ﬂwﬁg’(m});ES@WEF(NJ)eVST]P’”), where Eg = yn,j) — ﬁg,(N,J)'
This section vanishes identically on the subvarieties ﬁ& 0 of 53787(&7 J) with pe A5(R; d, J).

Lemma 3.11 The section 750 is transverse to the zero set on the complement of the subvarieties
93?879* with 0* € Ag(N;d, J). Furthermore, for every o* € Ag(X;d,J) as in Lemma 3.10, the differ-

ential of 50,
VDy: Nig o = t0.0* (ES@W]}EF(N J)eVSTIP’") = mpEy@ngevoTP",

in the normal direction to the immersion vg o+ 5 given by

VD " Lo (0@ Lo = TpSo,1.:)@Tpm DoV i€[m], LERP(0"),
and  VDo|yr = mpld@TED(y(0%),05(0")):
LO,Q*

where sq ;) is the homomorphism defined in Subsection 2.4.

This lemma follows immediately from Lemma 3.8.
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3.4 Inductive Construction

We are now ready to describe the inductive assumptions for our construction of the blowup
anr max _N NO _NO
mo,00.0)F TG = Mo, 0,) (B d) — Mg 0 5y =M 0 ) (B ).

Suppose o€ Ap(X;d, J) and we have constructed

(I1) a blowup mp_ : smo (é 5 Dﬁo ) such that 7,_; is an isomorphism outside of the

preimage of the spaces Dﬁg o With g’ <o—1;
(12) a line bundle E,_; —>9ﬁo (N 7
: ~ ]- * * *
(I3) a section D, € F(ﬂﬁg’m’]); Eg_l ®7TQ_17TPF(N‘J)GVOT]P’").

For each ¢o*>p—1, let
1 amo—1
Dﬁo g* = Dﬁg (P, d) C SI)T&(N’J)
be the proper transform of smo o+ I Dﬁo (N 1) We assume that

(I4) the section Dg_l is transverse to the zero set on the complement of the subvarieties 5)?8;1
with 0* > 0—1 and vanishes identically along these subvarieties;
(I5) if 01,00 € Ap(R;d, J) are such that g1 # 092, 01 £ 02, 02401, and p—1< g1, g2, then

amo—1 oo~ .
mo ﬂmo 9:)’tO ,0(01,02)° if Q(QI,Q2)>Q 1;
. 92 =0, otherwise,

where 0(o1, 02) is as in Lemma 3.10.

We also assume that for all o* € .4p(X;d, J) such that o* > o—1:
(16) the domain of the G ,+-invariant immersion ¢,_; ,+ induced by ¢g o+ is
Mpg +(e=1) X f)ﬁo J(Rp(0*),JB(0*))> where

0.0p
if 3o’ € Ag(N: d, J)

*. /: /< -1 / *
max {p€ Ao(¢":): ' Se-Ld' <y T T

per(0—1) =
0, otherwise;

(I7) if o' € Ap(X;d, J) is such that p—1< o' < ¢*, then

(e . 57
o1 () = ( U Mg ) X Mo, (%5(0),T5(0"))'

pE€Au(0*;0)

(I8) Im*75—1,0- C U img o+ Where

o—1<¢ <o*
( D_an Fo—1
Lo-1,0° (M XWOM@*W@*)))/ Gor — MG )
is the immersion map induced by ¢y—1 o+

Furthermore, we assume that
(19) the collections {tp—1,0* }oreAg(Nid,7),0%>0—1 AN {Zo—1,0* } o—1€ Ao (N;d, ), 0% >0—1 Of immersions
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are properly self-intersecting.

Finally, for all o* € A4p(X;d, J) such that o*>p—1:
(110) o E, 1= W}EPQ*(Q_D, where

9_1’9* Q_
e (o)) | o MPe e i
TPy Tt Moty X Mo, p (e me7) — Mosgs,  DPop(er),75(0)

are the two projection maps;
(I11) if p* is as in Lemma 3.10, then the normal bundle for the immersion ¢,_1 o+ is given by

_ AL T
Me—l,g* o ./\/’Lgfl,g* EBJV’LQ*LQ*
= D Drrloqen00®@TBinle © THE, (1 @Th P Lo,
1ERP (%) i€[m] 1eRs(0%)
where Lpg*(g—l),(l,i)aEpg* (0-1) %Mgfgég_l) are the line bundles constructed in Subsection 2.4;

(112) the differential of 75g_1,

Vﬁg_l : ./\/

to—1,0

* * * * * n\ __ ok ok * * n
. Lg—l,g* (Eg—l ®7TQ_17TPF(N7J)QVOTP ) = 7TPE o* (9_1)®7TBGVOTP s
in the normal direction to the immersion ¢,_1 o+ is given by

~ % * __x . * *
Vo1l (o a@mim o = TP (-0, 7B Do Vi€ [mf], LERP(eT)

and VDy—1

N7 = Tpid@TEDag (o). 5 ()
oe—L,e

where s por (0=1),(1,1) is the homomorphism defined in Subsection 2.4.

By the inductive assumption (I4), the loci on which the sections 59 fail to be transverse to the
zero set shrink and eventually disappear. For each g, the behavior of 259 in the directions normal
to the “bad” locus is described by (112). By the inductive assumption (I5), if g1 and gy are non-
comparable elements of (Ay(X;d, J), <), the proper transforms of /9?187 o and /9?187 0, become disjoint
by the time either is ready to be blown up for any ordering < extending the partial ordering <.
Similarly to Subsections 2.3 and 2.4, (I5) will imply that the end result of the present blowup
construction is independent of the choice of an extension <. By (I6), our blowup construction
modifies each immersion ¢+ by changing the first factor of the domain according to the blowup
construction of Subsection 2.4, until a proper transform of the image of ¢g ,+ is to be blown up; see
below. By (I8), by the time this happens the immersion 7y o+ induced by ¢ o+ transforms into an
embedding. Thus, all blowup loci are smooth.

We note that all of the assumptions (I1)-(/12) are satisfied if p—1 is replaced by 0. In particular,
(I5) is a restatement of Lemma 3.9, while (I4) and (112) are the two parts of Lemma 3.11. The
statements (I7)-(I11), with o—1 replaced by 0, are contained in Lemma 3.10.

If o€ Ap(X;d, J) is as above, let

— et

s mg,(NJ) 0,(R,J)
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be the blowup of ﬁg_& ) along ﬁg;l, which is a smooth subvariety by the inductive assump-
tion (I8). We denote the exceptional divisor for this blowup by ﬁa o 0" >0, let ﬁ& o Cﬁg )
be the proper transform of ﬁg;ﬁ. We put

E, = 7By, 1 © O(MS ). (3.7)

The section 7?:,25@_1 vanishes identically along the divisor /9718 o~ Thus, it induces a section

ano RNt * % * n
D, € F(W(NJ),EQ®7TQ7T]P>F(N’J)6VOT]P) ),
where 7, = my_10 7.

The inductive assumptions (11)-(13), with o—1 replaced by o, are clearly satisfied, while (I5), (I8),
and (19) follow from (2) of Lemma 3.3 and Corollary 3.4. On the other hand, by (16), the domain
of the immersion ¢,_1 , is

MO X Mo (g (0)75(0) = Moor X Mo, (8 (0). 75 ()

where /f\/lvoygp —>/f\/lv87 op 18 the blowup constructed in Subsection 2.4. By (/11), the normal bundle
for the immersion ¢,_1 , is given by

Nypro= B D mploye1).0) @5 9Lo © THE; (,ny®m5 7 Lo

1eNp(p) i€my] 1eXs(0)
- @D Doyl © rleors Dl
1eNp(p) i€my] 1eXs(0)

=7mpl ® W*BF(NB(Q),JB(Q))’

where L — Mvo,gp is the universal tangent line bundle constructed in Subsection 2.4. We also
note that by (710),

* * * * 3 _ * * *
L _179(Eg_1®7TPF(N‘J)eVOTP ) = 7pL ® mymp

* n
0 evyTP".

Fp(e),7p(e)

By (112), the differential of 259_1 in the normal direction to the immersion ¢,_1, is given by
VDy-1 = mpid ® T Dy ), (0))-

Thus, if
Loo: PN,

Lo—1,0

~ A NO m m
~ Moop X MG (w0, 75(0) — P00 € M .

is the immersion induced by ¢,_1 ,, then

* Iy %y A a0 L,ox * * % *
t40Po=75D0 € T (Mo,op XM (4, (0). 15 (o)) LQvQ(EQ®7TQ7TPF(R,J)8VOTP”))

— A an0 L * * * n
- P(MO’QP Xmov(NB(Q),JB(Q))’FB (™ Rp(0),JB(0)) ®7TPF(NB(Q),JB(9))GV0TP ))

Lemmas 3.10 and 3.11 thus imply that the restriction of the section 59 to the exceptional divisor
93?87 o 18 transverse to the zero set away from the subvarieties zm& o+ With 0* > p. Thus, by the
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inductive assumption (I4) as stated above, (I4) is satisfied with o—1 replaced by o.

We now verify that the remaining inductive assumptions are satisfied. If o< p*, but 04 o,
apo—1 _ ano—1
per(0) =ppr(0=1)  and My, MM, =0,
by definition and by (I5), respectively. It then follows that
o e amo—1 ~apo—1
Lg o* = [,Q_]_ 0% ﬂﬁg’g* ﬁf)ﬁ&g, = msvg* ﬂmag/ VQ/ > o,
reBo=10 1 pEp1, N, .=N,_ .., and VD,=VD, ;.

0,0 e—1le

Thus, the inductive assumptions (16), (I7), and (/10)-(/12), as stated above, imply the corre-
sponding statements with p—1 replaced by p.

Suppose that p<p*. By (I6) and (1) of Lemma 3.3, the domain of the immersion ¢, ,+ induced by
the immersion ¢,_1 o+ is the blowup of

TP (0-1)  an
Molge X Mo, (8a(e"),Tnle)

. o1 .
along the preimage of 93?87 o under i, q o+ in

TPex(0—1) V1 s
Tpge(o-1) X1d s M%e™ " XD (4 (0%), 75 (0%)) — M0,g5, X Mo, (R (07, T3 (0")) -

y (I7), this preimage is
(=Y _ 5y
U Mgfp . ) X Mo,(Np(0*), T (0%))"
peAo(0*;0)

By the last paragraph of Subsection 2.4 and the second paragraph after Lemma 3.10,

1 1 .
Mggpl(g ) mMg,sz(g = V p1,p2 € Ao(0"; 0), p17 po-

Thus, by the construction of Subsection 2.4, the blowup of Mpggég_l) along

T Po(0—1)
U M5
pE€Ao(0*;0)
+(0)

is /f\/lvggg} , as needed for the inductive statement (I6), with o—1 replaced by p. For the same
reasons, (110), (2.13), and (3.7) imply that

*EQ—L *E 1®ng*0(m0g)

= 7TPH*:"/JQ*(Q—l) ® Q0 Mg,p) = TpEp (o)
pEA0(e*;0)

Thus, the inductive statement (710), with p—1 replaced by p, is satisfied. The assumption (I7) is
checked similarly, using (3) of Lemma 3.3.

