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ABSTRACT

SPATIAL EVOLUTIONARY GAME THEORY: DETERMINISTIC

APPROXIMATIONS, DECOMPOSITIONS, AND

HIERARCHICAL MULTI-SCALE MODELS

SEPTEMBER 2011

SUNGHA HWANG, B.A., SEOUL NATIONAL UNIVERSITY

M.A., SEOUL NATIONAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Luc Rey-Bellet

Evolutionary game theory has recently emerged as a key paradigm in various

behavioral science disciplines. In particular it provides powerful tools and a concep-

tual framework for the analysis of the time evolution of strategic interdependence

among players and its consequences, especially when the players are spatially dis-

tributed and linked in a complex social network. We develop various evolutionary

game models, analyze these models using appropriate techniques, and study their

applications to complex phenomena.

In the second chapter, we derive integro-differential equations as deterministic

approximations of the microscopic updating stochastic processes. These generalize

the known mean-field ordinary differential equations and provide powerful tools to

vi



investigate the spatial effects on the time evolutions of the agents’ strategy choices.

The deterministic equations allow us to identify many interesting features of the

evolution of strategy profiles in a population, such as standing and traveling waves,

and pattern formation, especially in replicator-type evolutions.

We introduce several methods of decomposition of two player normal form games

in the third chapter. Viewing the set of all games as a vector space, we exhibit ex-

plicit orthonormal bases for the subspaces of potential games, zero-sum games, and

their orthogonal complements which we call anti-potential games and anti-zero-

sum games, respectively. Perhaps surprisingly, every anti-potential game comes

either from Rock-paper-scissors type games (in the case of symmetric games) or

from Matching Pennies type games (in the case of asymmetric games). Using

these decompositions, we prove old (and some new) cycle criteria for potential and

zero-sum games (as orthogonality relations between subspaces).

We illustrate the usefulness of our decompositions by (a) analyzing the gener-

alized Rock-Paper-Scissors game, (b) completely characterizing the set of all null-

stable games, (c) providing a large class of strict stable games, (d) relating the

game decomposition to the Hodge decomposition of vector fields for the replicator

equations, (e) constructing Lyapunov functions for some replicator dynamics, (f)

constructing Zeeman games - games with an interior asymptotically stable Nash

equilibrium and a pure strategy ESS.

The hierarchical modeling of evolutionary games provides flexibility in address-

ing the complex nature of social interactions as well as systematic frameworks in

which one can keep track of the interplay of within-group dynamics and between-

group competitions. For example, it can model husbands and wives’ interactions,

playing an asymmetric game with each other, while engaging coordination prob-

lems with the likes in other families. In the fourth chapter, we provide hierarchical
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stochastic models of evolutionary games and approximations of these processes,

and study their applications
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CHAPTER 1

INTRODUCTION

1.1 Overview

1.1.1 Evolutionary game theory

Evolutionary game theory has recently emerged as a key paradigm in various

behavioral science disciplines. Originally evolutionary game theory, pioneered by

the biologist John Maynard Smith, was introduced to study the behaviors of ani-

mals, explaining sex ratio, animal distribution, and contest behavior and reciprocal

altruism among animals (Maynard Smith, 1982). In recent years, the key idea

that games are played among a large number of myopic agents has been adopted

by behavioral scientists and applied successfully in explaining the important social

phenomena.

Anthropologists and biologists have adopted evolutionary frameworks to explain

early human cooperation (Bowles, 2006; Boyd, Gintis, and Bowles, 2010; Boyd and

Mathew, 2007; Hauert, Trauslen, Brandt, and Nowak, 2007). Political scientists

have examined the role of norms in the context of evolutionary games. For example,

Robert Axelrod (1986) investigates the emergence and stability of behavioral norms

and shows that the employment of meta-norms − the willingness to punish someone

who did not enforce a norm − plays an important role in explaining the evolution
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and stability of various social norms. In economics, since the seminal work by Young

(1993), evolutionary games have been applied frequently in explaining the evolution

of social institutions, conventions and contracts (See Young (1998); for evolutionary

game theory see Hofbauer and Sigmund (1998); Weibull (1995); Sandholm (2010b);

Gintis (2009); Cressman (2003); Nowak (2006); Hofbauer and Sigmund (2003);

Szabo (2007)).

Classical game theory supposes that each agent (or player) has a well-defined

utility function that she tries to maximize given her counterpart’s choice of a strat-

egy. The strategic interdependence among players typically arises from the fact

that one’s objective function is dependent on another’s choice as well as her own

choice. The Nash equilibrium of a game, introduced by John Nash, has an influen-

tial role in predicting the outcome of the game; every player plays a “best response”

to each other at equilibrium.

However, the justification of the Nash equilibrium concept − e.g., how players

know that a Nash equilibrium will be played − has been questioned on various

grounds. Binmore (1987, 1988) suggests that a very strong informational assump-

tion is made in the backward induction (deductive reasoning) argument in the

repeated games. The assumption that an agent can evaluate expected payoffs from

the complex interactions is also challenged on various empirical settings including

lap experiments (See Bowles, 2004). Agents typically have non-negligible cogni-

tive limitations and experience high costs of gathering information about possible

outcomes.

In contrast to classical game theory, evolutionary game theory addresses the

above limitation by relaxing the rationality assumptions substantially. In evolu-

tionary frameworks, an agent adopts an inductive method of reasoning typically

relying on trial-and-error methods. Departing from the assumption of highly in-

2



telligent and forward looking behaviors, evolutionary game theory explains the in-

teractions among myopic agents and their consequences in the complex situations.

In this way it provides successful and powerful tools for the analysis of strategic

interdependence among anonymous and heterogeneous agents who seek to improve

their payoffs.

1.1.2 Spatial stochastic processes

The importance of space and spatial interactions in explaining the social be-

haviors of agents has been well recognized. As early as 1930s, Hotelling (1929)

emphasized that a market, rather than being a unified entity, is divided into regions

in which sellers enjoy quasi-monopolistic positions owing to their spatial locations.

Thomas Schelling (1971) studied how the spatial segregation in residential areas

might arise even if most agents prefer to live in integrated neighborhoods. We study

spatial stochastic processes where individuals are located at the vertices of a graph

and update their strategies upon receiving a strategy revision opportunity. The

updating rules are flexible enough to encompass various behavioral assumptions,

ranging from imitative behaviors to perturbed best responses.

In the second chapter, we study the deterministic approximations of the stochas-

tic dynamics as a first step toward the understanding of the behavior of spatial

stochastic processes. Following methods developed in statistical physics, known as

scaling limit or meso-scopic limit approaches (Kipnis and Landim, 1999; Presutti,

2009), we show that the spatial strategy revision processes converge to determin-

istic limits under suitable scaling and deterministic limits satisfy non-local partial

differential equations (PDE), called integro-differential equations (IDE).

Equilibrium selection from among multiple Nash equilibria has been one of

the main topics in game theory. Using the derived deterministic equations, we
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study the effect of spatial structures and individual decision rules on equilibrium

selection. Other interesting phenomena include spatial patterns of agents’ choice

of strategy. For example, the complete segregation of residential area even though

people prefer racial integration has posed intriguing questions to social scientists:

how do locally homogeneous behaviors lead to globally heterogeneous pattern?

The spatial differential equations provide natural and handy settings to study these

purely spatial phenomena and to explore the condition under which the segregation

of choices of strategy may develop and persist in spatial models. We investigate

such problems using the analytical and numerical analysis of the spatial differential

equations.

Conceptually, there are deep connections between evolutionary games and sta-

tistical mechanics. At the “microscopic” level game theory is an extremely powerful

tool to formulate and model simple rules with which individual agents interact. The

evolutionary (and population) version of game theory uses a dynamic and statistical

approach to connect individual interactions to “macroscopic”, global, and long-time

behavior of large populations.

The updating rules of agents in evolutionary games are related to the transition

rules of particles in interacting particle models. For example, perturbed best-

response dynamics in economics are related to (and generalizes) the Gibbs sampler

or Metropolis dynamics in statistical mechanics. Under this correspondence, the

Ising model can be regarded as a spatial evolutionary game where agents play a

two strategy coordination game (ferromagnetic case) or a Hawk-Dove game (anti-

ferromagnetic case).

Important techniques in analyzing the equilibrium state in statistical mechan-

ics often involve a special function, called a potential function or an energy func-

tion. The analysis of such functions provides the understanding of the important

4



properties of the dynamics, whether these be stochastic processes or determinis-

tic differential equations. In game theory it is well-known that a certain class of

games admits such a potential function in a properly defined dynamic, hence these

games are called potential games and have received growing attention among game

theorists (Monderer and Shapley, 1996; Sandholm, 2010a).

Based on these observations, in the third chapter, we first consider a method of

decomposing a given game into a potential game part and the remaining part, called

an “anti-potential” game. We characterize the set of all anti-potential games by a

special class of games, namely the Rock-paper-scissor games or the Matching pen-

nies games. Along with the first decomposition, we develop two additional methods

of decomposing games: (1) the decomposition of a game into a zero-sum game and

the remaining part, called “anti-zero” sum game and (2) the decomposition of a

game into a game with a dominant strategy and the remaining part.

In non-equilibrium statistical mechanics, the studies of irreversible systems and

stationary non-equilibrium states adopt concepts like entropy production, currents,

and flux. Lebowitz and Spohn (Lebowitz and Spohn, 1999) show that the sample

path entropy production has a large deviation principle and the rate function has a

symmetry of Gallavotti-Cohen type. At the stationary state of irreversible dynam-

ics, the entropy production rate is always positive; the system is reversible if and

only if the entropy production rate is zero (Jiang, Qian, and Qian, 2004). Spatial

stochastic processes whose underlying game are potential games and whose updat-

ing rules are specified by either Gibbs sampler or Metropolis dynamic are reversible.

Thus the developed methods of decomposition show that only anti-potential part

of a given game contributes to entropy production. Since the decomposition results

hold for a general normal form game (with more than two strategies and more than

two players), the same observation holds for various classes of interacting particle
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models in the statistical mechanics (e.g., Currie Weiss Pott model and multi-body

interactions). In this way, we reveal the underlying source and structure of entropy

production in the classes of irreversible dynamics in statistical mechanics.

Another important aspect of social interactions is the complex interconnections

between different interactions at various levels. For example, interactions within

a group and interactions between groups are clearly related and mutually con-

straining. Important behavioral traits − such as altruistic behavior − may have

developed because they bring benefits at a group level, even though those adopt-

ing this behavior might do worse within a group than fellow group members who

behave differently. To address these important aspects of social interactions, we

develop hierarchical models of evolutionary games using coarse-graining methods

in the final chapter. Starting from the microscopic level, we define a coarse cell

containing microscopic sites. Here coarse cells can be regarded as groups. And then

we aggregate the microscopic stochastic process into a process defined at coarse cell

levels under appropriate conditions. In this way, we obtain group-level stochastic

processes.