45



We next determine the normal bundle for the immersion ¢, ,«. The restrictions of the line bun-

dles Lpg*(g—l),(l,z’) and Epg* (o—1) to the complement of the exceptional divisors in /\/lggg}gg Y are

Ly, and 7T: X (g—l)EO’ by the construction of Subsection 2.4. Thus, by the last statement
4

7T*
pox(e—1)

of Lemma 3.10, (I11), and the inductive assumptions (/1) above and in Subsection 2.4,
LQ_]-7Q* ‘*AVPQ*(Q D

1 1 =
™G, / T(MG5 "™ XDy 450,750

XM, (x5 (%), I 5 (e*)) 0p
- @ @WPLP (0-1),(Li) OT BT (15 Lo D @ @WPL 1),(1,) @TBT (4 Lo
leRp(0*)—Rp(0) i€[my] 1eRp(0) i€[m}]—I1 p

for all p€ Ag(0*; 0) as in the statement of Lemma 3.10. Let
Ip(p) = {(Z,Z) ZENP(Q), iGIl’p}.

From Lemma 3.5, we then obtain

= b P < WPLpg*(g—1)7(l,i)®7T*B7TEkl,i)L0)®7T730< - Mvg,p

1ERp (%) i€[m]] p€Au(0*;0),(Li)EIP(p)
® WPEP (=1 ®TB @W?Lo@ﬂ'};@(—z./\/l&p))
1eRg(0*) pEAo(0*;0)
= B D ErLy.wn©TEm L) © THE) L @h @i Lo.
1ERp (%) i€[m]] leRs(0%)

The last equality above follows from (2.12) by the same argument as in the previous paragraph.
We have thus verified that the inductive assumption (I11), with o—1 replaced by o, is satisfied.
Finally, the inductive assumption (/12) and the continuity of the two bundle sections involved in
the identity in (I12), with p—1 replaced by g, imply (112) with o—1 replaced by o.

We conclude this construction after the blowup at the gmax step. Let

Mo, x,.) (P, d) = imgf?gfj)’

By the inductive assumption (14), applied with o—1 replaced by omax, the section ﬁ(N, J7) 1s transverse
to the zero set. As in the previous two subsections, the final result of this blowup construction is
independent of the order < chosen to extend the partial ordering < on A((X;d,J), as can be seen
from (I5).

IE = ]Egmax7 5(N,J) = DQmax'

4 A Blowup of a Moduli Space of Genus-One Maps

4.1 Idealized Blowups and Immersions

In this section we describe the main blowup construction of this paper. This is the sequential
idealized blowup construction for M, ,(P", d) with the initial data and the inductive step specified
in Subsections 4.2 and 4.3, respectively. This construction is outlined in Subsections 1.2 and 1.3.

In contrast to the situations in Sections 2 and 3, the variety M (P, d) is singular. In order to

describe the structure of My x(P",d), we introduce the notion of idealized normal bundle for an
immersion. Recall that the domain of an immersion is assumed to be a smooth variety.
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Definition 4.1 Suppose M is a variety and vx : X — M is an immersion. An idealized normal
bundle for the immersion vx is a vector bundle N3® over X such that N, CNj%.

Remark: An idealized normal bundle is of course not unique; an idealized normal bundle plus
any other vector bundle is still an idealized normal bundle. If the image of +x is an irreducible
component of 91, an idealized normal bundle of the smallest possible rank still need not be unique;
it can be twisted by any divisor in X disjoint from the preimage under ¢ x of the other components
of M. For each of the immersions we encounter in the next subsection, there is a natural choice
for J\ffie. These idealized normal bundles also transform in a natural way under blowups and proper
immersions, as described in Lemma 4.3 below.

Suppose M is a variety, Z is a smooth subvariety of M, and N, Lige is an idealized normal bundle for
the embedding ¢ of Z into M. Let

Ez=PN,, C BlzM

be the exceptional Evisor for the blowup of 9 along Z. We denote by Bligeﬁ the variety obtained
by identifying Blz9t with
giZde — IP;Nide
=PN;

along £z. We will call
ride: Bldegr — ot and Eide - Bliden

the idealized blowup of M along Z and the idealized exceptional divisor for 79 re-
spectively. (Caution: the idealized exceptional divisor is not necessarily a divisor!) More generally,
we will call .

T — M
an idealized blowup of M if 7 is a composition of idealized blowups along smooth subvarieties.
In practice, idealized blowup is simply a convenient term. In the inductive assumption (/1) in
Subsection 4.3 below, it can be replaced by morphism of varieties, as the remaining inductive

assumptions describe all the relevant properties of this morphism. Let
vz — E5°
be the tautological line bundle. Note that the normal bundle of £ CEiZde in
Prz9 = Bl;M
is 7z|e,. This observation implies the first statement of Lemma 4.3 below.

Our strategy is as follows. We begin with a space with a properly self-intersecting collection of
immersions, each with an idealized normal bundle. These are the immersions ¢, with o € 4;(d, k)
defined in Subsection 1.2; their images are the subvarieties 901 , (P, d) of M x(P",d). The ideal-
ized normal bundle for the immersion ¢, is the direct sum of the deformation spaces of the nodes
between the contracted genus-one curve and the non-contracted genus-zero curves that are identi-
fied by t,. At each stage, one of our immersions is an embedding, and we blow it up, replacing it
with its idealized exceptional divisor. The exceptional divisor of the blowup of the main component
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is the intersection of the new main component with the idealized exceptional divisor. Then after
each step, we have a new properly self-intersecting collection of immersions. Moreover, there is a
natural idealized normal bundle for each of the proper transforms of the immersions we have “yet
to blow up”.

We now say this more explicitly. Lemmas 4.2 and 4.3 below are direct extensions of Corollary 3.4
and Lemma 3.5. The first lemma states that if we have a properly self-intersecting collection of
immersions, one of which is an embedding, then upon blowing up the embedding, we still have a
properly self-intersecting collection of immersions. It is immediate from the definition of “properly
self-intersecting”, by checking in local coordinates.

The second part of the second lemma follows from Lemma 3.5 with only one change. Instead of

writing
Ny = @Li and Ny = @ (W*Li ® ® (’)(—Eg))

iel iel icl,

as in the statement of Lemma 3.5, we are saying that if we have a natural inclusion N, C Dicr Li,
then we get a natural inclusion

N €D (7Li@ @ O(-E,)).

iel iel,

The vector bundles on the right are the original idealized normal bundle and the new idealized
normal bundle, respectively.

Lemma 4.2 Suppose M is a variety, {ty: Xo — M}yea is a properly self-intersecting collection
of immersions, and o € A is such that v, is an embedding. If ./\/'Llffle 1s an idealized normal bundle

for iy, then
{PrImL‘TLUI}U’EA—{U} U {Lgide }

Imio

18 a properly self-intersecting collection of immersions into Bliﬁfwﬁ.

Lemma 4.3 If MM is a variety, Z is a smooth subvariety of M, and Nf;le is an idealized normal

bundle for vy, then
ide
LgiZde

=7z

is an idealized normal bundle for the immersion Lgide Suppose in addition that vx, A, Z,, and E,

are as in Lemma 3.5 and /\/'Lif(e 1s an idealized normal bundle for vx. If there exist a splitting

ide
MX = @ Li— X
el
and a subset I, of I for each o€ A such that (3.1) holds, then
N =P (7 Lie R O(-E,))
iel i€l,

s an idealized normal bundle for the immersion Przix.
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Definition 4.4 Suppose M is a variety, tx : X — I is an immersion, ﬁo is a subvariety in I,
and TOIM. TN is the tangent cone of M in I (TC’%O not necessarily reduced). The subvariety
ﬁo s proper relative to tx if

dux TC’L)_(I(ﬁO) = L}TC@O NImdix C 5TM

and the map

S TCR = /ImdLX| — 5T /Imdex C N (4.1)

0

TC ()

induced by inclusions is mjectwe, with its image being reduced.

The left-hand side of (4.1) denotes the family of cones over ¢ (ﬁo) such that for each z €13 (ﬁo)

=50

LXTCWI ‘ _1 /Imde‘Tc —1 m

)Mz
is the quotient by the minimal vector subspace of Imdix|, = dix (T, X) containing the cone

Imdux| o.. IfT C’L)_(l(ﬁo) is a vector bundle, the two conditions in Definition 4.4 are

TpCut (M
equivalent.

)

If ﬁo is a subvariety of 9 which is proper relative to an immersion ¢y : X — 90, we denote by

/\/;X‘ﬁo C oxTM/Imdey C N}9°

the image of the homomorphism (4.1). We will call N o the normal cone of tx]|

x| X o)
. =0

in 9.

Lemma 4.5 Suppose I is a variety, tx : X — M is an immersion with an idealized normal
bundle /\/'Liie, ﬁo is a subvariety of 9 which is proper relative to vx, and

<=0

ZCZ=u ()
is such that N, [ is the closure of N, [ s0lz in /\/'Llie.

(1) If X is a smooth subvariety of 9, then Perm is proper relative to the itmmersion Lgide,

gide N Pry  Ex

is the closure of ]P’N o|z in % and

|fm
o = Vx| ige 70
Lgide‘PrxfIn €X NPrx I
X

(2) If Z is a smooth subvariety of M disjoint from 1x(Z) and /\/'Li;le is an idealized normal bun-

dle for vz, then Przmo 18 a proper subvariety of BliZdeﬁ relative to the immersion Przix and

g0 18 the closure of N 0|z in Nide

Przux|Przom \9)2 Przux-

The first part of (1) essentially follows from the universal property of blowing up: if 91 is blown
up along Z, then the proper transform of M in 0N (the scheme-theoretic closure of M’ — 7 in
the blowup) is the blowup of ﬁo along WIOQZ , and the normal bundle to the exceptional divisor

in Bl—o ﬁo is the restriction of the normal bundle of the exceptional divisor in Blz9. The
statement (1) is the etale-local version of this. Part (2) is clear by working in local coordinates.
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4.2 Preliminaries

In this subsection, we state a number of known facts concerning the moduli space ﬁlyk(]}’m, d) that
insure that the inductive requirements of the next subsection are satisfied at the initial stage of the
inductive construction. Lemmas 4.6-4.9, with the exception of one statement, are well-known in
Gromov-Witten theory and are obtained similarly to Lemmas 3.6 and 3.7. We show that the last
statement of Lemma 4.7 is simply a reinterpretation of a standard fact concerning moduli spaces
of stable maps.

Let (A;(d, k), <) be the partially ordered set of triples described in Subsection 1.2. It has a unique
minimal element and a unique maximal element:
omin = (1;0,[k])  and  omax = (d; K], ).
Let < be an order on A;(d, k) extending the partial ordering <. For every o € A1(d, k), we define
o—1e{0}uA(d,k)
as in (2.7). For each element o= (m;Jp, Jg) of Ai(d, k), let
ﬁ?,o =M, ,(P",d) C ﬁtl),k Eﬁl,k(]}pnv d)

be the subvarieties defined in Subsection 1.2.