The hierarchical modeling of evolutionary games provides flexibility in address-

ing the complex nature of social interactions. It also provides systematic frame-

works in which one can keep track the interplay of within-group dynamics and

between-group competitions. For example, it can model husbands and wives’ in-

teractions, playing an asymmetric game with each other, while engaging coordi-

nation problems with the likes in other families. The influence from the outside

members can be regarded as conformism effect or social norm propagation. In ad-

dition, the social phenomena usually involve variables evolving at multi-scales; the

propagation of social norm is extremely slow, whereas the individual’s updating of

the strategy may be relatively fast.
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Using hierarchical models we consider a situation in which one group size is

relatively large to the other. We derive a coupled system of dynamics where the

large group dynamics are governed by deterministic evolutions, while the small

group dynamics are subject to stochastic randomness.

1.2 Main Results

1.2.1 Deterministic approximations of spatial stochastic processes

A normal form game consists of players, strategies, and payoff functions. When

there are two players and the payoffs of two players are symmetric, a given game is

succinctly described by a matrix whose dimension equals to the number of strate-

gies. For example, a matrix A specifies a game where player 1 obtains a payoff of

a(i, j) by playing strategy i against player 2’s strategy j. Here we denote by S the

set of all strategies, so i, j ∈ S.

In the second chapter, we study the deterministic approximations of the spatial

stochastic processes with focus on a local density function f(u, i), describing the

proportion of the population with strategy i around spatial location u. The main

result is that local mean-field stochastic processes are approximated, on finite time

intervals and in the limit of infinite population, by equations of the following type:

∂

∂t
ft(u, i) =

∑
k∈S

c(u, k, i, ft)ft(u, k)− ft(u, i)
∑
k∈S

c(u, i, k, ft) for i ∈ S . (1.1)

The term c(u, k, i, f) describes the rate at which agents at spatial location u switch

from strategy k to i. This rate depends on the strategies of agents at other spatial

locations and the explicit form varies with the behavioral rules of agents. A typical

7



example of the rate is

c(u, k, i, f) = F (
∑
l∈S

a(i, l)J ∗ f(u, l)−
∑
l∈S

a(k, l)J ∗ f(u, l)),

where J ∗ f(u, i) : =

∫
J (u− v)f(v, i)dv .

Here F is a non negative and increasing function and J ∗ f is the convolution

product of J with f . The function J (u) is a non-negative probability kernel

which describes the interaction strength between players whose relative distance is

u. When J is a constant function equation (1.1) reduces to ordinary differential

equations such as replicator dynamics, Brown-von Neumann-Nash dynamics, and

logit dynamics, which have been well-known to evolutionary game theorists. Note

that the rate of increases in ft at u depends on ft(v, i) for all v in the spatial domain

and that equation (1.1) is an integro-differential equation (IDE).

These non-local PDEs are similar to reaction diffusion equations known as Allen-

Cahn type PDEs (Cahn, Elliott, and Novik-Cohen, 1996) or Glauber IDEs (Pre-

sutti, 2009). For example, an IDE based on the updating rule of “Gibbs sampler”

yields a “logit dynamic”:

∂

∂t
ft(u, i) =

exp(
∑

l a(i, l)J ∗ ft(u, l))∑
k exp(

∑
l a(k, l)J ∗ ft(u, l))

− ft(u, i), (1.2)

When the number of strategies are two, (1.2) becomes the well-known Glauer meso-

scopic equation via the change of the variable, f 7→ 2f − 1 := u. When a(1, 1) =

a (2, 2) > 0 and a(1, 2) = a(2, 1) = 0, the existence of a unique standing wave

was proved and when a(1, 1) 6= a(2, 2), the existence of traveling wave was proved

(Orlandi and Triolo, 1997; Chen, 1997). By adopting various tools and techniques

such as linear stability analysis and numerical simulations, we study dynamics of

interfaces, the existence of traveling wave solutions, and pattern formations (see

figure 1).
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Figure 1. Pattern formations in the replicator dynamics We consider
two player coordination game with payoffs, a11 = 2/3, a22 = 1/3, a12 =
a21 = 0. Left and Middle panels show the time evolutions of popu-
lation densities using strategy 1 in the spatial domain T d = [−π, π]2.
The heights of surfaces represent the densities at a given location u ∈
T d. The number of nodes is 64 for the simulation and the time step is
0.0175 which was determined by the stability analysis of the numer-
ical method. The initial conditions are 1/3 + rand cos(x) cos(y) (upper
panel) and 1/3+rand cos(2x) cos(2y) (lower panel), where rand denotes
a realization of uniform random variable [0, 1] at each node. For the
interaction kernel, we use J(r) = exp

(
−bx2

)
/
∫

exp(−bx2)dx, b = 15. The
right panels show the contours of the densities at t = 22.

1.2.2 Decompositions of normal form games and statistical mechanics

Special classes of games such as potential games, zero-sum games, and stable

games have received growing attention because of their respective analytical ad-

vantages. For instance, in potential games, every player’s motivation to choose or

deviate from a strategy can be described by a single function, called a potential

function. In the third chapter of the dissertation, we develop various methods of

decomposing normal form games, viewing the set of all games as a vector space and

exhibiting bases of important subspaces : e.g., the subspaces of potential games

and zero-sum games.

Given a game A, Nash equilibria are invariant with respect to the following

payoff transformation: the transformation that adds the same constants to any

9



column of A. This is because the transformation keeps the payoff difference between

two strategies of a player unchanged for a given strategy of her counterpart. Then

the invariance property induces equivalent classes in the space of normal form

games and we study potential games and zero-sum games defined on such equivalent

classes.

In particular, we show that every game A, up to this equivalence relation ∼, can

be decomposed into a part belonging to potential games and another part belonging

to a special class of zero-sum games, namely zero-sum games whose row sums are

all zeros (called anti-potential games):

A ∼ S +N, (1.3)

where S is a symmetric matrix (so a potential game) and N is an antisymmetric

matrix (so a zero-sum game) whose row sums are all zeros.

Then we proceed to show that when the number of strategies is three, the

Rock, Paper and Scissors game is the only anti-potential game. When the number

of strategies is more than three, every anti-potential game can be written as a

linear combination of the “extended” Rock, Paper, and Scissor games − a game

whose three strategies give the payoffs of the Rock, Paper, and Scissors games with

other strategies giving zero payoffs. We further decompose a potential game (e.g.,

S in (1.3)) into a game with a dominant strategy and its remaining part. And the

remaining parts turn out to be a special class of potential games - potential games

whose row sums are all zeros. In sum, a given game A can be decomposed, up

to equivalence, into three parts: a potential game whose row sums are all zeros, a

game with a dominant strategy, and a zero-sum game whose row sums are all zeros:

A ∼ K +D +N, (1.4)

where K is a symmetric matrix whose row sums are all zeros (a special potential
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game), D is a matrix whose elements in each row are constant (so has a dominant

strategy), and N is an anti-symmetric game whose row sums are all zeros (an

anti-potential game). For example, one can decompose



10 −5 3

4 13 −3

−2 1 12


=



9 0 0

0 15 0

0 0 12


+



0 −3 3

3 0 −3

−3 3 0


+



1 −2 0

1 −2 0

1 −2 0



∼



9 0 0

0 15 0

0 0 12


︸ ︷︷ ︸

S

+



0 −3 3

3 0 −3

−3 3 0


︸ ︷︷ ︸

N



9 0 0

0 15 0

0 0 12


=



7 −4 −3

−4 9 −5

−3 −5 8


+



0 0 0

2 2 2

1 1 1


+



2 4 3

2 4 3

2 4 3



∼



7 −4 −3

−4 9 −5

−3 −5 8


︸ ︷︷ ︸

K

+



0 0 0

2 2 2

1 1 1


︸ ︷︷ ︸

D
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The decomposition in (1.4) immediately implies the decomposition of vector fields

of the replicator ordinary differential equations, since the replicator dynamics are

linear with respect to the matrix of a game:

Fi(x) = xi((Kx)i − xTKx)︸ ︷︷ ︸
potential part

+ xi((Dx)i − xTDx)︸ ︷︷ ︸
monotonic part

+ xiNx︸ ︷︷ ︸
conservative part

where x denotes the population fractions of each strategy and Fi denotes the ith

element of the replicator vector field. We also consider other applications in chapter

3.

1.2.3 Hierarchical multi-scale models: Coarse-grained Markov chains

In the final chapter, we derive coarse-grained Markov chains from the spatial

stochastic evolutionary models. The derived coarse-grained models generalize the

matrix models of evolutionary games with two groups of individuals introduced by

Taylor (1979). Of particular interest is a hybrid system which models interactions

among groups with different scales.

For example, we consider two populations of size N1 and N2 such that N1 � N2,

so the size of group 2, N2, is much greater than that of group 1, N1. In this case,

by considering the scaling limit, N2 → ∞, we obtain a hybrid system where the

dynamic of the group of size, N2, follows deterministic evolution, while that of the

group of size, N1, remain a stochastic process.

More concretely, consider a two strategy game with η and ρ being the population

fractions using the first strategy of a game in each group, respectively. Then η takes

a value from a discrete set, {0, 1
N1
,..N1−1

N1
, 1}, while ρ takes a value from a continuum

12



set, namely the unit interval. When the strategy revision rate is imitative, from

the coarse graining of the original microscopic system we obtain the birth-death

rates:

c+(η, ρ) := [β1(η − ζ1) + β2(ρ− ζ2)]+ , c−(η, ρ) := [β1(ζ1 − η) + β2(ζ2 − ρ)]+

where βi > 0 and 0 < ζ i < 1. Then the coarse-grained stochastic processes yield Lρf(η) = (1− η)ηc+(η, ρ)(f(η + 1
N1

)− f(η)) + η(1− η)c−(η, ρ)(f(η − 1
N1

)− f(η))

dρ
dt

= β3ρ(1− ρ)(ρ− ζ3) + β4ρ(1− ρ)(η − ζ4)

(1.5)

where f is a function defined on {0, 1
N1
,..N1−1

N1
, 1}.

Note that if N1 → ∞, (1.5) becomes the replicator ordinary differential equa-

tions accounting within-group and between-group interactions. This, in particular,

illustrates that the replicator ordinary differential equations may be a good approx-

imation when two group sizes are equally large, but would be a poor approximation

when the size of one group is relatively small to that of the other. Interesting social

interactions usually involve such asymmetry between the sizes of groups; a small

number of sellers competes for a large number of customers who are spatially lo-

cated (e.g., telecommunication providers). Thus, in those instances, the hybrid

model (1.5) provides the better approximation of the original stochastic process by

retaining the microscopic fluctuations of smaller group’s behavior.

1.3 Future Research Agendas

The future research agendas related to the dissertation projects include :

• The rigorous treatment of traveling wave solutions. One of widely

studied ordinary differential equations among game theorists and biologists

13



is called the replicator dynamics, which can be derived from the imitative up-

dating rule. The spatial version of the replicator dynamics for a two strategy

game is given by

∂

∂t
ft = (1− f)J ∗ f [β(J ∗ f − ζ)]+ − f(1− J ∗ f)[β(ζ − J ∗ f)]+ (1.6)

where ζ is a constant function such that 0 < ζ < 1 and [t]+ = max {t, 0} .

Unlike the logit dynamics, there is no existing rigorous result on the existence

of standing or traveling wave solutions, though we observe such phenomena

in the numerical simulations.

• Pattern Formation and Meta-stability. In numerical simulations, we

frequently observe the formations of patterns or the metastable states where

both strategies coexist for a long run in the replicator dynamics. The metastable

behavior for scalar reaction-diffusion equations was studied by Carr and Pego

(1989)(See also Duncan, Grinfeld, and Stoleriu (2000); Otto and Reznikoff

(2007)). Similarly to questions on traveling wave solutions, there is no existing

rigorous study on the conditions for the pattern formations and metastability

of the replicator equations (equation (1.6)).

• Large Deviation. Large deviation tools provide a powerful method to com-

pute asymptotically small probabilities on an exponential scale to study fluc-

tuation around deterministic path. To investigate the role of stochasticity in

the spatial stochastic processes, one can derive large deviation functionals for

the system and use Freidlin-Wentzell theory to account for stochasticity at

the meso-scopic level.

• Stochastic PDE (SPDE) Approximation. SPDE approximation was

used to study phase transitions of interacting particle models such as the

14



long-range contact processes and voter processes (Durrett, 1999; Mueller and

Tribe, 1995). This approximation is better than the deterministic one in the

sense that it retains the stochastic fluctuations, still reducing the complexities

of the original system.
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CHAPTER 2

DETERMINISTIC EQUATIONS FOR SPATIAL

EVOLUTIONARY GAMES

2.1 Spatial Games and and Strategy-Revision Processes

In models of spatial evolutionary games, agents are located at the sites of a

graph and play a normal form game with their neighbors. The graph Λ is assumed

here to be a subset of the integer lattice Zd. We focus on a single population

playing a normal form game, but the generalization to multiple population games

is straightforward. A normal form game is specified by a finite set of strategies S

and a payoff function a(i, j) which gives the payoff for a player using strategy i ∈ S

against strategy j ∈ S.

The strategy of the agent at site x ∈ Λ is σΛ (x) ∈ S, and we denote by σΛ =

{σΛ(x) : x ∈ Λ} the configuration of strategies for every agent in the population.

With these notations, the state space, i.e., the set of all possible configurations, is

SΛ. The subscript of σΛ will be suppressed, whenever no confusion arises. As in

Young (1998, chapter 6), positive weights W(x− y) are assigned to any two sites x

and y to capture the importance or intensity of the interaction among neighbors.

Note that this assumes that these weights depend only on the relative location x−y

between the players (i.e., translation invariance). It is convenient to assume that
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total weight that site x attaches to all its neighbors is normalized to 1, i.e.,

∑
y∈Λ

W(x− y) ≈ 1. (2.1)

The site y is called a neighbor of x whenever W(x− y) > 0. An individual agent,

at site x with strategy i given a configuration σ, receives an average payoff

u(x, σ, i) :=
∑
y∈Λ

W(x− y)a(i, σ(y)). (2.2)

If the weight W is interpreted as the probability with which an agent samples his

neighbors, then u(x, σ, i) is the expected payoff for an agent at x choosing strategy

i if the population strategy profile is σ. Or one may think that an agent receives an

instantaneous payoff flow from her interactions with other neighbors (Blume, 1993;

Young, 1998; Young and Burke, 2001). The specific examples of such weights are

as follows:

Example. The following weight specifies uniform interactions where agents

attach an equal weight to every interaction with their neighbors.

W(x− y) =
1

nd
for all x 6= y,

where nd is the total number of individuals in the system. When the weight are

given by the following formula

W(x− y) =


1
2d

if ‖x− y‖ = 1

0 otherwise
,

the interactions are called the nearest neighbor interactions in which interactions

only arise between nearest sites (Blume, 1995; Szabo, 2007).

In this chapter we concentrate on long range interactions where each agent in-

teracts with as many other agents as in the mean-field case, but the interaction is
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not uniform. This limit is known as “local mean field model” (Comets, 1987) or

“Kac potential” (Lebowitz and Penrose, 1966; DeMasi, Orlandi, Presutti, and Tri-

olo, 1994; Presutti, 2009). More specifically, let J (x) be a non-negative, compactly

supported, and integrable function such that
∫
J (x)dx = 1. We assume that W

has the form:

Wγ(x− y) = γdJ (γ(x− y)) , (2.3)

and we will take the limit Λ ↗ Zd and γ → 0 in such a way that γ−d ≈ |Λ| ≈ nd.

Here nd is the size of the population and | | denotes the cardinality. Hence the

factor γd is chosen in such a way that
∑
Wγ(x− y) ≈

∫
J (x)dx = 1, soWγ(x− y)

indeed represents the intensity of interactions. Note that in (2.3) the interaction

vanishes when ‖x− y‖ ≥ Rγ−1 if J is supported on the ball of radius R. So as

γ → 0, an agent interacts very weakly but with a growing number of neighbors in

the population.

The time evolution of the system is given by a continuous time Markov process

{σt} with state space SΛ, in which each agent receives, independently of all the other

agents, a strategy revision opportunity in response to his own exponential “alarm

clock” with rate 1, and then updates his strategy according to a rate c(x, σ, k) −

the rate with which agent x switches to strategy k when the configuration is σ.

This process is then characterized by a generator :

(Lg) (σ) =
∑
x∈Λ

∑
k∈S

c(x, σ, k)
(
g(σx,k)− g(σ)

)
(2.4)

where g is a bounded function on SΛ and

σx,k(y) =

 σ(y) if y 6= x

k if y = x

represents a configuration where the agent at site x switches from his current strat-

egy σ(x) to a new strategy k.
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If the stochastic process can introduce a new strategy that is not currently used

in the population, this case is called innovative (Szabo, 2007). When a strategy

which is not present in the population does not appear under the dynamics, the

dynamics are called non-innovative. Furthermore if, upon switching, agents only

consider the payoff of the new strategy we call the dynamics targeting. In contrast,

when agents’ decision depends on the payoff difference between the current strategy

and the new strategy the dynamics are called comparing. To define the rate, let

us introduce

w(x, σ, k) :=
∑
y∈Λ

W(x− y)δ(σ(y), k)

where δ(i, j) = 1 if i = j and 0 otherwise; w(x, σ, k) can be interpreted as the

probability for an agent at site x to find a neighbor with strategy k, provided

the neighbors are sampled with the probability distribution W(x− y). Let also F

denote a non-negative and non-decreasing function. We have the following examples

of rates.

• Targeting and Innovative: This case arises if c(x, σ, k) = F (u(x, σ, k)) and

F > 0. For example,

cn,β(x, σ, k) = exp(βu(x, σ, j))

where β is a non-negative constant. If

c(x, σ, k) =
exp(βu(x, σ, k))∑
l exp(βu(x, σ, l))

(2.5)

the rate is called “logit choice rule” in the game theory literature, and it is a

generalization of the “Gibbs sampler” in statistics and of the “Glauber dynamics

”of physics. Here the inverse of β captures the noisy level; β = 0 means the

uniform randomization of strategies, while the choice rule tends to the best response

rule as β approaches the infinity. In particular, when the normal form game is a
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potential game, the corresponding Markov chain satisfies detailed balance and its

invariant distribution can be explicitly expressed as a Gibbs distribution. Next,

let BR(x, σ) := arg maxi∈S u(x, σ, i) be the set of best response strategies for

individual x when the configuration is σ. Then another version of perturbed best

response can be written as

c(x, σ, k) =


β

1+β
1
|BR| if k ∈ BR(x, σ)

1
1+β

1
|S| if k /∈ BR(x, σ)

.

•Comparing and Innovative: The rate is c(x, σ, k) = F (u(x, σ, k)−u(x, σ, σ(x)))

and is comparing and innovative provided F > 0. When

c(x, σ, k) = min
{

1, exp(β [u(x, σ, k)− u(x, σ, σ(x))]+)
}
,

the rate corresponds to a generalization of the well-known Metropolis algorithm.

The Markov process, in this case too, satisfies the detailed balance for potential

games and has the same Gibbs invariant distribution as Glauber dynamics (Szabo,

2007). Here, the parameter β plays the similar role to the logic choice rule. When

β = 0,the strategy revising agent is indifferent between his current strategy σ(x)

and new strategy k regardless of the payoffs, while as β → 0 the importance of the

payoffs becomes significant. More generally, one can consider

c(x, σ, j) = G(u(x, σ, j)− u(x, σ, σ(x)))

with

Metropolis GM(t) =

 1 if t ≥ 0

exp(βt) if t < 0

Baker GB(t) =
1

1 + exp(−βt)
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Generalized

Metropolis

Gγ(t) =


1

1+exp(−βt)

(
1 + 2

(
1
2

exp(−βt)
)γ)

if t ≥ 0

1
1+exp(−βt)

(
1 + 2

(
1
2

exp(βt)
)γ)

if t < 0

for γ ≥ 1. We note that when γ = 1 Gγ(t) = GM(t) and as γ →∞, Gγ(t)→ GB(t)

for t 6= 0.

• Comparing and Non-innovative: Suppose that when an individual receives

a revision opportunity, she chooses to switch strategies with a probability that is

linearly increasing in her neighbor’s payoff. For example, individuals might revise

when their neighbors’ payoffs reach a certain threshold (emulation) level. The

strategy revision rate (called the imitation of success) is

c(x, σ, j) = w(x, σ, j)F (u(x, σ, j)−K),

where K is some positive constant. Alternatively, one can consider has the following

imitation rate

c(x, σ, k) = w(x, σ, k)F (u(x, σ, k)− u(x, σ, σ(x))) . (2.6)

Here, the first factor w(x, σ, k) is the probability for an agent at x to choose an

agent with strategy k and the second factor F (u(x, σ, k)− u(x, σ, σ(x))) gives the

rate at which the new strategy k is adopted (Weibull, 1995; Benaim and Weibull,

2003; Hofbauer and Sigmund, 2003). The standard example is

c(x, σ, k) = w(x, σ, k) [u(x, σ, k)− u(x, σ, σ(x))]+ (2.7)

where [s]+ = max {s, 0}. As a variant of (2.6), one can simply assume that the rate

of imitating is proportional to the current payoff difference between the imitating

person and the imitated person regardless whether doing so actually increases one’s

payoff or not. In this case the following strategy revision rule arises:

c(x, σ, k) =
∑
y∈Λ

W(x− y)δ(σ(y), k)F (u(y, σ, k)− u(x, σ, σ(x))) (2.8)
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The rate (2.7), in the mean-field case, gives rise to the famous replicator ODEs

as the deterministic approximation. More generally if F in (2.6) satisfies

F (s)− F (−s) = s , (2.9)

then the corresponding mean field ODE is the replicator dynamics. Note that

[s]+ satisfies condition (2.9). In the chapter we frequently use

Fκ (s) :=
1

κ
log(exp(κs) + 1) (2.10)

and it is easily seen that the function (2.10) satisfies (2.9) and converges uniformly

to [s]+ as κ→∞; hence (2.10) can serve as a smooth regularization of (2.7).