Warning: Note that ﬁg » denotes the entire moduli space My (P", d) and not the main component

ﬁ?,k(ﬂ”", d). Similarly to Sections 2 and 3, the superscript 0 indicates the Oth stage in the blowup
process.

Lemma 4.6 If 01 = (my; Ji.p, J1.8) and o3 = (ma; Jo.p, Jo.) are elements of Ai(d, k), o1 # o2,
01409, and o9 Ao, then

<=0 <30 <350
E)ﬁLUl N EIRLUQ C m173(01702)7 whe’r@

5((71, 02) = (min(ml,mg); Jl;pﬂjg;p, Jl;BUJQ;B).

With o as above, we define
Ip(o) =Rp(o)=[m],  Jp(o)=Jp,  Jplo)=Jp,  Go=5nm.
As in Subsection 1.2, we denote by
10,05 M (1) 70(0)) % TR0 (8p(0) T (o) — Pig C Ty g,
where Mo 25(0),75(0)) = Mo, Rp(0). 75 () (" D)
the natural node-identifying map and by

— —0
0,0 (M1 (1p(0),7p0) X M0,0p(0).Js(0)) /Go — Dy

the induced immersion. Let

TP, B My (1p(0),7p(0) X PR0,05(0),75(0) — ML Ip(0),7p(0))> TV0,Rp(0),75 ()

be the two projection maps.
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Lemma 4.7 If d,n€Z* and k€ Z*, the collections {100 }yea, (@) and {00 Yoea (r) of immer-
sions are properly self-intersecting. If o* =(m*; Jp, J5) € Ai(d, k),
Im® g o+ C U ﬁl,a/ and Nide  — @WPLZ'@ﬂ'*Bﬂ';LO

LO,U*
o' <o* 1€[m*]

is an idealized normal bundle for 1o+ .

We deduce the last claim of this lemma from the deformation-obstruction exact sequence (24.2)
in [MirSym] as follows. Suppose

[S,u] = 10,0 ((Ep] X [Sp,up]) € My 5o, where
[Zsun] = ([Zi wi]) i) € Mo,(8p(0%).T5(0%))-

By [MirSym, (24.2)], there exists a natural homomorphism

s T (P, d)| s, 1 = Def(S, u) — Def(%),

[2,u]
where Def(X, u) and Def(X) denote the deformations of the stable-map pair (3, u) and the defor-
mations of the curve ¥ (with its marked points), respectively. As [, u] is considered as the image
of [¥p]x[Xp,up] under g o+, there are m* distinguished nodes of . These are the nodes of ¥ that
do not correspond to either the nodes of ¥ p or the nodes of any of the curves ¥; with i €[m*]; see
Figure 13. Let

Def(Zp, ZB) C Def(Z)

be the deformations of ¥ that do not smooth out the distinguished nodes of . Since the smoothing
of a given node of ¥ is parametrized by the tensor product of the tangent lines to the two branches
of ¥ at the node, we have an exact sequence

0 — Def(Sp, Bp) —> Def() 22 N [ — 0.
We denote by o
Def(Sp, (Sp,up)) C T ,(P, d)|[w = Def(X, u)

the kernel of the map ‘
j50 jsu: Def(X, u) — N9°

10,0

[(Ep]x[EB,uB]’

The space Def(Xp, (Xp,up)) consists of deformations of (¥, u) that do not smooth out the m*
distinguished nodes of .. Thus,

Def(Ep, (Sp,up)) ~ Def(Ep) @ Def(Sp,up)
_0 -
=TM (1p(0%),7p () |1=p] D To,(8p(0%), 75 (0*) [[S5,u5]-

The isomorphism from the right-hand side to the left-hand side is given by digs+. Thus, the
homomorphism jsojx , induces an injection

Nig o5 = TCﬁLk(]Pm’d)hZ’u] /Imdig o+ — /\/51 Erlx(En ]’

as needed.
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distinguished
nodes

Figure 13: A point in the domain of ¢o .+« and its image in 9 x(P", d)

Lemma 4.8 Ifd, n, k, and o* are as in Lemma 4.7, 0 € A1(d, k) is as above, and o <c*, then
1 /=50 -—0 —
toor (M 5) = ( U Ml,p> X Mo (85 (0*), T (0+))s  Where
pEApP(o*;0)

Ap(c*;0) = {p: (IpUJp, {IxUJy: k€ K}) € A1 (Ip(0*), Jp(c¥)): |K!+!Ip|=m}

and A1(Ip(c*), Jp(c*)) and m(l)vpzﬂm are as in Subsection 2.2. Furthermore, if p€ Ap(c*;0)
s as above,
0

* 13273 -0 an * * %k
LOVU*‘ﬂngﬁO (NB(G*)JB(U*))TSRLU/T(MLPXmo’(NB(U*)’JB(U*))) = @ 7TPLZ'®7['B7TZ‘ Lo.
' ' ' iEIP(U*)—IP

Lemma 4.9 Ifd, n, k, o, and ¢* are as above, then

LO,_crl (ﬁ?a) :ﬂ(l),(lp(a),JP(a)) X ( U ﬁo,g), where
0€ARB(o;0*)

Ap(o;0%) = {o=((01)iexp(0), JB) € Ao (RB(0): d, Jp(0)) : |Np(0)| =m*},

and Ao(Rp(0);d, Jg(0)), Rp(o), and My , =M ,(P", d) are as in Subsection 3.5. Furthermore, if
o€ Ap(o;0*) is as above,

* a0 ——0 an _ * T x
L0’0|m(1)y(1P(U),JP(U)) mengLU* /T(ML(IP(U)1JP(U)) Xm()’Q) - @WPLZ@T(BW'L LO’

1€Rp (o)
where Rp(p) CRp(o) is as in Subsection 3.3.
We note that for every o* € 4;(d, k),
Ai1(Ip(o*), Jp(c™)) = | | Ap(c™;0).
o<o*
Furthermore, if 01,02 € A;(d, k) are such that 01,09 <0c*, then
prEAp(c™;01), p2€Ap(c™;02), p1=p2 = o1 <09.
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Thus, we can choose an ordering < on A;i(Ip(c*), Jp(c*)) extending the partial ordering < of
Subsection 2.3 such that

o1<09, p1E€Ap(c*;01), p2€Ap(c”;02) = 1< pa,

whenever 01,09 € A;(d, k) are such that 01,09 < o*. In the next subsection, we will refer to the
blowup construction of Subsection 2.3 corresponding to such an ordering.

Similarly, if o’ € A;(d, k),
Ao(Rp(c');d, Jp(c")) = |_| Ap(d';o).

o' <o
Furthermore, if 01,09 € .A1(d, k) are such that o’ <o, 02, then
o1€Ap(o’;01), 02€Ap(d’;02), 01<02 = o1 <03

Thus, we can choose an ordering < on Ay(Rp(c’);d, Jp(c')) extending the partial ordering < of
Subsection 3.3 such that

o01<09, 01€AB(d’;01), 02€Ap(c’;09) - 01 < 02,

whenever 01,09 € Ay(d, k) are such that o/ < o1,05. In the next subsection, we will refer to the
blowup construction of Subsection 3.4 corresponding to such an ordering.

We denote by ﬁg(o) the main component ﬁ‘f,k(]?”,d) of the moduli space My x(P",d). If o €
Aq(d, k), we put

—0 _1 /=30 _1 /=50 =0

z, = Lo,ol (ml,(o)) = Lo,ol (9371,(0)m M ,);

20 =1 (T )N M) C 2oy where My, = My, (P, d).

We denote by N ?2 - /\/'Li(?i the normal cone N

. =0 .
00 T o) for L07U|§2 in My (). Its structure is
described in Lemma 4.10 below. Let

——0 ide * Tk * * n
Do € T (M (11 (), 7 (o)) X D0, 005 (0). T (o)) ; Hom(N S, mpEG @ pevg TP™) )

L0,0?

be the section defined by

DO,U

— * . * % .
i LignyarL — TPS0i@Tpm Do, Vi€ [m],

where s0; and Dy are as in Subsections 2.3 and 3.2, respectively.

=0 . . <0 . . .
Lemma 4.10 For allo€ Ay(d, k), 93?17(0) is a proper subvariety of My ;. relative to the immersions
Lo, and to .. Furthermore,

Z) = {bE My 11(0)7p(0) X Mo,k (0) .75 (o)) © KET Do # {0} }
and  NZq| o = ker Dog| -

Finally, Z° s the closure of 20 in ﬂ?,(jp(owp(g)) XMy (Rp(0),Jp(s) aNd NES is the closure of

o

=0 ; ide
NZ(,!Zg in N
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This lemma is a consequence of [Z4, Theorem 2.3] and related results. In particular, the first claim
in the second sentence of Lemma 4.10 is a special case of the first statement of [Z4, Theorem 2.3].
The second claim is nearly a special case of the last statement of [Z4, Theorem 2.3], but some
additional comments are required. [Z4, Theorem 2.3] by itself is a purely topological statement, as
it describes the topological structure of a neighborhood of each stratum of ¢ (E‘j) in ﬁ?,(o)' On
the other hand, by Subsection 4.1 in [Z2], N 2‘; ‘ ~o 1s contained in ker Dy ,. The second claim in the
second sentence of Lemma 4.10 can then be obtained from a dimension count and a comparison
of the gluing construction used in the proof of [Z4, Theorem 2.3] with the analysis of limiting
behavior in [Z2, Subsect. 4.1]. This comparison implies that the gluing parameter in the analytic
construction of [Z4] agrees to the first two orders in the zero limit with the smoothing parameter

in algebraic geometry. Thus, N §2| 2o must be equal to ker D, . These considerations also imply

the first claim of Lemma 4.10. Alternatively, suppose that d < n. If the moduli space ﬁ?a is
nonempty, then m <n and thus for a Zariski open subset Z,.; of Zg

1< dimNgg‘Z , =1l=dimkerDy,|, = N’EE,)!Z L= ker Do o |, . (4.2)

Since Dy, is transverse to the zero set over 29 the second claim in the second sentence of the

lemma follows from (4.2), if d<n. The general case follows from the observation that
My (P, d) = {[Z,u] €My »(P" 4, d): w(E) CP"}
and the d<n case.

The first claim in the last sentence of Lemma 4.10 can be obtained by combining the first statement
of [Z4, Theorem 2.3|, the m=1 case of [Z1, Theorem 2.8], and the Implicit Function Theorem. It
also follows immediately from the last claim of Lemma 4.10. The latter can be deduced from [Z4,

Theorem 2.3] as follows. Suppose first that m <n. In this case, [Z1, Theorem 2.8] implies that Z 2
admits a stratification

—0
Zg’ = Lol L |_| Za;a
acA

such that Z,.; is a Zariski open subset of 22,

Z,a C 20 dim NZoly=1 VbeZq,
and max {dim N§2|b: be Zg;a} < codimzo Z50 V€ A; (4.3)
see the next paragraph. Let
20 =PNZ, C PN |
be the exceptional divisor for the blowup of ﬁ‘f,(o) along ﬁgg. Since all irreducible components
of Z0 must be of the same dimension, Z° must be the closure of Z0| zo by (4.3). This closure

property remains valid even if we do not assume that m <n for the following reason. Let pt € P"td
be any point not contained in P™. Let

7 P {pt} — P
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be the corresponding linear projection. It induces projection maps

o {[Z,u] €Dy (P d): ptgu(S)} — I 4(P",d)  and
p: {3, u;0]€ Z9(P"H, d): ptgu(R)} — Z9(P", d).