2.2 Meso-scopic Limits

2.2.1 Basic setup

We consider the limit γ → 0 in equation (2.3); i.e., the interaction range 1
γ

becomes infinite and the agent at x interacts with a growing number of agents. In

order to obtain a limiting equation, we rescale space and take a continuum limit.

Let A ⊂ Rd (meso-scopic domain) and Aγ := γ−1A ∩ Zd (microscopic domain). If

A is a smooth region in Rd, then Aγ contains γ−d|A| lattice sites and as γ → 0,

γAγ approximates A.

At the meso-scopic scale the state of the system is described by the strategy

profile function ft(u, i) – the density of agents with strategy i at u. The bridge

between microscopic and meso-scopic scale is given by the empirical measure πγσ

defined as follows. For (v, j) ∈ A × S, let δ(v,j) denote the Dirac delta measure at

(v, j).
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Definition 2.2.1 (Empirical measure) The empirical measure πγ : SAγ → P(A×

S) is the map given by

σ 7→ πγσ :=
1

|Aγ|
∑
x∈Aγ

δ(γx,σ(x)) (2.11)

where P(A× S) denotes the set of all probability measures on A× S.

In addition to the empirical measure, we define a measure m on A × S : for a

measurable function f,∫
A×S

f(u, i)dm(u, i) :=
∑
i∈S

∫
A
f(u, i)du

where du is the Lebegues measure on A. Our main result is to show that, under

suitable conditions,

πγσt → ftm in probability, (2.12)

and ft satisfies an integro-differential equation. Since σt is the state of the mi-

croscopic system at time t, πγσt is a random measure, while ft is a solution of a

deterministic equation. So (2.12) is in a sense a form of a time-dependent law of

large numbers. For this result to hold we need to assume that the initial distribution

for σ0 is sufficiently regular.

Definition 2.2.2 (Product measures with a slowly varying parameter) The

collection of measure {µγ} is called a family of product measures with a slowly vary-

ing parameter if µγ :=
⊗

x∈Aγ ρx on SAγ and there exists a profile f(u, i) such that

ρx ({i}) = f(γx, i)

The following definition gives a bit more general initial distributions:

Definition 2.2.3 (Probability measure associated to an initial profile) A se-

quence {µγ}γ>0 of probability measures on SAγ is associated to an initial profile
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f ∈ L∞(A × S) if for every continuous function g : A × S → R+ and for every

ε > 0, we have

lim
γ→0

µγ

σAγ :

∣∣∣∣∣∣ 1

|Aγ|
∑
x∈Aγ

g(γx, σAγ (x))− 1

|A|

∫
g(u, i)f(u, i)dudi

∣∣∣∣∣∣ > ε

 = 0

(2.13)

where σAγ ∈ SAγ .

Then from Proposition 0.4 in Kipnis and Landim (1999), a family of product

measures with a slowly varying parameter
{
µγ
}
γ

satisfies (2.13). Furthermore, we

focus on two types of boundary conditions:

(a) Periodic Boundary Conditions. Let A = [0, 1]d and suppose that Aγ =

γ−1A ∩ Zd = [0, 1
γ
]d∩Zd. Then we extend periodically the profile ft(u, i) and the

configuration σAγ on Rd and Zd. Equivalently we identify A with the torus Td and

similarly Aγ with the discrete torus Td,γ.

(b) Fixed Boundary Conditions. In applications it is also useful to consider

the case where the configurations in some regions do not change with time. Let

Λ ⊂ Γ ⊂ Rd be a region. Then the “boundary region” is given by ∂Λ := Γ\Λ where

agents do not revise their strategies. Since J is compactly supported, we can take,

for suitable r > 0

Γ :=
⋃
u∈Λ

B(u, r),

where B denotes a ball centered at u with radius r.

2.2.2 Main results

Consider first the case with periodic boundary conditions. The assumptions on

the interactions weights Wγ (x− y) are

(F) Wγ (x− y) = γdJ (γ(x− y)) where J is nonnegative, continuous with com-

pact support, and normalized,
∫
J (x)dx = 1.
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The meso-scopic strategy profiles are described by functions f ∈ M(Td × S)

where

M(Td × S) :=
{
f : 0 ≤ f(u, i) ≤ 1,

∑
i
f(u, i) = 1 for all u ∈ Td

}
.

Let {σγt }t≥0 be the stochastic process with generator Lγ given by

(Lγg)(σ) =
∑
x∈Td,γ

∑
k∈S

cγ(x, σ, k)
(
g(σx,k)− g(σ)

)
(2.14)

for g ∈ L∞(STd,γ ). The assumptions on the strategy revision rate cγ(x, σ, k) are

that there exists a real-valued function

c(u, i, k, π), u ∈ Td, i, k ∈ S, π ∈ P(Td × S)

such that

(C1) c(u, i, k, π) satisfies

lim
γ→0

sup
x∈Td,γ ,σ∈STd,γ ,k∈S

|cγ(x, σ, k)− c(γx, σ(x), k, πγσ)| = 0 ,

(C2) c(u, i, k, π) is uniformly bounded: i.e., there exists M such that

sup
u∈Td,i,k∈S,π∈P(Td×S)

|c(u, i, k, π)| ≤M ,

(C3) c(u, i, k, f m) satisfies a Lipschitz condition with respect to f : i.e., there

exists L such that for all f1, f2 ∈M(Td × S)

sup
u∈Td,i,k∈S

|c(u, i, k, f1m)− c(u, i, k, f2m)| ≤ L ‖f1 − f2‖L1(Td×S) .

Hereafter we abuse the notation by denoting c(u, i, k, f) := c(u, i, k, fdu di) =

c(u, i, k, π) for a measure π that is absolutely continuous with respect m (so

π = f m for some measurable function f). In the section below we show that all

25



the classes of rates given in the examples in Section 2.1 and several others satisfy

conditions C1−C3. For example, if cγ(x, σ, k) = F (u(x, σ, k)−u(x, σ, σ(x))), with

u(x, σ, i) =
∑

yWγ(x− y)a(i, σ(y)) and the weightsWγ(x− y) satisfy condition F,

then

c(u, i, k, f) = F

(∑
l∈S

a(k, l)J ∗ f(u, l)− a(i, l)J ∗ f(u, l)

)
(2.15)

satisfies condition C1−C3 (recall that J ∗ f(u, l) :=
∫

Td
J (u − v)f(v, l)dv is

the convolution of J with f). A slight modification of (2.15) yields corresponding

expressions for each choice of cγ(x, σ, k) previously given. Note that when f1 and

f2 are constant over Td or there is no spatial dimension, f1 and f2 can be regarded

as points in the simplex ∆. In this case C3 reduces to the Lipschitz continuity

condition in Benaim and Weibull (2003, p.878) and, in this way, C3 generalizes

their conditions.

Theorem 2.2.4 shows that the stochastic process πγσt has a deterministic limit.

Theorem 2.2.4 (Long Range Interaction and Periodic Boundary Condition)

Suppose the revision rate satisfies C1−C3. Let f ∈M(Td×S) and assume that the

initial distribution {µγ}γ is a family of measures with a slowly varying parameter

associated to the profile of f . Then for every T > 0

lim
γ→0

πγσt = ftm in probability

uniformly for t ∈ [0, T ] and ft satisfies the following differential equation: for

u ∈ Td, i ∈ S

∂

∂t
ft(u, i) =

∑
k∈S

c(u, k, i, f)ft(u, k)− ft(u, i)
∑
k∈S

c(u, i, k, f) (2.16)

f0(u, i) = f(u, i)

Next consider fixed boundary conditions. In this case, the stochastic process,
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{σt}t≥0, is specified by the generator Lγ

(Lγg)(σΓγ ) =
∑
x∈Λγ

∑
k∈S

cγ(x, σΓγ , k)(g(σx,kΓγ )− g(σΓγ )) (2.17)

for g ∈ L∞(SΓγ ). Note that the summation in terms of x in (2.17) is taken over

Λγ, which represents the fact that only individuals in Λγ revise their strategies,

whereas the rate depends on the configuration in entire Γγ. For a given f ∈M, its

restriction on Λ is defined by fΛ(u, i) : fΛ(u, i) = f(u, i) if u ∈ Λ and fΛ(u, i) = 0

if u ∈ ΛC .

Theorem 2.2.5 (Long Range Interaction and Fixed Boundary Condition)

Suppose the revision rate satisfies C1−C3. Let f ∈M(Γd×S) and assume that the

initial distribution {µγ}γ is a family of measures with a slowly varying parameter

associated to the profile of f. Then for every T > 0

lim
γ→0

πγσt =
1

|Γ|
ftm in probability

uniformly for t ∈ [0, T ] and ft = fΛ,t + f∂Λ,t satisfies the following differential

equation: for u ∈ Γ, i ∈ S

∂

∂t
fΛ,t(u, i) =

∑
k∈S

c(u, k, i, f)fΛ,t(u, k)− fΛ,t(u, i)
∑
k∈S

c(u, i, k, f) (2.18)

f0(u, i) = f(u, i)

Note that c(u, k, i, f) = c(u, k, i, fΛ+ f∂Λ) is given by the similar formula to

(2.15) with J ∗f(u) =
∫

Γ
J (u− v)f(v)dv for u ∈ Λ; so the rates depend on f∂Λ as

well as fΛ.

2.2.3 Heuristic derivation of the differential equations

In this section we justify, heuristically, the IDEs obtained in Theorems 2.2.4

and 2.2.5. For simplicity we assume periodic boundary conditions but the other
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case is similar. The differential equations (2.16) and (2.18) are examples of input-

output equations. In particular, by summing over the strategy set, it is easy to

see that
∑

i∈S ft(u, i) is independent of t and therefore if f0 ∈ M, then ft ∈ M

for all t. Also the space M can be thought of as a product over the space of

the standard strategy simplex ∆ of game theory, i.e., M =
∏

u∈Td ∆. As shown

in evolutionary game theory textbooks (Weibull, 1995; Sandholm, 2010b) one can

derive heuristically the ODEs from corresponding stochastic processes. The main

assumption used there is that the rates depend only on the average proportion of

players with a given strategy. In this section a similar heuristic derivation from

microscopic processes in the case of the spatial IDE (2.16) is provided where global

average is replaced by spatially localized averages as expressed in the limit of the

empirical measure (2.11).

For microscopic sites x and y, let us denote by u = γx and v = γy the corre-

sponding spatial positions at the meso-scopic level. For the sake of exposition let

us suppose that cγ(x, σ, k) is given by

cγ(x, σ, k) = F (u(x, σ, k)− u(x, σ, σ(x)) .

For any continuous function g on Td×S, by the definition of the empirical measure

(2.11) we have the identity

1

|Td,γ|
∑
x∈Td,γ

g(γx, σ(x)) =

∫
Td×S

g(u, i)dπγσ(u, i) .

Since
∣∣Td,γ

∣∣ ≈ γ−d and if we assume that πγ (σ)→ fdu di, we obtain

lim
γ→0

∑
x∈Td,γ

γdg(γx, σ (x)) =

∫
Td×S

g(u, i)f(u, i)dm(u, i). (2.19)
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Using (2.19), we find

lim
γ→0

∑
x∈Td,γ

γdJ (γ(x− y)) a(k, σ(y)) =

∫
Td×S

a(k, l)J (u− v)f(v, l)dm(v, l)

=
∑
l∈S

a(k, l)J ∗f(u, l).

Therefore if σ(x) = i we then obtain

cγ(x, σ, k) = F (u(x, σ, k)− u(x, σ, σ(x))

= F

 ∑
y∈Td,γ

γdJ (γx− γy) a(k, σ(y))−
∑
y∈Td,γ

γdJ (γx− γy) a(σ(x), σ(y))


−→
γ→0

F

(∑
l∈S

a(k, l)J ∗f(u, l)−
∑
l∈S

a(i, l)J ∗f(u, l)

)
= c(u, i, k, f),

and this gives equation (2.15). After having identified rates, we can now explain

how to derive the IDE (2.16). We write

〈πγσ, g〉 :=

∫
Td×S

g(u, i)dπγσ, 〈f, g〉 :=

∫
Td×S

g(u, i)f(u, i)dm(u, i),

where we view 〈πγσ, g〉 as a function of the configuration σ. The action of the

generator on this function is

Lγ 〈πγσ, g〉 =
∑
k∈S

∫
Td×S

c(u, i, k, πγσ) (g(u, k)− g(u, i)) dπγσ(u, i) .

From the martingale representation theorem for Markov processes (for example see

Ethier and Kurtz, 1986) there exists a martingale M g,γ
t such that

〈
πγσt , g

〉
=
〈
πγσ0

, g
〉
+

∫ t

0

ds
∑
k∈S

∫
Td×S

c(u, i, k, πγσs) (g(u, k)− g(u, i)) dπγσs(u, i)+M
g,γ
t .

(2.20)

As γ → 0, one proves that M g,γ
t → 0. Thus if πγσt = ftm as γ → 0, equation (2.20)

becomes

〈ft, g〉 = 〈f0, g〉+

∫ t

0

ds
∑
k∈S

∫
Td×S

c(u, i, k, fs) (g(u, k)− g(u, i)) fs(u, i)dm(u, i)
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and upon differentiating with respect to time, we find

<
∂ft
∂t
, g >=

∑
k∈S

∫
Td×S

c(u, i, k, ft) (g(u, k)− g(u, i)) ft(u, i)dm(u, i) (2.21)

which is the weak formulation of the IDE (2.16) obtained by integrating over u and

i. In the next section, we collect the existing results that are used in the proof of

Theorems 2.2.4 and 2.2.5.

2.3 Existing Results

Consider a bounded function F : R+ × E → R

(1) F (·, x) is twice differentiable for each x in E

(2) There exists C such that

sup
(s,x)

∣∣(∂jsF )(s, x)
∣∣ ≤ C for j = 1, 2

Suppose that we have a continuous time Markov chain {Xt} with a generator

L. We define MF (t), NF (t) by

MF (t) = F (t,Xt)− F (0, X0)−
∫ t

0

ds(∂s+ L)F (s,Xs)

NF (t) = (MF (t))2 −
∫ t

0

ds
{
LF (x,X)2 − 2F (s,Xs)LF (s,Xs)

}
Lemma 2.3.1 (Kipnis & Landim (1999) p.330) Denote by {Ft : t ≥ 0} the

filtration induced by the Markov process. The processes MF (t) and NF (t) are

Ft−martingale.

Let E be a complete separable metric space. Then D([0, T ], E)-valued ran-

dom variable (or random element) is a stochastic process with sample paths in
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D([0, T ], E) (or E-valued stochastic process). Let {Xn} be a family of stochastic

processes with sample paths in (or random elements taking values from)D([0, T ], E).

Let {Pn} ⊂ P(D([0, T ], E)) be the family of associated probability distributions,

i.e. Pn(B) = P{ω : Xn ∈ B} for all B in the Borel σ-algebra of D([0, T ], E). We

say that {Xn} is relatively compact if {Pn} is relatively compact; i.e. if the closure

of {Pn} in P(D([0, T ], E)) is compact. In our case, E = P(Λ × S), the set of all

probability measures on Λ × S. Because of the following theorem, it is enough we

consider the case E = R.

Proposition 2.3.2 (Kipnis & Landim (1999) p.54) Let {gk : k ≥ 1} be a dense

subfamily of C(Λ × S) with g1 = 1. A family of probability measures {Pn} on

D([0, T ],P(Λ × S)) is relatively compact if for every positive integer k the family

Png
−1
k of probabilities on D([0, T ],R) is relatively compact. Here Png

−1
k is defined

by

Png
−1
k (A) = Pn {π. ∈ D : 〈π., gk〉 ∈ A} for all Borel sets A of D([0, T ],R)

where 〈π., gk〉 : [0, T ]→ R, t 7→ 〈πt, gk〉 .

Next we provide the Prohorov criteria for the relative compactness for {Pn} on

D([0, T ],R). First we define a modified modulus of continuity in D = D([0, T ],R).

For x ∈ D and T0 ⊂ [0, T ], put

wx(T0) = sup {|x(s)− x(t)| : s, t ∈ T0}

and

wx(δ) = sup
0≤t≤T−δ

wx[t, t+ δ]

For 0 < δ < T , put

w′x(δ) = inf
{ti}

max
0<i≤r

wx[ti−1, ti)

31



where the infimum extends over the finite sets {ti} of points satisfying 0 = t0 < t1 < · · · < tr = 1

ti − ti−1 > δ, i = 1, 2, · · · , r

Then we see that limδ→0w
′
x (δ) = 0 is necessary and sufficient for x to lie in D.

Theorem 2.3.3 (Prohorov; Billingsley (1968) p.125) The sequence {Pn} is

relatively compact if and only if the following two conditions hold:

(i) For each positive η, there exists an a such that

Pn{x : sup
t
|x(t)| > a} ≤ η, n ≥ 1

(ii) For each positive ε and η , there exist a δ, 0 < δ < 1, and an integer n0 such

that

Pn {x : w′x (δ) ≥ ε} ≤ η, n ≥ n0

For the condition (ii) in Theorem 2.3.3, we have the following sufficient condition

due to Aldous (1978). Let {τn, δn} be such that

(i) for each n, τn is a stopping time on the process {Xn(t) : 0 ≤ t ≤ T} with respect

to the natural filtration

(ii) for each n, δn is a constant, 0 ≤ δn ≤ T and δn → 0 as n→∞.

Proposition 2.3.4 (Aldous (1978)) A sequence of probability measures {Pn} on

D satisfies condition (ii) of Prohorov theorem if an associated sequence of random

elements {Xn} satisfies

P {ω : |Xn(τn + δn)−Xn(τn)| > ε} → 0 for all ε > 0

for {τn, δn} satisfying (i) and (ii)
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Note that we abuse notations by writing τn + δn = τn + δn ∧ T, τn = τn ∧

T. Finally we use the following proposition to conclude the theorem. We write

Pn ⇒ P when Pn converge weakly to P. Then Pn ⇒ P implies Pnh
−1 ⇒ Ph−1

when h is continuous, where Pnh
−1(A) = Pn {x : h(x) ∈ A} . Let Dh be the set of

discontinuity of h. Then Dh is measurable.

Theorem 2.3.5 (Billingsley (1968) p.30) If Pn ⇒ P and P (Dh) = 0, then

Pnh
−1 ⇒ Ph−1

The proof of Theorem 2.2.4 and Theorem 2.2.5, which we present in the next

section, is a variation on the proof given in Comets (1987), Kipnis and Landim

(1999), and Katsoulakis, Plechac, and Tsagkarogiannis (2005). Unlike these papers,

in the case of non-innovative dynamics studied here there is no detailed balance

condition, however the meso-scopic limit of the type (2.12) can still be carried out

in the Kac scaling (2.3). Using the martingale representation (2.20), we show that

{Qγ}γ , a sequence of probability laws of
{
πγσt
}
γ
, is relatively compact. We then

show that all the limit points are concentrated on the weak solutions of (2.18) and

on measures absolutely continuous with respect to Lebesgue measure. Finally we

demonstrate that the weak solutions of (2.18) are unique so that we conclude the

convergence of Qγ to the Dirac measure concentrated on the solution of (2.18).

2.4 The proof of Theorem 2.2.4

We first show that condition C1−C3 are satisfied for the following strategy

revision rates:
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• cγ (x, σ, k) = F (u (x, σ, k))

c(u, i, k, f) = F (
∑
l a (i, l)J ∗ f (u, l))

• cγ (x, σ, k) = F (u (x, σ, k)− u (x, σ, σ (x)))

c(u, i, k, f) = F (
∑
l[a (k, l)− a (i, l)]J ∗ f (u, l))

• cγ (x, σ, k) =
∑
y w(x, y, σ, k)F (u(x, σ, k))

c(u, i, k, f) = J ∗ f (u, k)F (
∑
l a (k, l)J ∗ f (u, l))

• cγ (x, σ, k) =
∑
y w(x, y, σ, k)F (u (x, σ, k)− u (x, σ, σ (x)))

c(u, i, k, f) = J ∗ f (u, k)F (
∑
l[a (k, l)− a (i, l)]J ∗ f (u, l))

• cγ (x, σ, k) = exp(u(x,σ,k))∑
l exp(u(x,σ,l))

c(u, i, k, f) = exp(J∗f(u,k))∑
l exp(J∗f(u,l))

if F satisfies the global Lipschitz condition: i.e., for all x, y ∈ Dom (F ) , there

exists L > 0 such that |F (x)− F (y)| ≤ L |x− y| . Note that the list above is

far from being exhaustive; one can easily invent various other rates which satisfy

C1−C3. Since the verifications of the conditions are similar, we will check the

conditions for the following rate (2.22) in the periodic domain.

cγ(x, σ, k) =
∑
y∈Λγ
{σ(y)=k}

γdJ (γx, γy)F

(∑
z∈Zd

γda(k, σ(z))J (γy, γz)−
∑
z∈Zd

γda(σ(x), σ(z))J (γx, γz)

)

(2.22)

Lemma 2.4.1 The rate given by (2.22) satisfies C1−C3.
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Proof. In the proof we set ai,j := a(i, j).Let

Gγ(u, v, i, k, σ) : = F (
∑
z∈Zd

γdak,σ(z)J (v, rz)−
∑
z∈Zd

γdai,σ(z)J (u, rz))