The latter map takes Z0(P"+9, d)| zopnta q) tO Z0(pn, d)| zo(pn,q)- Since the closure of
Z0(P™, d)| 50 prta g)

contains Z~2 (P™, d), it follows that so does the closure of 22(1@”, d)| zo(pn,q)- This observation implies
the last claim of Lemma 4.10.

We conclude this subsection by briefly describing the stratification mentioned above. A stratum
My, of ﬁo,(NB(a),JB(U)) corresponds to a tuple I'p = (I'py)jen (o) of dual graphs, all of which are
trees. The vertices of I'p,; correspond to the irreducible components of the domain of the stable
map b; in the definition of ﬁo,(& 5(0),J5(c)) at the beginning of Subsection 3.3. Each vertex v of
I'p; is labeled by a nonnegative integer, which specifies the degree of the stable map b; on the
corresponding component YJ,. There is an edge in I'p,; between two vertices if and only if the two
corresponding components of the domain share a node. In addition, there are tails attached at
some vertices of I'g.;, which are labeled by the indexing set for marked points of the map b;, i.e. J; p
in the notation of Subsection 3.3. Let v; be the vertex of I'g,; to which the tail corresponding to
the marked point 0 is attached. If the degree of v; is positive, let

xi(P's) = xi(Tpy) = {v/'}

Otherwise, denote by x;(I'g) the set of positive-degree vertices of I'p; that are not separated
from v} by a positive-degree vertex. Suppose

b= 0)iexp(0) € Mry = Mo (% (0),J5(0)) N HimrB;“ with by =%, u]
lENB(U)

as in the paragraph preceding Lemma 3.8. If [eRp(0) and v=uv;, let
ImDU\b = ImDo\bl = Imdul\xo(bl) C Tevo(b)]Pn-

If v is a vertex of I' g, different from v}, we denote by Im D, |, the image of d{w;|x, } at the node of
Y, corresponding to the edge of I',; that leaves v on the unique path from v on v} in I',;. Note
that if vey;(I'p), the image of this node under u; is evy(b). We set

X0 = || xTs).

lENB(U)

With b as above, let
codimD|, = |X(FB)‘ — dim Span{Im D, |,: ve x;(I'), l€RB(0)}.
For each pair a=(T'p, i), where p€Z™" is such that

max (1, [x(Ts)|—n) < p < [x(Ts)l, (4.4)
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we put
Zrpia = {b€Mp,: codimD|p=p}.

By the first statement of [Z4, Theorem 2.3],

_0 R
Z, = |_| Zoo where  Z5i0 = M 1, (0)0uJp (0) X 2l pia-

The disjoint union is taken over all pairs a= (T, 1) as described above. From transversality as in
the first claim of Lemma 3.8, it is easy to see that

COdimgmrBZrB;a = (n - (|X(FB)|_:UJ)):U
>n—(Ix(I'p)|—p);

see the end of [Z5, Subsect. 2.3], for example. The above inequality follows from the first inequality
n (4.4). By (4.5), it m=|Rp(0)|<n,

(4.5)

codlmg?r Zoia = codlmngB Zrgia+ codlmmwB(a)‘JB(g))ﬂﬁrB
—=0

_COdimml,IP(a)uJP(a)Xm,(NB(g),JB(U)) g
> (n—x(Tp)|+4) + (XT5)~Rp@)]) — (n—Rp(o)|+1) = p—1.

On the other hand, by the last statement of [Z4, Theorem 2.3],
max {dim N§2|b: bEZg;a} = /.

We conclude that Y
max {dim NZ_|p: bEZU;a} < codimo Zg;q + 1.

The equality holds if and only if #=1 and I'g is a tuple of one-vertex graphs, i.e. the image of
M 15 (0)uTp (o) X, under (o, is contained in My . This observation concludes the proof of the
stratification claim made in the previous paragraph.

4.3 Inductive Construction

This subsection is the analogue of Subsection 3.4 in the present situation. Suppose o € A;(d, k)
and we have constructed

(I1) an idealized blowup m,_1: ﬁ?;l —>ﬁ(1)7k such that m,_1 is an isomorphism outside of the
preimages of the subvarieties ﬁ?p, with o/ <o—1;

(I12) for each o’ €{(0)}U.A;(d, k), a subvariety ﬁi;} of ﬁf;l such that

50— —0— —=0— —0— —0
M =M ou UM, mea (M) =0, Vo e{(0)}UA(d k),
o' €Ay (d,k)

and ﬁi;l is the proper transform of ﬁ?,a* for o*=(0) and for all o* € A;(d, k) such that o* >o—1.
We assume that
(I3) for all 01,09 €.A1(d, k) such that o1 #09, 014 09, 03 A 01, and 0—1<07,09,

o1 ip o~
ﬁa—l mﬁa—l C 93?1,5(01702), if 6(01,09)>0—1;
b boe ] = 0, otherwise,
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where G(01,02) is as in Lemma 4.6.

We also assume that for every o’ € A;(d, k) such that o’ <o—1:
(14) ﬁf;} is the image of a G,/ -invariant immersion

vl a0 (0—1) o1
lo—1,0"" Ml,(lp(o/),Jp(a’)) X mo (Rp(a),Jp(0)) S)ﬁl,k ) where

(0—1) maX{QEAB(U’;U*):U’-<U §U—1}, if Jo* e Ay1(d, k) sit. o' <o*<o—1;
g — o
¢ 0, otherwise,

2o (0—1) a0, (0—1)
and 9, 0 (X5 (01,75 (0")) :mo,(NB(a/),JB(U’))(P ,d) is the blowup of oo
in Subsectlon 3.4;

(I5) if o* € A1(d, k) is such that c—1<o* and ¢’ <c*, then

o (T 02) = M1, ¥ ( J o, )

0,08 (o), (o)) (E""> @) constructed

0€ARB(a’;0%)
where imgf’/(a V= Dﬁg”'(a 1)(]P’" d) is the subvariety of e ) described in Subsec-
tion 3.4 7 Y 0,(Xp(0"),/5(0"))
ion

(16) an idealized normal bundle for the immersion t,_1 , is given by
id * * *
Nf:w, =7npl ® TBT o 1 (c—1)Y(Rp(0"),TB ("))

where

Ry (1) i (o-1)
7B, T Mi (10, dn(0) X Dot tnten) — MLise) 00 T o Jn(e)

are the two projection maps and . — Ml,( Ip(c"),Jp(c")) 15 the universal tangent line bundle of
Subsection 2.3;

(I7) 22, ! =t o (omy (0)) is the closure of
o—1 __ x4 1 Qo-/(a 1)
25 =M p(o).dp(e) X (Dga,(g 1(0) = U o )
e€Ap(Rpg(c');d,Jg(a’))
0,1 (0—1)<e
. Mv Xﬁgal(U—l) d
0 M (1p(07),Jp(0) X Mo R (07),T5(07)) A1
—o—1 ide
NZ o Na 1, o'/|m1 0) N MU—L"' ggf_l

. o1 . Sno—1
is the normal cone for Lg_1,01|93?17(0) in M 5
(I8) the immersion map

o (0—1) Sno—1
to—1,0' (Ml(IP(U)JP(a)) mg(NB(a)JB(a’)))/GU/—>m1,k‘

induced by ¢,_1,, is an embedding.
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Furthermore, we assume that for every o* € A;(d, k) such that o* >0 —1:
(19) the domain of the Gy+-invariant immersion t,_j o+ induced by ¢ o+ is

*(0—1) am
M o ap@) X Top(o*)Jp),  Where
if 3o’ € A1 (d, k)
*o ) gl < g — / * 1 1\4a,
po(o—1) = max{,oE.Ap(U ;0'):0'<o—1,0"<0 }, st. o' <o—1.0'<0%
0, otherwise,

and Mp"(jgj(oi)) Tp(o*)) —>M1,1P(U*)HJP(U*) is the blowup constructed in Subsection 2.3;
(110) if o’ € A1 (d, k) is such that o —1<o’'<c*, then

o— A A Po* o—1 an
0' ]. ,o* (m 1) ( U MT,P( )) X mov(NB(a*)vJB(o*));
pEAp(c*;o’)

(I11) if o* is as in Lemma 4.7, an idealized normal bundle for the immersion t,_1 ,+ is given by

Nlde _ @ 7TPL ®7TB7T*L0,

lo—1,0%*

i€[m*]
where

“Per(0-1) s P (0—1) ar
Mlv(IP(a*)Jp(o*)) XMo,(85 (%), Jp(0*)) Ml,(Ip(a*),Jp(a*))7 Mo, (0*),J5(0*))

Tp, TR :
are the two projection maps and L, , (5—1) Mp”( L(DU(U& ; Tp(o*)) is the line bundle constructed in
Subsection 2.3;
—0— o* (0—1 S5
" (112) Z{U* =1, 10 (9 (0)) is the closure of 2%, in M} (IEJ(U*)) Ip(o*)) X Mo,k (), 75 (o+)) 8D
e normal cone

1
NZ =N
g lo— lo'*|m1 0)
zo in /\/‘de

—o—1 . —0
for ty—16+| 24+ is the closure of N'Z,.

(I13) Im® T5—1.6+ C Uy 1corson sz{a,l, where

10.*’

o—1

_ ——pox(o—1) — —
lo—1,0%: (MT,(IP(U*),JP(U*))Xmoy(NB(o'*)va(a*)))/Ga* — My,

is the immersion map induced by t5_1,4+.

Finally, we assume that

(114) the collections {to 1,0’ }orca; (@k) a0d {lo—1,0'}ore A, (d,k) Of immersions are properly self-
intersecting;

(I15) for all o’ € A;(d, k), the subvariety ﬁt&ol) of ﬁ?;l is proper relative to the immer-
sions tg—1,0r and Lg_1 4.

By the inductive assumption (I3), if o1 and o9 are non-comparable elements of (A;(d, k), <), the

proper transforms of ﬁ(l)m and ﬁ?m become disjoint by the time either is ready to be blown up
for any ordering < extending the partial ordering <. Similarly to the three blowup constructions
encountered previously, (I3) will imply that the end result of the present blowup construction
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is independent of the choice of an extension <. By (I9), our blowup construction modifies each
immersion tg ,« by changing the first factor of the domain according to the blowup construction
of Subsection 2.3, until a proper transform of the image of (o, is to be blown up; see below.
By (I11) and (I13), in the process, the singular locus of ¢+ disappears and the first component
in every summand of /\fjgli gets twisted to L. In particular, all blowup loci are smooth. On the

other hand, by the inductive assumptions (I7) and (I8), for 0’ <o—1 the intersection of the proper

transform of ﬁ(i(o) with the proper transform of the exceptional divisor ﬁia, is an embedding of a
subvariety of a smooth variety. The singular locus of this subvariety is annihilated by the time the
entire blowup construction is complete, according to the inductive assumptions (I7) above and the
inductive assumption (I4) in Subsection 3.4. These assumptions imply that the proper transform

of ﬁg(o) after the final blowup step is smooth.