G(u, v, i, k, π) : = F (|Γ|
∫

Γ×S
aklJ (v, w)π(dwdl)− |Γ|

∫
Γ×S

ailJ (u,w)π(dwdl))

c(u, i, k, π) : = |Γ|
∫

Γ

G(u, v, i, k, π)J (u, v)π(dv, {k})

First we show that

sup
y∈Λγ

σΓγ∈SΓγ

k∈S

∣∣∣∣∣∑
z∈Zd

γdak,σΓγ(z)J (γy, γz)− |Γ|
∫

Γ×S
ak,lJ (ry, w)πσ

Γγ
(dwdl)

∣∣∣∣∣→ 0

This follows from∣∣∣∣∣∣
∑
z∈Γγ

γdak,σΓγ(z)J (γy, γz)− |Γ|
∫

Γ×S
ak,lJ (ry, w)πσ

Γγ
(dwdl)

∣∣∣∣∣∣ ≤∣∣∣∣∣∣
∑
z∈Γγ

γdak,σΓγ(z)J (γy, γz)− |Γ|
|Γγ|

∑
z∈Γγ

ak,σΓγ (z)J (γy, γz)

∣∣∣∣∣∣ ≤∣∣∣∣γd − |Γ||Γγ|
∣∣∣∣ ∑
z∈Γγ

ak,σ(z)J (γy, γz) ≤∣∣γd |Γγ| − |Γ|∣∣M → 0 uniformly in y, σΓγ ,k

where M := sup
i,k,u,v

ai,jJ (u, v). Next we have∣∣∣cγ(x, σΓγ , k)− c(γx, σΓγ (x), k, πσΓγ
)
∣∣∣

=

∣∣∣∣∣∣
∑

y∈Λγ ,{σ(y)=k}

γdJ (γx, γy)Gγ(γx, γy, σΛγ (x), k, σΛγ )−

− |Γ|
∫

Γ

J (γx, v)G(γx, v, σΓγ (x), k, πσΛγ
)πσΛγ

(dv, {k})
∣∣∣∣

≤

∣∣∣∣∣∣
∑

y∈Λγ ,{σ(y)=k}

γdJ (γx, γy)
(
Gγ(γx, γy, σΛγ (x), k, σΛγ )−G(γx, v, σΓγ (x), k, πσΛγ

)
)∣∣∣∣∣∣

+

∣∣∣∣∣∣
(
γd − |Γ|

|Γγ|

) ∑
y∈Λγ ,{σ(y)=k}

J (γx, γy)G(γx, v, σΓγ (x), k, πσΛγ
)

∣∣∣∣∣∣
: = I + II
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It is easily seen that II → 0 uniformly in x, σΓγ , k since G is uniformly bounded.

For the estimate of I, we have

∣∣∣Gγ(γx, γy, σΛγ (x), k, σΛγ )−G(γx, v, σΓγ (x), k, πσΛγ
)
∣∣∣ ≤∣∣∣∣∣F (

∑
z∈Zd

γdak,σ(z)J (γy, γz)−
∑
z∈Zd

γdaσΛγ (x),σ(z)J (γx, γz))

−F (|Γ|
∫

Γ×S
ak,lJ (γy, w)πσΛγ

(dwdl)− |Γ|
∫

Γ×S
aσΛγ (x),lJ (γx, w)πσΛγ

(dwdl)

∣∣∣∣
≤ L

∣∣∣∣∣∣
∑
z∈Γγ

γdak,σΓγ (z)J (γy, γz)− |Γ|
∫

Γ×S
ak,lJ (γy, w)πσΛγ

(dwdl)

∣∣∣∣∣∣+

L

∣∣∣∣∣∣
∑
z∈Γγ

γdaσΛγ (x),σΓγ (z)J (γx, γz)− |Γ|
∫

Γ×S
aσΛγ (x),lJ (γx, w)πσΛγ

(dwdl)

∣∣∣∣∣∣
≤ L sup

y∈Λγ
σΓγ∈SΓγ

k∈S

∣∣∣∣∣∣
∑
z∈Γγ

γdak,σΓγ (z)J (γy, γz)− |Γ|
∫

Γ×S
ak,lJ (γy, w)πσΛγ

(dwdl)

∣∣∣∣∣∣+

L sup
x∈Λγ

σΓγ∈SΓγ

k∈S

∣∣∣∣∣∣
∑
z∈Γγ

γdaσΛγ (x),σΓγ (z)J (γx, γz)− |Γ|
∫

Γ×S
aσΛγ (x),lJ (γx, w)πσΛγ

(dwdl)

∣∣∣∣∣∣
→ 0 uniformly in x, y, σΛγ , k

by 1. Hence the result follows. C2 follows from the fact that G(u, v, i, k, π) is

uniformly bounded. For C3, we have

|c(u, i, k, f1dudi)− c(u, i, k, f2dudi)| ≤∣∣∣∣|Γ| ∫
Γ

G(u, v, i, k, f1dudi)J (u, v) (f1(v, k)− f2(v, k)) dv

∣∣∣∣+∣∣∣∣|Γ| ∫
Γ

(G(u, v, i, k, f1dudi)−G(u, v, i, k, f2dudi))J (u, v)f2(v, k)dv

∣∣∣∣
: = I + II
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Since G is uniformly bounded,

I ≤ C ‖f1 − f2‖L1

Also

|G(u, v, i, k, f1dudi)−G(u, v, i, k, f2dudi)| ≤∣∣∣∣F (|Γ|
∫

Γ×S
aklJ (v, w)f1(w, l)dwdl − |Γ|

∫
Γ×S

ailJ (u,w)f1(w, l)dwdl)

− F (|Γ|
∫

Γ×S
aklJ (v, w)f2(w, l)dwdl − |Γ|

∫
Γ×S

ailJ (u,w)f2(w, l)dwdl)

∣∣∣∣
≤ C ‖f1 − f2‖L1

using the Lipschitz condition for F. So we have II ≤ C ‖f1 − f2‖L1 .

We use the following notations in the proof of Theorem 2.2.4 and Theorem 2.2.5.

• {Σγ
t } is the stochastic process taking values σt with generator Lγ given in equa-

tion (2.17) and the sample space D
(
[0, T ], SΓγ

)
.

• {Πγ
t } is the stochastic process for the empirical measure taking values πt with

the sample space D([0, T ],P(Λ× S)) and we denote by Qγ the law of the process

{Πγ
t } and by P the probability measure in the underlying probability space. The

stochastic process σt induces a measure-valued stochastic process πγt := πγσt for the

empirical given in equation (2.11). The proof of Theorems 2.2.4 and 2.2.5 are so

similar that we only prove Theorem 2.2.5.

For g ∈ C (Γ× S) we set

h (σ) := 〈πγσ, g〉 =
1

|Γγ|
∑
y∈Γγ

g(γy, σ(y)) (2.23)

We define M g,γ
t , 〈M g,γ

t 〉 as follows: for g ∈ C(Γ× S)

M g,γ
t = 〈Πγ

t , g〉−〈Π
γ
0 , g〉−

∫ t

0

Lγ 〈Πγ
s , g〉 ds, 〈M

g,γ
t 〉 =

∫ t

0

[
Lγ 〈Πγ

s , g〉
2 − 2 〈Πγ

s , g〉Lγ 〈Πγ
s , g〉

]
ds

(2.24)
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Since h is measurable, so M g,γ
t and 〈M g,γ

t 〉 are Ft−martingale with respect to P,

where Ft is the filtration generated by {Σt} (Ethier and Kurtz, 1986; Darling and

Norris, 2008).

Lemma 2.4.2 For g ∈ C(Γ× S) there exist C such that

|Lγ 〈πγ, g〉| ≤ C,
∣∣Lγ 〈πγ, g〉2 − 2 〈πγ, g〉Lγ 〈πγ, g〉

∣∣ ≤ γdC

Proof. For h in (2.23),we have

h(σx,k)− h(σ) =
1

|Γγ|
(g(γx, k)− g(γx, σ(x))

and so we have equation (2.25) below. Now let q(σ) := 〈πγσ, g〉
2 . Then

q(σx,k)− q(σ) =
1

|Γγ|2
(
∑
y∈Λγ

g(γy, σx,k(y)))2 − 1

|Γγ|2
(
∑
y∈Λγ

g(γy, σ(y)))2

=
1

|Γγ|2
(g(γx, k)− g(γx, σ(x)))2

+
2

|Γγ|2
(g(γx, k)− g(γx, σ(x)))

∑
y∈Λγ

g(γy, σ(y))

Thus we have

Lγ 〈πγ, g〉 =
1

|Γγ|
∑
k∈S

∑
x∈Λγ

cγ(x, σ(x), k) (g(γx, k)− g(γx, σ(x)) (2.25)

Lγ 〈πγ, g〉2−2 〈πγ, g〉Lγ 〈πγ, g〉 =
1

|Γγ|2
∑
k∈S

∑
x∈Λγ

cγ(x, σ(x), k) (g(γx, k)− g(γx, σ(x))2

(2.26)

Therefore from C1−C2, |Γγ| ≈ |Γ| γ−d,and |Λγ| ≈ |Λ| γ−d, the results follow.

We proceed by proving a series of lemmas. First we define M g,γ
t , 〈M g,γ

t 〉 as

follows: for g ∈ C(Γ× S)

M g,γ
t = 〈Πγ

t , g〉 − 〈Π
γ
0 , g〉 −

∫ t

0

Lγ 〈Πγ
s , g〉 ds

〈M g,n
t 〉 =

∫ t

0

[
Ln 〈Πn

s , g〉
2 − 2 〈Πγ

s , g〉Lγ 〈Πγ
s , g〉

]
ds
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Then h : R+ × Γγ → R, (t, σ) 7→ h(σ) := 〈πγ, g〉 = 1
|Γγ |
∑

y∈Γγ
g(γy, σ(y)) satisfies

the condition for lemma 2.3.1, so M g,γ
t and 〈M g,γ

t 〉 are Ft−Martingale with respect

to Pγ.

Lemma 2.4.3 Let g ∈ C(Γ× S). Then we have

Lγ 〈πγ, g〉 =
1

|Γγ|
∑
k∈S

∑
x∈Λγ

cγ(x, σ(x), k) (g(γx, k)− g(γx, σ(x)) (2.27)

Lγ 〈πγ, g〉2 − 2 〈πγ, g〉Lγ 〈πγ, g〉 (2.28)

=
1

|Γγ|2
∑
k∈S

∑
x∈Λγ

cγ(x, σ(x), k) (g(γx, k)− g(γx, σ(x))2

Proof. Let h(σ) := 〈πγ, g〉 = 1
|Γγ |
∑

x∈Γγ
g(γx, σ(x)). Then

h(σx,k)− h(σ) =
1

|Γγ|
(g(γx, k)− g(γx, σ(x))

Hence equation (2.27) follows. Now let h(σ) := 〈πγ, g〉2 . Then

h(σx,k)− h(σ) =
1

|Γγ|2

∑
y∈Λγ

g(γy, σx,k(y))

2

− 1

|Γγ|2

∑
y∈Λγ

g(γy, σ(y))

2

=
1

|Γγ|2
(g(γx, k)− g (γx, σ(x)))

×

2
∑
y∈Λγ

g(γy, σx,k(y)) + g(γx, k)− g(γx, σ(x))


=

1

|Γγ|2
(g(γx, k)− g(γx, σ(x)))2

+
2

|Γγ|2
(g(γx, k)− g(γx, σ(x)))

∑
y∈Λγ

g(γy, σ(y))

Therefore equation (2.28) follows.