We note that all of the assumptions (/1)-(/15) are satisfied if o—1 is replaced by 0. In particular,
(I3) is a restatement of Lemma 4.6, while (I10)-(I15) are contained in Lemmas 4.7, 4.8, and 4.10.

If o€ A1(d, k) is as above, let
~ &R0 ano—1
o f)ﬁl’k — mLk
be the idealized blowup of ﬁi;l along ﬁti;l, which is a smooth subvariety by the inductive

assumption (113). We denote the idealized exceptional divisor,

X1 =PNEE

i o 1,07
by ﬁio. For each o’/ € {(0)}U(A1(d,k)—{o}), we denote by

M, C Blﬁi?ﬁﬂl My,
the proper transform of W?;} . Let mp=m,_107,.

The inductive assumptions (/1) and (12), with o—1 replaced by o, are clearly satisfied, while (13),
(I8) for o’ #0, and (I113)-(115) follow from (2) of Lemma 3.3, Corollary 3.4, and Lemma 4.5. On
the other hand, by (19), the domain of the immersion ¢,_1 , is

“Po(0—1) mr v o
ML(IP(U),JP(U)) XMo,(Rp(0),75(0) = M1,(1p(0),0p (@) X M0,8p(0),75(e))

By (I11), the chosen idealized normal bundle for the immersion t,_1 , is given by

Njffm - @ 5Ly, (0-1):@TETr Lo = THL ® T5F % (0) .75 (0))- (4.6)
i€[m]

Thus, the domain of the immersion ¢4, induced by t;—1 4 is

ide Y a0 A q 00 (o)
PN, = Mi(1p(0),00(0) X I (kg (0),T5(0)) = MR )75 (0)) X TG (e (0) T (o)

By the first statement of Lemma 4.3, an idealized normal bundle for the embedding ¢, is the
tautological line bundle over PAjd® ie.

N = mpLOTEY g (o) 5(0)) = TPLOTETy (o) VN5 (0).J5(0))-
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Thus, the inductive assumptions (/4) and (I6), with ¢’ =0 and o—1 replaced by o, are satisfied.
The same is the case with (I8), since the map 7,1, is an embedding by (I13).

We also note that by the first statement of Lemma 4.9, the inductive assumptions (I1) and (/2),
and the last statement of Lemma 3.3,

o0 (T ) = Mi15(0), 5 () ( U ﬁo,g)

o€ Ap(o;0%)
for all o* € A;(d, k) such that o <o*. In addition, by the last statement of Lemma 4.9
* id
L0_1’0|Mv1,<1p(a),Jp(o))Xﬁo T, " /T M, :(Ip(9),Jp (7)) xMo,) C NS, o

is a vector bundle for all p€ Ap(c;0*) and

* a0 —1 * * %
La_lva|M1,1P(a)uJP(a)X%,QTWLU*/T(ML(IP(U),JP(U)) Xmo,g) = ' @TPLZ'@”TBTQ LO'
1eNp(o

Thus, by the first equality in (4.6),

* a0 —1 vl ar * * ok
S rpiorspion <o T | T 1011000 ¥ T g) = mhLe - D Lo
1€Xp (o)

= 7T73L®7T*BFQ;p.

It follows that

L _Ul(ﬁ(lj,o*) = U P(WPIL®7TBF, )|M1(1P(g) (o) ¥ Dog
0€AB(o;0*)
= Mlv(IP(U)vJP(U)) X ( U PF ;p>
0€AB(o;0*)

= M (1 (0),Jp (o)) ¥ ( U ﬁg,g) = M\ (1 (o), 75 (o)) ¥ ( U ﬁglj”)),

0€AB(d;0™) 0€AB(d;0™)

as needed for the inductive assumption (I5) with o —1 replaced by o and o'=0.

Furthermore, by (112), NZ5 ' is the closure of

/\/'?2‘22 = ker DO’U‘M“P

(@)uTp(e) X Do, (R g (), 75(0))
% *
= 7TP]L & B ker D(NB(U),JB(U)) |9JIO,(NB(O'),JB(O'))

in TpLOTEE N, (0),05(0)), Where Dy (o),75(0)) 18 the bundle homomorphism described in Subsec-
tion 3.3. Thus, by the first statement of Lemma 4.5,

is the closure of
Mi(15(0).7p@) ¥ {0 EPFR5(0),715(0) |96 5y 01 550y P0b=0}
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in le (Ip(0),Tp (o)) 0 (NB () . The inductive assumption (I7), with ¢/’=0 and o—1 replaced
by o, now follows from the ffrst statement of Lemma 3.11.

We next verify that the inductive assumptions (14)-(17) hold for ¢’/ <o, with o —1 replaced by o.
If o/ 40, then
05/(0) = 05 (0—1) and ﬁ[{’;} N ﬁ‘{;l = (),

by definition and (I3), respectively. It then follows that
Laval = 110'_170-/7 A/’Llii’ = A/’Llfi

and Dy NIy o =M, 1 NN, o Vo € {(0)}UA; (d, k).

)
1,0/

Thus, the inductive assumptions (I4)-(I7), as stated above, imply the corresponding statements
with o—1 replaced by o.

Suppose that ¢’ <o. By (I4) and (1) of Lemma 3.3, the domain of the immersion ¢4, induced
by ty—1,5 is the blowup of

v 1727 (0—1)

M (1p(0),7p0) M T (07), 75 (07))
along the preimage of ﬁ?;l under t5_1, in

. Y a0, (0—1) —~ a0
X7, (—1) M1 (1p(0"),70(0) X P R s (0I5 (07)) " MLIp(0),Tp(0) X IM0 85 (0), T ("))

By (I5), this preimage is

M (1p(0).0p(01) % ( U mg 1)

0€ARB(o';0)

By the inductive assumption (/5) in Subsection 3.4 and the second paragraph after Lemma 4.9,

imgc'gl(g ) ﬂfmg”gg(g D=0 Voi,0€Ap(0';0), 01702

Thus, by the construction of Subsection 3.4, the blowup of Dﬁg"(}gg( l)) In(0") along

Ui

o€AgB(d/;0)

is EITIQ"(;E;)(U,) Tp(or) 83 needed for the inductive statement (/4), with o—1 replaced by o. The in-
ductive requirement (I5) is obtained by the same reasoning, using the last statement of Lemma 3.3.

- . . amo—1 .
Since M, , is not contained in M, ,/, the bundle homomorphism

oo —1 ide
bo1,0 Ty o — — N,

alo‘

must be surjective on every fiber over ¢~ 1 o (M5, - ) by (I14). Thus, the inductive assumption (16),

for o/ < o, continues to hold. Furthermore, by (I7) and the last statement of Lemma 3.3, Z Z/ is
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the closure of

vt ~ —1 NQU/(U—I)
M (1p(0"),dp(0")) X (DQJ/(U_U(O) - U g, )
0€Ag(Rp(a’);d,Jg(a’))
Qg/(a—1)<g
~ = _ poct 77201(0)
= Mu oo eon * (Dl @ = | M, - U w?)
0€AB(0’;0) 0€AB(Rp(a');d,Jp(c"))

0, (0)<eo

in My (1p(0"),7p(0")) Xmgfr(/;q(;)(a/),JB(a/))' By the construction of Subsection 3.4,

"'Qal(ff)

D | =D .
0,/ (0—1) | G257 (9) 0,7 (o)
Mol (01,700~ Yoeap o) 2 0 Mol (0,500~ Yeeap o) 20,0

Since 2590/(0) is transverse to the zero set outside of the subvarieties ﬁoi’é(o) with ¢ > g/ (o) by
the inductive requirement (I4) in Subsection 3.4, we conclude that the first part of the inductive
assumption (I7), with o —1 replaced by o, is satisfied. The second part follows from the last
statement of Lemma 4.5.

It remains to verify the inductive assumption (19)-(/12), with o —1 replaced by o. Suppose
o* € Ai(d, k) is such that o <o*. If 0 A0*, then

<5o—1 <5o—1
po-(0) = pox(c—1) and My . Ny, =0,
by definition and (I3), respectively. It then follows that
lo,o* = lo—1,0%, -/V’Li;li* = -/V’Li;lil o)

and I . NI o = T e NIy Vo' €{(0)}UA(d, k).

Thus, the inductive assumptions (19)-(112), as stated above, imply the corresponding statements
with o—1 replaced by o.

Suppose that o <¢*. By (19) and (1) of Lemma 3.3, the domain of the immersion ¢, o+ induced
by tg—1,6+ is the blowup of

e (0—1) —
M p(04),7p(0%)) X Do, (0%),T5(07))

. Smo—1 .
along the preimage of M; , under 151 o+ in

1 mpar (0—1) — — —
Tpye(o-1) X1 MU0 Tp (o)) X0, 085 (0%)T8(0%) — M1p(0*)0p(0%) X 0,085 (%), 75 (0°)

By (I10), this preimage is

—por (-1 _
U Ml,p ) X Mo, (xp (o), 75 (0*))+
pEAp(c*;0)

By Lemma 2.6 and the paragraph after Lemma 4.6,

il * 0'—1 ey * 0'—1 *
M’ff'pl( )ﬂM’f,”pg( "= 0 Vi, meAp(0*ia), pr#pa.
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Thus, by the construction of Subsection 2.3, the blowup of Ml K Ig’(g*l ; Tp(0*)) along

U Mpa* (o—1)

pEApP(c*;0)

is /\/lp (L(D()U*) Tp(o*)) 38 needed for the inductive statement (19), with o —1 replaced by o. The
mductlve assumptions (/10) and (/11) are verified similarly, using the last statement of Lemma 3.3
and Lemma 4.3. The argument for (/11) is nearly identical to the verification of the inductive
assumption (/11) in Subsection 3.4. Finally, the inductive requirement (I12), with o —1 replaced
by o, follows from the last statement of Lemma 4.5, along with the assumptions (/1) and (12).

We conclude this blowup construction after the o, step and put
an Ay Omax ~ ~ ~~0max
931(1)7k,([[1>", d) = 93’{17(0) s T = Mopax ﬁ??o?’ and Zg(]P)n’ d) = ZU .
The inductive assumptions (I1)-(I8) imply that
7 00 (P, d) — Iy 4 (P", d)

is a desingularization as described in Subsection 1.2. By (I3), the final result of this blowup
construction is independent of the choice of full ordering < extending the natural partial ordering <

on Ay (d, k).