Proposition 2.4.4 Let g ∈ C (Γ× S) and τ γ and δγ such that

(1) τ γ is a stopping time on the process {Πγ
t : 0 ≤ t ≤ T} with respect to the filtra-

tion Ft.
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(2) δγ is a constant, 0 ≤ δγ ≤ T and δγ → 0 as γ → 0.

Then for ε > 0, there exists C such that

(i) P

{
ω : sup

t∈[0,T ]

|M g,γ
t | ≥ ε

}
≤ γdCT

ε2
and (ii) P

{
ω :
∣∣M g,γ

τγ+δγ −M
g,γ
τγ

∣∣ ≥ ε
}
≤ γdCδγ

ε2

and there exists γ0 such that for γ < γ0

(iii) P

{
ω :

∣∣∣∣∫ τγ+δγ

τγ
Lγ 〈Πγ

s , g〉 ds
∣∣∣∣ ≥ ε

}
= 0

Proof. We first show (iii). Let C as in Lemma 2.4.2. Since δγ → 0, there exists

γ0 such that δγ < ε
2C

for γ ≤ γ0. Then by Lemma 2.4.2∣∣∣∣∫ τγ+δγ

τγ
Lγ 〈Πγ

s , g〉 ds
∣∣∣∣ ≤ δγC <

ε

2
, for γ ≤ γ0.

For (i), let γ be fixed first. Since (M g,γ
0 )2−〈M g,γ

0 〉 = 0,P a.e. and (M g,γ
t )2−〈M g,γ

t 〉

is Ft−martingale, by martingale inequality and Lemma 2.4.2, we have,

P

{
ω : sup

t∈[0,T ]

|M g,γ
t | > ε

}
≤ 1

ε2
E
[
(M g,γ

T )2
]

=
1

ε2
E [〈M g,γ

T 〉] ≤
γdCT

ε2

For (ii), by Lemma 2.4.2, Chevyshev inequality, and Doob’s optional stopping, we

have

P
{
ω :
∣∣M g,γ

τγ+δγ −M
g,γ
τγ

∣∣ > ε
}
≤ 1

ε2
E
[
(M g,γ

τγ+δγ −M
g,γ
τγ )2

]
=

1

ε2
E
[〈
M g,γ

τγ+δγ

〉
− 〈M g,γ

τγ 〉
]
≤ γdCδγ

ε2

Next we prove an exponential estimate. We let rθ(x) = eθ|x| − 1 − θ |x| and

sθ(x) = eθx − 1− θx for x, θ ∈ R. We define

φ(σ, θ) :=
∑
k∈S

∑
x∈Λγ

cγ(x, σ, k)rθ(h(σx,k)−h (σ)), ψ(σ, θ) :=
∑
k∈S

∑
x∈Λγ

cγ(x, σ, k)sθ(h(σx,k)−h (σ))

Then, from Proposition 8.8 in Darling and Norris (2008), we have for M g,γ
T in (2.24)

Zg,γ
t := exp

{
θM g,γ

t −
∫ t

0

ψ(Σγ
s , θ)ds

}
is a supermartingale for θ ∈ R. Now we let Cg := 2 sup |g(u, i)| , Cc := sup |cγ(x, σ, k)| .
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Lemma 2.4.5 (Exponential Estimate) There exist C depends on Cg, Cc, S and

ε0 such that for all ε ≤ ε0 we have

P

{
sup
t≤T
|M g,γ

t | ≥ ε

}
≤ 2e−

|Λγ | ε2
TC

Proof. We choose ε0 ≤ 1
2
|S|CgCcT and let A = 1

|Λγ | |S|C
2
gCce, θ = ε

AT
. Then

since rθ is increasing in R+,

rθ
(
h(σx,k)− h(σ)

)
≤ rθ

(
1

|Λγ|
Cg

)
≤ 1

2

(
1

|Λγ|
Cgθ

)2

e
1
|Λγ | θCg for all σ ∈ SΛγ

where in the last line we used ex − 1− x ≤ 1
2
x2ex for all x > 0. Also for ε ≤ ε0,

1

|Λγ|
θCg =

1

|Λγ|
ε

AT
Cg ≤

1

|Λγ|
1

2

|S|C2
gCc

A
≤ 1

2e
< 1

Thus∫ T

0

φ(Σγ
t , θ)dt ≤ |S| |Λγ| 1

|Λγ|2
1

2
C2
gθ

2e
1
|Λγ | θCgCcT ≤

1

2

1

|Λγ|
|S|C2

gCceθ
2T =

1

2
Aθ2T for all ω ∈ Ω

So, since ψ(σ, θ) ≤ φ(σ, θ),

P

{
sup
t≤T

M g,γ
t > ε

}
= P

{
sup
t≤T

Zg,γ
t > exp[θε−

∫ T

0

ψ(Σγ
t , θ)dt]

}
≤ P

{
sup
t≤T

Zg,γ
t > exp[θε− 1

2
Aθ2T ]

}
≤ e

1
2
Aθ2T−θε = e−

|Λγ | ε2
TC

where we choose C := 2 |S|C2
gCce. Since the same inequality holds for −M g,γ

t , we

obtain the desired result.

Lemma 2.4.6 (Relative Compactness) The sequence {Qγ} in P (D ([0, T ];P(Λ× S)))

is relatively compact.
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Proof. By Proposition 1.7 in Kipnis and Landim (1999, p.54), we show that

{Qγg−1} is relatively compact in P (D([0, T ];R)) for each g ∈ C(Λ×S), where the

definition of Qγg−1 is as follows: for any Borel set A in D([0, T ];R)

Qγg−1(A) := Qγ {π. ∈ D ([0, T ];P(Λ× S)) : 〈π., g〉 ∈ A}

So, from Theorem 1 in Aldous (1978) and Prohorov Theorem in Billingsley (1968,

p.125), it is enough to show that

(i) for η > 0, there exists a such that

Qγg−1

{
x ∈ D ([0, T ];R) : sup

t
|x(t)| > a

}
≤ η for γ ≤ 1

(ii)

P
{
ω :
∣∣〈Πγ

τγ+δγ , g
〉
− 〈Πγ

τγ , g〉
∣∣ > ε

}
→ 0

for all ε > 0, for (τ γ, δγ) satisfying the condition (1) and (2) of Proposition 2.4.4.

For (i), since g is bounded, it is enough to choose a = 2 sup |g(u, i)|; i.e., Qγg−1{x ∈

D ([0, T ];R) : supt |x(t)| > a} = Qγ{π. : supt |〈πt, g〉| > a} = 0 since |〈π., g〉| < a

for all π. For (ii)

P
{
ω :
∣∣〈Πγ

τγ+δγ , g
〉
− 〈Πγ

τγ , g〉
∣∣ > ε

}
≤ P

{
ω :
∣∣M g,γ

τγ+δγ −M
g,γ
τγ

∣∣ > ε

2

}
+ P

{
ω : sup

t∈[0,T ]

|M g,γ
t | >

ε

2

}

≤ γdCδγ

ε2
for γ ≤ γ0 chosen in Proposition 2.4.4

Let Q∗ be a limit point of {Qγ} and choose a subsequence {Qγk} converging

weakly to Q∗. Hereafter we denote the stochastic process defined on Λγ by
{

ΣΛγ
}
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and its restriction on Γγ by
{

ΣΓγ
}
. With these notations, equation (2.24) becomes

〈
ΠΓγ

t , g
〉

=
〈
ΠΓγ

0 , g
〉
+
|Λγ|
|Γγ|

∫ t

0

ds
∑
k∈S

∫
Λ×S

c(u, i, k,ΠΓγ

s ) (g(u, k)− g(u, i)) dΠΛγ

s (u, i)+M g,γ
t

(2.29)

Let π ∈ P(Γ× S) and we define dπΛ := 1Λ×S dπ.

Lemma 2.4.7 (Characterization of Limit Points) For all ε > 0,

Q∗

{
π. : sup

t∈[0,T ]

〈πt, g〉 − 〈π0, g〉 −
∫ t

0

ds
∑
k∈S

[∫
Λ×S

c(u, i, k, πs)(g(u, k)− g(u, i))dπΛ,s

]
> ε

}
= 0,

i.e. the limiting process is concentrated on the weak solutions of the IDE (2.18).

Proof. First we define Φ : D([0, T ] ,P(Λ× S))→ R

π. 7→

∣∣∣∣∣ sup
t∈[0,T ]

〈πt, g〉 − 〈π0, g〉 −
∫ t

0

ds
∑
k∈S

[∫
Λ×S

c(u, i, k, πs)(g(u, k)− g(u, i))dπΛ,s

]∣∣∣∣∣
Then Φ is continuous, hence Φ−1((ε,∞)) is open. From the weak convergence of

{Qγk} to Q∗,

Q∗ {π. : Φ(π.) > ε} ≤ lim inf
l→∞

Qγl {π. : Φ(π.) > ε}

Also,

Qγ {π. : Φ(π.) > ε} = P

{
ω : sup

t∈[0,T ]

|M g,γ
t | > ε

}
≤ γdCT

ε2
(by Proposition 2.4.4) for γ < γ0

The first equality follows from (2.29) and the following equality:

ΠΛ,s =
1

|Γγ|
∑

x∈Γγ∩Λ

δ(γx,ΣΓγ
s (x)) =

1

|Γγ|
∑
x∈Λγ

δ(γx,ΣΛγ
s (x)) =

|Λγ|
|Γγ|

ΠΛγ

s .