5 Proof of Theorem 1.2

5.1 Pushforwards of Vector Bundles

In this section we prove Theorem 1.2 by lifting the construction of Section 4 from stable maps
into P™ to stable maps into (the total space of) the line bundle £ associated to the locally free
sheaf Opn(a).

Let 7: L — P™ be the bundle projection map. We denote by ﬁLk(ﬁ,d) the moduli space of
degree-d stable maps from genus-one curves with & marked points into £. The projection map 7
induces a morphism,

p: ﬁl,k(ﬁ, d) — ﬁlk(ﬂm,d), (X, u] — [E,7oul.

Since no fiber of £ contains the image of a non-constant holomorphic map, the ghost components
of (X, 7 ou) are precisely the same as the ghost components of (X,u). We note that

p ([, u]) = HO (5w L) [ Aut(E, u).

In particular, p is a bundle of vector spaces, but of two possible ranks: da and da+1. Let S, denote
the sheaf of (holomorphic) sections of

_0 n
M (L, )| — D ,(P", d).

Pl na)’ K (Pd)
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Similarly, denote by Sy the sheaf of sections of
p: 7k (L,d) — MY, (P", d),

where 7: ﬁ?’k (P™,d) —>ﬁ(l)vk(]?”, d) is the desingularization map of Theorem 1.1:

%*ﬁl,k’(‘cv d) u ml,k(£7 d)

; |

MY . (P", d) —Z— M, 1, (P", d)

Lemma 5.1 With notation as in Theorem 1.2 and above,
(1) the sheaves Sg and m.ev*Opn(a) over ﬁ?,k(]}””,d) are isomorphic;
(2) the sheaves Sg and T.7*ev*Opn(a) over MY , (P, d) are isomorphic.

Let U, be the universal curve over ﬁl,k(ﬁ,d)] with structure map 7w, and evaluation

<50
My, (P,d)’
map evy. The projection map 7 induces a morphism p on iU, so that the diagram

T mn

&'E 5 MP
e s
g -

_ o J—
My k(L,d) ’ﬁ?,k(Pn,d) - ml,k(Pn7 d)

commutes. Suppose VVCW(]E’,C (P™,d) is an open subset.
(i) An element

s € {mev Opn(a) (W) = H (7' (W);ev*L)

induces a morphism 5: 7~ (W) — L so that ev=703. In turn, 5 induces morphisms f, and fs to

My (L, d)’ﬁ?’k(w,d) and Uz,
(W) —Ls Hp—"r
| -
W ——Le T (L Dl o
1k (P
so that s=ev,o fs. Then,
evoﬁofszToevcofs:To§:ev:7r_1(W)%IP’" = po fs = idw,

since mo po fs =po fsom. Thus, fs€Sc(W). It is immediate that the map

{mev*Opn(a) } (W) — Sc(W), s — fs,
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induces a sheaf homomorphism.
(ii) Conversely, let 0 €S (W), i.e. o: W —0y (L, d) is a morphism such that poo = idy . Since
Up=p*U,

7 Y W) = U|w = o*Ue.

Thus, o lifts to a morphism
G Y (W) = o™iy — YUp.

Let g, =ev,oG. Then,
TOgy =TOEVLOT =€eVOopPOJ = eV,

ie. g, € HO(m~1(W);ev*L). Tt is immediate that the map
Se(W) — {mev* Opn(a) }(W), o — Yo,
induces a sheaf homomorphism. Furthermore,
g5, =5 Vse {mev'Opn(a)}(W) and foo =0 VoeS(W).
These observations imply the first statement of Lemma 5.1. The second claim is proved similarly.

Let ., o
ml,k(£7 d) - S):nl,k’(‘cv d)

be the closure of the locus of maps from smooth domains. We show in Subsection 5.4 that the
proper transform Wg’k(ﬁ, d) of ﬁ?,k(ﬁ, d) in

D 1(L,d) — M 4 (P, d)
is smooth. Similarly to the case of ifDVT?’k(]Pm, d), the main stratum of ﬁ?vk(ﬁ, d),

M (L,d) = ML D) gyt o g = PO R(Ld) = [ 27 (i)
' o€ A (d,k)

is smooth. On the other hand, by the inductive assumption (I1) and the last paragraph of Sub-
section 5.4, for each o€ A;(d, k)

/Dﬁ?k(ﬁ, d)n pt (Im Lgmax,o)

is the image of a smooth variety under the bundle homomorphism j,, .. - lifting the embed-
ding 4,0 Oof Subsection 4.3. Thus,

ﬁ?,k(‘ﬁ? d) mp_l(lm LUmaXya')
is a smooth subvariety of ifT)vT?,k(E,d). As its normal cone in ffDVT?’k(E,d) is a line bundle by the
inductive assumption (I1) of Subsection 5.4 for every o € A;(d, k), we conclude that the entire

space ifDVT?k (L,d) is smooth. Furthermore, the fibers of

5 O (L, d) — Y (B", d)
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are vector spaces of the same rank and ﬁ? (L, d) contains ﬁ? x(P",d) as the zero section. Thus,
p is a vector bundle.

Lemma 5.1 and the previous paragraph imply (1) of Theorem 1.2. The second claim of this theorem
is obtained in the last paragraph of Subsection 5.4. Finally, (3) of Theorem 1.2 follows from (4) of
Theorem 1.1 and the following lemma.

Lemma 5.2 Suppose 7 : M— M is a _morphism between varieties, 4 — M is a flat family of
curves, £L—$ is a line bundle, and 7: 4— 9 and L—4 are the pullbacks of U and L via 7:

/E TrE/

J=ry ——
A &
m —— M

If the morphism T is surjective and its fibers are compact and connected, then

TaTs L = T L.

Since L is locally trivial, Lemma 5.2 follows from
™ *O = Ou

In turn, this identity follows from the fact that every holomorphic function on a compact connected
variety is constant. Thus, if W C i is any open subset and f is a holomorphic function on
ﬁ_l(W) Cil then f is constant on the fibers of 7, i.e. f =7*f for some holomorphic function f
on W.

5.2 Construction of Bundle Homomorphism

In this subsection we describe the surjective bundle homomorphism that appears in the second
statement of Theorem 1.2; see Proposition 5.5. The construction of this homomorphism is similar
to the construction of the homomorphism Dy ;) in Subsections 3.3 and 3.4.

Let £L——P™ be a line bundle as in Subsection 1.2. If J is a finite set, let
Vo = Mo 0300 (£, d) — Mo go3,5 (P, d)
be the corresponding cone. In particular, if [X, u] Eﬁo,{o}uj(]?”, d), then
0 Lk
Vol = H°(Z5u" L) /Aut (S, u).
In this, genus-zero, case, this is a vector bundle of the expected rank. Let

Ve TS0 L) — D(S; T*S@u*L)
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be the pullback of the standard Hermitian connection in £ by u. We define

Dy € F(ﬁ07{0}uJ(Pn, d); Hom(Ly®Vy, eVSE))
=T (Mg {07 (P, d); Hom (Lo, Hom(Vy, evi L))
= P(ﬁ()’{o}u‘](]?n, d); Hom(Vy, Hom(Ly, evf‘)ﬁ)))
by Dot = V|apmu) VEEH(Z5u L),

where 2(X, u) €X is the marked point labeled by 0 as before. We note that D vanishes identically
on the subvarieties My »(P", d) with o€ Ag(d, J) defined in Subsection 3.2.

If X and J are finite sets, let

ey Vi) — Mo v,y (B, d)

be the vector bundle induced by L, where mo,(& 7) (P™,d) is as in Subsection 3.3. It is immediate
that

Vi) = {(&)iex E@WfVoi evo(&)=evo(&y) Vi, i’ eR} =My 5y (L, d).
IS
Note that for every o=(m;Jp, Jg)€.Ao(d, J),
teVo=m3V(m),75) — Mo o3uim)ugs X Mo, (m),7) (", ),
where ¢, is as in Subsection 3.2.
Lemma 5.3 Ifde€Z™, J, L, and Vy are as above, the bundle homomorphism

Do € (Mo 1030 (P", d); Hom(Vy, Li®evi L))

is surjective on the complement of the subvarieties Mg ,(P", d) with o € Ag(d, J). Furthermore, for
every
o=(m;Jp,Jp) € Ao(d, J),

the differential of Dy,
VDo: N, — 1, Hom(Vy, Lo®evy L) = mpLo@mpHom(V((m),1,), evoL),
in the normal direction to the immersion L, is given by

VDq

b Liomht Lo = TpSiQTRT; Do Vi€ [m],

where s; is the homomorphism defined in Subsection 2.2.

Lemma 5.3 can viewed as the analogue of Lemma 3.8 for vector bundle sections. The first claim
of Lemma 5.3 is an immediate consequence of the fact that

H' (S;u*Le0(-22)) = {0}

for every genus-zero stable map (X, u) and a smooth point z € ¥ such that the restriction of u to
the irreducible component of ¥ containing z is not constant. The second statement follows from
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[Z5, Lemma 4.2].

With notation as in Subsection 3.3, let
D,y € T (Mo, w7 (P", d); Hom(V(y sy, Hom(Fiy ), eviL)))
=T (Mo (x,) (", d); Hom (Fy 5y, Hom(Viy ), evpL)))
= T'(Mo, v,y (P", d); Hom (Fi )y @V, 1y, €v.L) )
be the homomorphism defined by

7 Lo®m} Vo -

Vi, jEN.

W:@O, ifj:i;
W) {

0, otherwise;

It induces a section
Do €L (MY ) (P", d); Hom (v, ), T b, Hom (Vi gy, ev5.£)))
= F(m&(NJ) (P",d); Hom(mpp evyL)).

(®,J)

Vir): Bo®@7,

N, J)

This section vanishes identically on the subvarieties ﬁ& o(P", d) of ﬁg ) (P™, d) with p€ Ap(R; d, J),
defined in Subsection 3.3.

Lemma 5.4 The bundle homomorphism
Dy € F(img’mj) (P™, d); HOI’H(W]EF(NJ)V(N’J),ES@W}(N‘J)GVE;ﬁ))
is surjective on the complement of the subvarieties ﬁg,g* (P™, d) with o* € Ap(X;d, J). Furthermore,
for every o* € Ap(R;d, J) as in Lemma 3.10, the differential of 50,
VDo: Ny, —>L6K,Q*HOII1(7TE;F(N7J)V(N7J), ES@W}(NJ)eVSL)
= W;ES®7T*BHOH1(V(NB(Q*),JB(Q*))7eVEkJ[’)v
in the normal direction to the immersion vg o+ 15 given by

VD

_ * i * %k . * *
wpLo,0n@THm oy Lo TPS0,(1,i) OTBT (1, D0 Vie[m], leRp(0"),

and V@o

w7 = TPASTED s (0). 750

where sq ;) is the homomorphism defined in Subsection 2.4.

This lemma follows immediately from Lemma 5.3.

Proposition 5.5 With notation as above, there exists a surjective bundle homomorphism
D) € D(Mo ) (P", d); Hom (7 7B Ey, 5, VN, J)» E* DT (8,.1) By €V0L))

such that

Q(NJ)‘PF&’J) = QO‘I@F&’”, where
PFQg) =PFagy — | 90 (B, d) € G 5y (B™, d), Do, ) (B", ).
0€Ap(N;d,J)
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In fact, in the notation of Subsection 3.4, for every o € {0}U.Ap(R;d,J) there exists a bundle
homomorphism

D,eTl (img,(w) ; Hom(waﬁiF(N’J) Ve, EZ@WZWE»F(NJ) evy L))

such that B B
(i) the restrictions of ®, and D to PF] (ON, 7) agree;
(i) @, is surjective outside of the subvarieties 93?87 o+ With 0*>p;
(iii) ®, vanishes identically on the subzarieties zmg, o+ With 0% > ;
(iv) for each ¢* > p, the differential of ®, in the normal direction to the immersion ¢, ,
is given as in the statement of Lemma 5.4, but with s ;) replaced by 8 e (0),(141) -

Similarly to the construction of the bundle sections D, in Subsection 3.4, we construct the bundle
homomorphisms D o inductively starting with 550 and twisting by the exceptional divisor at each
step. The inductive assumptions (i)-(iv) are analogous to (13), (I4), and (I12) in Subsection 3.4
and are verified similarly. Of course, we take

Dinyy =D

Omax *

5.3 Structure of the Cone V{,
In this subsection we describe the structure of the cone
po: My (L, d) — My ,(P", d),

restating the primary structural result of [Z5].
For each element o= (m; Jp, Jp) of Ai(d, k), let
J— _ _0 _
Vo= o (L,d) = py ' (M) ) C VY, =M (L, d),

with ﬁ?,o as on page 49. The subvarieties 90 , (£, d) of My (L, d) can also be defined analogously
to the subvarieties My »(P™, d) of My 1 (P™, d); see the beginning of Subsection 1.2. Similarly to
Subsection 4.2, let

. -0
J0,0" Ml,(fp(g),JP(a)) X V(NB(U),JB(U)) - V?,a - V?,k

be the natural node-identifying immersion so that the diagram

—0 jO,U

0 0
M (1p(0),0p(0) X V(Rp(0),75(0)) Vie © Vi
id Po,o [po
—0 — L0,0 —0 —0
M p)0p@) X Momp0)Jp@) — M, C My

commutes.

Lemma 5.6 If d,n € Z1T and k € Zt, the collection {jO,o}aeAl(d,k) of immersions is properly
self-intersecting. For every o€ A;(d, k),

./\/;gi = {id X D0.o }*Nide

L0,o

is an idealized normal bundle for jo ..

69



The differential dpg of pg induces a surjective linear map
Im djo; — Imdig ;.
Since the fibers of py are vector spaces, it follows that dpg induces an injection
Jo o TOVY, Im djo,, — 1 , T 4, /Tm dig o
Thus, Lemma 5.6 follows from Lemma 4.7.

We denote by V9
we put

(o) the main component ﬁ?vk(ﬁ, d) of the moduli space My (L, d). If o€ Ay(d, k),

WY = jos V(o) =dos V)N Ve)-
Note that
{idxpoo}(W0) = 20 = (L (O} )
Let NW? CN ‘de be the normal cone N jo.e V2 for Jo,o b in V?,(o)' Its structure is described in
Lemma 5.7 below. Let
D0 € DM (11015121 * Mo, 300, 0)): HOM(TE Vi o), 1501 - Hom (N5 mp B @ e )

0 77 ide *
= DM (11(0).71(0)) * T, (85 (0). 75 (03 HOMNGE TP EG @TEHOM (V5 0),75(0)) - €V6£))

Lo,0?

be the section defined by

i LagmyarLy — TPSi®TET Do, Vie[m],

where s; and D are as in Subsections 2.2 and 5.2, respectively. If §€TEVnp(0),75(0)), We Will view
Do,0€ as a homomorphism

ide ide * Tk * *
D008 N |g M0a|{idxpo,g}(£)_>WPEOwTBeVOE‘{iprO,g}(g)'

Lemma 5.7 Foralloe Ay(d, k), V? ) s a proper subvariety of V?k relative to the immersion jo o .
The homomorphism B
NWY — {idxpo o} N 22

duced by dpg is injective. Furthermore,

WO‘zO - {£E7TBVNB(U ),JB (o |ZO ker{QOUg}‘Nzo‘{lpr }(6)#{0}}

0| _ id 0
and J\/VV[,|5 = ker {Do+¢} ‘N23|{idxpoyg}(£) C NS V56W0|Zg.

Finally, W9 is the closure of W2|zg m mg(fp(a)vjp(a)) XVRp(0),J5(0)) and NWY is the closure of

0 d
NWU‘W},)\Z in j\/;oi
Since the fibers of pg are vector spaces, the first two sentences of this lemma, follow from Lemma 4.10.
The middle claim of Lemma 5.7 is a restatement of [Z5, Lemma 3.4]. The remaining claims of the
lemma follow from [Z5, Lemma 3.4] by dimension counting, similarly to the argument following
Lemma 4.10.

Remark: It may appear that the statement of Lemma 5.7 depends on the choice of a hermitian

connection (or metric) in the line bundle £L—P". As explained in detail in [Z5, Subsect. 3.3], the
dependence is only on the holomorphic structure of £, as the case should be.
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5.4 Desingularization Construction
In this subsection we lift the inductive blowup construction of Subsection 4.3 to the cone
=0
po: Vi — M4

For each o€ Ay(d, k), let Vf’kzw;’;vgk be the pullback of V?,k: to ﬁ‘;k

To

o —, %150 0
Vl,k: :Wavl,k; Vl,k
Do Po

a0 To =0
My j My g

For each o’ € A;1(d, k), let
—1(1,0
Ve =Viklse,, = Vil )

The bundle homomorphisms jg . lift to bundle homomorphisms onto Vy , covering the immer-
sion ¢, o of Subsection 4.3:

A * * ijU/ o o
M (1p(6),7(0) X T, (0) B, 5y V8RB (), T5(0) Vi, C VY,
o'<o: ‘id lpg,gf Jpo
A 00 (o) oo’ el SO
My (1p@),Tp6@) X NG 01, 50) My C My,
ﬂpc/(a) V Jo.o! %4 c Ve
1L,(Ip(c"),Jp(0")) X Y(Rp(c’),JB(a")) 1o’ Lk
O'/>O': Jld lpmo./ \po
) m o LW, W
1,(Ip(0"),Jp(c")) * *0,(Rp(0”), 5 (0")) 1,0/ 1,k

The collection {ts.5}orca, (d,k) of immersions is properly self-intersecting by the inductive assump-
tion (114) of Subsection 4.3. Thus, by the same argument as in the paragraph following Lemma 5.6,
so is the collection {j,. o }4cA,(a,r)- Furthermore,

Ne, = {idxpo,or } N, (5.1)

is an idealized normal bundle for j,,. These two observations also follow from Lemma 5.6 by
induction using Lemmas 4.2 and 4.3.

Lemma 5.8 IfoeA(d, k), Vf;l s a smooth subvariety of Vf;l and
Po: Vig — ﬁ(1r1<;

is the idealized blowup of Vfgl along Vi;l.

Recall from Subsection 4.3 that the immersion

_ 7 == —o0—1 — 00—
Lo—1,0% (M1 (Ip(0).7p(0)) X TMo,8p(0).T5(0))) [ Go — Dy, C My

)
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induced by ts—1,, is an embedding and
Tyt ﬁik — ﬁ?;l
is the idealized blowup along ﬁ?;l Thus, the immersion
Jo-1.0* (Mu(1p(0).70(0) X Virao)a(o) /Gr — Vgt C VP!
induced by j,—1, is also an embedding and Vf’ ;1 is a smooth subvariety of Vi ;1. Let
oV — VI
be the idealized blowup along Vi ;1. Since

Nide — {idxpg_l’o'}*Nide

Jo—1,0 lo—1,0

and the linear map

ok _ . * Suo—1
ja—l,Uchlo;kl/Im d]o’—Lo’ — ! TCf)ﬁLk /Im dl’o’—Lo‘

o—1,0

induced by dp,_1 is injective, p,_1 lifts to a map p over the blowdown maps 7:

To

% vt

! -

o Mo <50—1
My j My j

Then p and the top arrow 7, factor through a morphism f to 7V Elz

We show in the next paragraph that f is an isomorphism. Since 7;V] ;1 =V}, this implies the
second statement of Lemma 5.8.

By construction, the maps
. == s=o—1 - _
Mot Dﬁ‘fk — Qﬁik and TV — VI
are isomorphisms on the complements of the idealized exceptional divisors

me — ¢id mo — ¢id
ml’a = 515;17_1 C mLk and V](:U = (S‘]l}f-e_l C V
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Thus, f: V——7;V1 is an isomorphism over the complement of ﬁia in ﬁ?k In particular, f is
linear on all fibers of p. Furthermore,

RoVie b, = {600 €RNG VI () =poa ()

On the other hand, since
Niclre—l = p, Ni—dcer—l
Vl,o po’—l ml,g—

by (5.1), we have
id -1 id ~
thjya = p;—lp-/\/;)—t;;l = {(U7 l)e Vik XPN;—;HC?Ll Po-1(v) :WU(E)}'
Thus, the restriction of f to V7, must interchange v and ¢, i.e. it is a vector bundle isomorphism
over ﬁ?k Finally, ﬁ?;l is a smooth subvariety of V7 ;1 and
T, Vo) =T = T, N TV, C TOV

Thus, similarly to (1) of Lemma 3.3, the proper transform of ﬁf;l in V is the blowup of ﬁi;l
along

ano—1 -1 ano—1

mlvk ﬂVﬁU — ml’a 5
i.e. V contains ﬁ‘;k as the zero section. The map f must be the identity on ﬁ‘;k Since f is a lin-
ear isomorphism on all fibers of p by the above, it then follows that f is an isomorphism everywhere.

1. ~mo—1 .
Remark: If VY kl is a vector bundle over Dﬁ(ljk , the second statement of Lemma 5.8 applies to

standard blowups of ﬁ?;l and VY gl as well. However, the second statement does not generally
apply to standard blowups in the setting of Lemma 5.8, as the analogue of the morphism f may
not be surjective.

By the inductive assumption (/1) of Subsection 4.3, the projection map 7, is an isomorphism
outside of the subvarieties V7 _, with o’ <o. We denote by

Vi) € Vik

the proper transform of V? o) For each o’ € A1(d, k), let

W3 = s (Vi 0) = G (Vi (0) Vi o).

By the inductive assumption (I/15) of Subsection 4.3, ﬁ[{,(o) is a proper subvariety of ﬁ;’k with re-
spect to the immersion ¢, 5. Thus, by the same argument as in the paragraph following Lemma 5.7,
the subvariety V7 ©0) of V7, is proper with respect to the immersion j; .. Furthermore, if

C Nide

;U,‘Vlg,(()) Jol o

NWg/ = NWJU
denotes the normal cone for j,/ ,|yye, in VY (0)’ then the homomorphism
NWgI I {ld ng’g/}*NZg/
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induced by dp, is injective. These two observations also follow from Lemma 5.7 by induction using
Lemma 4.5.

If o' € A1(d, k), let

Z).5 =Dy (0) NPF (07, 7p(0"

|tho (Np(e).Jp(@)
By the inductive assumptions (I7) in Subsection 4.3 and (/4) in Subsection 3.4,

is the closure of ./T/IJL(IP(U/)JP(U,)) XZS,;B in

v o (@)
Mu(1p(0").p (")) X imQ( B(0’),JB(0"))

for all o€ A;(k,d) such that o’/ <o.

Suppose o €{0}UA;(d, k) and ¢’ € A1(d, k). We claim that
(I1) if o' <o, then WY, is the closure of

M (1p(o1),0p(0) X ket Dol z0, € M (1p(0%),7p(0) X TBE ), VB ()75 (0")

M (1p(6).p(0") X Ty (o) B Fp 1y VRE(07),T5(0"))

in Mlv(IP(Ul)yJP(U/)) X WZU/(U)WE;F(N”])V(NB(U/)yJB(Ul)) and

N Nlde

e,
(12) if o’ >0, then W7, and NW?, are the closures of

0 49 “5Po (o)
Worl20, € My (1p(01),0p(0) X Vs (0).75(0)) M1 T1p(07), 7 (0) X VR5(0). 75 (o))

and N W ) C Nide C Nide N lde

WO| 0 Jo, /|W2/‘ZO Jo,0"”

in Mp“(}(;ga N Tp(e™) XVrp (o), T5(c")) and in /\f;ii,, respectively.

If 0 =0, the assumption ([1) is trivially satisfied, while (I2) constitutes part of Lemma 5.7. Sup-
pose 0 € Ai(d, k) and the two assumptions hold with o replaced by o —1. By Lemma 5.8, V{, is

the idealized blowup of VY ;1 along Vi ;1. Thus, by the last statement of Lemma 4.5 both of the
inductive assumptions continue to hold for o’ #o.

On the other hand, let

= {0EM0 85(0).75(0)) * K& D (0,75 (o)) 70
WUB - {§€V(NB(U) Je(o ‘ZO'B ker {Q(NB (0),JB(0)) §}|kerD(NB(a) NG

NWg;B = {(f,v): Eew U;B, U6ker{@ov"g}‘kerD(NB(a),JB

;é {0}}, and

} C i oFmB(a> J5(0)-

)‘po' 10‘

)‘Pg 1,0 (&)
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By the inductive assumption (I12) in Subsection 4.3,

—o—1 — -
Zg N (Mo (1p0).75(0) X Mo,(8(0), 5 (0))) = M1 (Ip(0).Tp(0)) X Zosp and
NZ

0 * *
— =7pL ® i ker D .
”‘M1,<Ip(a>,Jp(a))XZa;B P B (Xp(0),Jp(@))

By the inductive assumption (1/2) above, Lemma 5.7, and the inductive assumption (/11) in Sub-
section 4.3, WI~1 and NWJ~1 are the closures of

WO‘ZO - {SEWBV(NB(U JB (o |ZO ker{@oog}‘/\/zo‘{dxm }(6)#{ }}

and NW°|W0| . ={(&v): EeW? \ZO, kaer{@ogﬁ}‘Nz()'{ }C Nide pide

idxpg o } (&) Jo,077 Y jo—1,0

I My (15(0),0p(0) X V(Rp(0),J5(e) a0d in
N = TPl ® TPl 1 o Fing(0). 5 (o)

As before,

TP, TB M (1p(0),7p(0)) X VRp(0),75(0)) — Mi(1p(0),7p(0))) YRp(0),5(0)

are the projections onto the principle and bubble components. The bundle homomorphisms s; and
5; of Subsection 2.3 agree on

M1 (1p(0).7p(0)) € M1 (Ip(0).7p(0)) M1 (Ip(0).7p (o))

The homomorphism §; is an isomorphism from L; to E* over M 1,(Ip(0),Jp(0))» and both line bundles
are isomorphic to L. It follows that WJ~1 and NWJ~1 are the closures of

My (tp@)pey X Wop  and 7L @ TpN WO
n My (15(0),7p(0)) X V(Rp(0),J5(0)) and in
_/\/’;Sel o W}FDL ® 7T*Bp(;k—l,O'F’(NB(U),JB(0))'

Thus, by the first statement of Lemma 4.5,

W? =0 (V) )
is the closure of
P(rpL@mENWEE) = My (1p()dp(e) X PAWE = My (1p(0).Jp(e)) ¥ ker50|§2;B
CPNE, = Ml,up(o),Jp(a)) X Tk VR5(7),73(0)):

i.e. the first part of the inductive assumption (I1) for o’ =0 is satisfied. Furthermore, by the second
part of (1) of Lemma 4.5,

Jo,o

NWI = ’}’Vfgl‘wg = {idxpa,a}*fyﬁf{;ﬂwg = {idXps0} Nlde ‘Wg Nide |Wg’
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We have thus verified the second part of the inductive assumption (/1) for o’ =o0.

Since the immersions 7, , with ¢’ <o are embeddings by the inductive assumption (I8) in Subsec-
tion 4.3, so are the immersions

Joo: (Mu(Ip(0), (") X Ty () TR sy Va0, 05(0')) | Gt — VIt C VI,
induced by js .. In particular, all of the morphisms
jcrmax,a’ : (/Vll,(fp(a'),Jp(a/)) X TFS,(NB(U’),JB(U’))WIEF(NJ)V(NB(UI)JB(UI)))/GUI
— VY C VT = 7 g (L, d)

are embeddings. On the other hand, by the inductive assumption (11),

Wer = W = j -1 (M (£, d)) = j, (Vﬁf;g;)
is the closure of

M (1p(0),7p(e") % ket Dol z0,  C M (1p(0%),7p(0) X T0,(85(0"). 75 (")) TB ) YR8 (07). 5 (0))

By Proposition 5.5 and the inductive assumption (I8) in Subsection 4.3, this closure is

M, (100, 7p(0) X KD (1p(0),5p(0)) |2, - Where
z -1
2018 = D(1p(01),0p(01)) (0)-

Since the bundle section 75( Ip(0"),Jp(0")) 18 transverse to the zero set, ZNU/; B is a smooth subvariety
of Mo, (1p(),7p(c)) (P, d) and

WU/ — Ml,(IP(U'),JP(U/)) X ZVU/;B
is a smooth vector bundle by Proposition 5.5. We conclude that

MY (L, d) NV

is a smooth subvariety of E)Nﬁ(f’k(ﬁ, d) for all o’ € A; (k,d). Its normal cone is a line bundle by the
inductive assumption (I1).

A  Most Frequently Used Symbols and Notation

d degree of stable maps to P”

k number of marked points for genus-one stable maps

n dimension of projective space, P™

C,Q the sets of rational numbers, of complex numbers

7,7t 7+ the sets of integers, of positive integers, of nonnegative integers
[k {1,...,k}
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’Yga f)/(./\/’,J)
8

Fyy Fin,
FQ;P> FQ;S
Gs

Im?%.

L

L,i, L;

Lo )s Lia,i)

(e

MT,(I,J)N; le,(LJ)

MO’;P?MU;P
./\/lo 0

A AP
/\/lo p’MO,p
MO,Q’ M07Q

ﬁg,J(]va d)

(P, d)

m,
M (P, d)

tautological line bundles on PF,, PFx 1)
natural pairing of L; with E on M; .1 and with Lo on MO oul; P25
pairing of L,; with E, on M (1) induced by s;, p€ A1 (1, J); p27

nondegenerate pairing of L; with E on ./\/l1 .(1,7) iInduced by s;; p28

pairing of L, ;) with E, on MO o Induced by 7/'si, p€Ao(o); Subs. 2.4

nondegenerate pairing of L(l i) with E on ./\/lo .o induced by s;; p31

collections of subvarieties of /\_/197 1, of Mg, uJ; P23, p26

collection of subvarieties of }P’Fg,

collection of subvarieties of M, 1 (P™, d); p5, p34
collection of subvarieties of PF(y y); p38

“derivatives” of maps at the Oth marked point; p36, p66
“sums” of various Dg, Dg; p40, p67

= (11, J1)1ex; p30

bundle maps over ﬁ&’ J) induced by Dy 7y, Dy, JE)ZLS, p68

Hodge line bundle of holomorphic differentials on /\/ll J
line bundles on M (L) M, (10, pEAL(L,J), or ./\/lo o Moo, pEAi(0), 0

9:nO,(NJ)

smo . (Pd), pe A1(R;d, J), obtained from E, or v,, or y(x,1);
p27, p3l, p43

natural vector bundles over Mo _,, 9 o, (P, d); p29, p37
subbundles of Fx ), 0€.Ao(N;d, J); p38
symmetry group of the immersions ¢y, 5+ 53 P8
singular locus of immersion ¢; p32

tangent line bundle for jth marked point over /\_/lg, Jor ﬁg, J(P"d), jeJ
line bundles on HT,(I,J% .//\-\/(/17([7J), obtained from L;; pe Ai((1,J); p27
line bundles on -/Wo o ./Wo 0 pEAo( ), obtained from 7 L;; p31
universal tangent line bundle on ./\/l1 (1,J)5 ./\/lo .03 P26, P29

the line bundle associated to the sheaf Opn(a), a>0

Deligne-Mumford moduli space of stable genus-g curves with marked
points indexed by the set J

smooth subvariety of /\/lg 7, p€AG(J); p23
exceptional divisor in M/ .(1,7), broper transform of Mi e, pyp* €A, T),

p*>p; p27

p-stage and final blowups of My 1,7, p€.A1(I,J); Subs. 2.3
the “curve part” of My ,(P", d) and its (final) blowup, o € A1(d, k); p8
moduli space of tuples of genus-zero curves; p29

smooth subvariety of PF,, exceptional divisor in JK/(V& 0 PEA0(0); P30
p-stage and final blowups of PF,, pe Ay(o); Subs. 2.4

moduli space of genus-g degree-d stable maps to P™ with marked points

indexed by the set J
subvariety in 9ty (P,

d), o€ Ayp(d, k), or ﬁO,J(P”

the “map part” of M, ,(P", d); p8, p35

7

d), o€ Ai(d,J); pb, p34



moduli space of N-tuples of stable maps; p37
subvariety in PF(y ), its proper transform in me 0,0 € Ay(N;d, J),

(R,J)’

0" >0; p39, p4l
?338,(&7J)’ o-stage blowup of PFy ), QEA()(N; J,d); pdl
M, o-stage idealized blowup of My (P, d), o€ {0} U A (d, k); p49, p56
M, (P, d) main component of M x(P", d); p2
Em(l)’k,(]P’”, d) desingularization of ﬁ%k (P™,d) constructed in this paper; p6
N, normal cone for immersion ¢; p32
Nide idealized normal bundle for for immersion ¢; Defin. 4.1
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