Lemma 2.4.8 (Absolutely Continuity) We have

Q∗{π. : πt is absolutely continuous with respect to m for all t ∈ [0, T ]} = 1 .
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Proof. We define Φ : D([0, T ] ;P(Γ × S)) → R, π. 7→ supt∈[0,T ] |〈πt, g〉| . Then

Φ is continuous. Also

|〈πγ, g〉| ≤ 1

|Γγ|
∑
x∈Γγ

|g(γx, σ(x))| ≤
∑
l∈S

1

|Γγ|
∑
x∈Γγ

|g(γx, l)|

Thus

sup
t∈[0,T ]

|〈πγt , g〉| ≤
∑
l∈S

1

|Γγ|
∑
x∈Γγ

|g(γx, l)|

We write π∗· be a trajectory on which all Q∗’s are concentrated. Then Πγ
·
D−→ π∗·

(convergence in distribution), so E (Φ(Πγ
· ))→ E (Φ(π∗· )) .Also 1

|Γγ |
∑

x∈Γγ |g(γx, l)| →∫
Λ
|g(u, l)| du for all l by the Riemann sum approximation. Thus,

sup
t∈[0,T ]

|〈π∗t , g〉| = Φ(π∗· ) = lim
γ→0

E (Φ(Πγ
· )) ≤ lim

γ→0

∑
l∈S

1

|Γγ|
∑
x∈Γγ

|g(γx, l)| =
∫

Γ×S
|g (u, l)| dm(u, i)

Therefore, for all t ∈ [0, T ], for all g ∈ C(Γ× S),∣∣∣∣∫
Γ×S

g(u, l)dπ∗t

∣∣∣∣ ≤ ∫
Γ×S
|g (u, l)| dm(u, i)

so for all t ∈ [0, T ] π∗t is absolutely continuous with respect to dm(u, i).

We also see that all limit points of the sequence {Qγ} are concentrated on the

trajectories that equal to f 0m at time 0, since

Q∗
{
π. :

∣∣∣∣∫ g(u, i)dπ0 −
1

|Γ|

∫
g(u, i)f 0(u, i)dm(u, i)

∣∣∣∣ > ε

}
≤ lim inf

k→∞
Qγk

{
π. :

∣∣∣∣∫ g(u, i)dπ0 −
1

|Γ|

∫
g(u, i)f 0(u, i)dm(u, i)

∣∣∣∣ > ε

}
= 0,

where the definition of sequence of product measures with a slowly varying param-

eter implies the last equality by Proposition 0.4 Kipnis and Landim (1999, p.44).

So far we have shown that Q∗’s are concentrated on the trajectories that

are the weak solutions of the integro-differential equations. Next we show the

uniqueness of weak solutions defined in the following way. Let A(f)(u, i) :=
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∑
k∈S c(u, k, i, f)fΛ(t, u, k)− fΛ(t, u, i)

∑
k∈S c(u, i, k, f). For an initial profile f 0 ∈

M, f ∈M is a weak solution of the Cauchy problem:

∂ft
∂t

= A(ft), f0 = f 0 (2.30)

if for every function g ∈ C(Γ× S), for all t < T, 〈ft, g〉 =
∫ t

0
〈A(fs), g〉 ds. Observe

that from C3 A satisfies the Lipschitz condition: there exists C such that for all

f, f̃ ∈ L∞ ([0, T ]; L∞(Γ× S)),
∥∥∥A(f)−A(f̃)

∥∥∥
L2(Γ×S)

≤ C
∥∥∥f − f̃∥∥∥

L2(Γ×S)
.

Lemma 2.4.9 (Uniqueness of Weak Solutions) Weak solutions of the Cauchy

problem (2.30) which belong to

L∞ ([0, T ];L2(Γ× S)) are unique.

Proof. Let ft, f̃t be two weak solutions and f̄t := ft − f̃t. Then, we have

〈
f̄t, g

〉
=

∫ t

0

〈
A(fs)−A(f̃s), g

〉
ds for all g ∈ C(Γ× S)

We show that t 7→
∥∥f̄t∥∥2

L2(Γ×S)
is differentiable. Define a mollifier η(x) := C exp

(
1
|x|−1

)
if |x| < 1, := 0 if |x| ≥ 1, C > 0 is a constant such that

∫
Rd η(x)dx = 1. For ε > 0,

set ηε(x) := ε−dη(ε−1x). For each u ∈ Γ, i ∈ S, define hεu,i(v, k) = ηε (u− v) 1{i=k}

and

f̄ εt (u, i) :=

∫
Γ×S

(
ft(v, k)− f̃t(v, k)

)
hεu,i(v, k)dm(v, k)

Then,

∣∣∣〈A(fs)−A(f̃s), h
ε
u,i

〉∣∣∣ ≤ ∥∥∥A(fs)−A(f̃s)
∥∥∥
L2

∥∥hεu,i∥∥L2

≤ C
∥∥∥fs − f̃s∥∥∥

L2

∥∥hεu,i∥∥L2 ≤ C sup
s∈[0,T ]

∥∥∥fs − f̃s∥∥∥
L2

∥∥hεu,i∥∥L2 .

Since fs−f̃s ∈ L∞ ([0, T ];L2(Γ× S)) and hεu,i ∈ C(Γ×S) for each u, i, t 7→ f̄ εt (u, i) is

differentiable and its derivative is f̄ ε′t (u, i) =
〈
A(fs)−A(f̃s), h

ε
u,i

〉
. Also, it follows
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that
∥∥f̄ εt ∥∥2

L2 is differentiable with respect to t and

d

dt

∥∥f̄ εt ∥∥2

L2 =

∫
Γ×S

2
〈
A(ft)−A(f̃t), h

ε
u,i

〉
f̄ εt (u, i)dm(u, i),

so
∥∥f̄ εt ∥∥2

L2 =

∫ t

0

[∫
Γ×S

2
〈
A(fs)−A(f̃s), h

ε
u,i

〉
f̄ εt (u, i)dm(u, i)

]
ds

Then since f εt → ft in ‖ ‖L2 and f̄t ∈ L∞ ([0, T ];L2(Γ× S)) for a given t, we

have |
∥∥f̄ εt ∥∥2

L2 −
∥∥f̄t∥∥2

L2 | → 0. Also because
〈
A(fs)−A(f̃s), h

ε
u,i

〉
→ A(ft)(u, i) −

A(f̃t)(u, i) for a.e.u, and all i, t, by the dominant convergence theorem we have∥∥f̄t∥∥2

L2 =

∫ t

0

2
〈
A(fs)−A(f̃s), f̄s

〉
ds,

so
∥∥f̄t∥∥2

L2 is differentiable and

d

dt

∥∥f̄t∥∥2

L2 =
〈
A(ft)−A(f̃t), f̄t

〉
≤ 2

∥∥∥A(ft)−A(f̃t)
∥∥∥
L2

∥∥f̄t∥∥L2 ≤ C
∥∥f̄t∥∥2

L2

Hence from Gronwell lemma, the uniqueness of the solutions follows.

Lemma 2.4.10 (Convergence in Probability) We have

Πγ
t −→

1

|Γ|
ftm in probability .

Proof. So far we established Qγ ⇒ Q∗ (converge weakly) and equivalently

Πγ
· → π∗· in Skorohod topology (topology on D([0, T ],P(Td×S))). If we show that

Πγ
t → π∗t weakly in P

(
Γd × S

)
or equivalently Πγ

t
D→ π∗t in distribution for fixed

time t < T, then we have

Πγ
t

P→ π∗t in probability. (2.31)

Since Πγ
· → π∗· in Skorohod topology implies Πγ

t → π∗t weakly for continuity points

of π∗· (p.112 Billingsley, 1968), it is enough to show that π∗· : t 7→ π∗t is continuous

for all t ∈ [0, T ] to obtain (2.31). Let t0 < T and {gk} a dense family in C(Γ×S).

Since ∣∣∣∣∫ t

t0

〈A(π∗s), gk〉 ds
∣∣∣∣ ≤ (t− t0) sup

s∈[0,T ]

〈A(π∗s), gk〉

46



we choose δ ≤ min {1, ε} . Then for |t− t0| ≤ δ,∣∣∣∫ tt0 〈A(π∗s), gk〉 ds
∣∣∣

1 +
∣∣∣∫ tt0 〈A(π∗s), gk〉 ds

∣∣∣ ≤
δ sups∈[0,T ] 〈A(π∗s), gk〉

1 + δ sups∈[0,T ] 〈A(π∗s), gk〉
≤ δ

sups∈[0,T ] 〈A(π∗s), gk〉
1 + sups∈[0,T ] 〈A(π∗s), gk〉

≤ δ

so ‖πt − πt0‖P(Γ×S) ≤ ε and π∗· : t 7→ π∗t is continuous, all t ∈ [0, T ], thus all

t ∈ [0, T ] are continuity point of π∗·

From Lemma 2.4.10 we have, for t < T

ΠΛγ

t
P→ 1

|Λ|
fΛ,tm

So, from (2.20) we obtain

〈ft, g〉 = 〈f0, g〉+
∫ t

0

ds
∑
k∈S

∫
Λ×S

c(u, i, k,
1

|Γ|
fsm(u, i) (g(u, k)− g(u, i)) fΛ,sdm(u, i)

Since |Γγ|ΠΓγ

t = |Λγ|ΠΛγ

t + |Λγc|ΠΛγc

0 , |Γ|ΠΓγ

t
P→ ftm, |Λ|ΠΛγ

t
P→ fΛ,tm, and

|Λc|ΠΛγc

0
P→ fΛcm, we have ft = fΛ,t + fΛc for all t.

2.5 Spatially uniform interactions: Mean-field Dynamics

The goal of this section is to show that under the assumption of uniform interac-

tions the spatially aggregated process is still a Markov chain (such process is called

lumpable). Furthermore our IDEs reduce then to the usual ODEs of evolutionary

game theory, as it should be. The relationships between the various processes and

differential equations are illustrated in Figure 2. Let us take periodic boundary

conditions and uniform interactions, i.e., J ≡ 1 on Td. Let us further define the

aggregate variables

ηγ(i) :=
1

|Td,γ|
∑
x∈Td,γ

δ(σ(x), i)

which counts the proportion of agents with strategy i in the entire domain Td,γ.

Note that this is obtained, equivalently, by integrating the empirical measure πγ(σ)
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Macroscopic Proc. ηt
approximate−−−−−−−→
Corollary4

Mean ODE ρt(i)

aggregate

xTheorem2.5.1

xaggregate
Microscopic Proc. σt

approximate−−−−−−−−−−−→
Theorem2.2.4,2.2.5

Mesoscopic Equation ft(u, i)

Figure 2. The relationships between the stochastic processes and the
deterministic approximation.

over the spatial domain Td. We observe that ηγ depends on γ only through the

size of the domain nd i.e., nd = 1
γd

and nd → ∞ as γ → 0. Furthermore since

J ≡ 1, the payoff u(x, σ, k) depends on σ only through the aggregated variable

ηn(i). Indeed, we have

u(x, σ, k) :=
1

nd

∑
y∈Td,n

∑
l∈S

δ(σ(y), l)a(k, l) =
∑
i∈S

a(k, i)ηn(i)

Thus for the strategy revision rates, if σ(x) = j we define

cM(j, k, ηn) := cγ(x, σ, k) ,

since the right hand side is independent of x and depends only on σ through the

corresponding aggregate variable ηn. Therefore ηnt itself is a Markov process as we

will show in Theorem 2.5.1 below, and the state space for ηnt is the discrete simplex

∆n =

{
{η(i)}i∈S ;

∑
i∈S

η(i) = 1 , ndη(i) ∈ N+

}
To capture the transition induced by an agent’s strategy switching, we write

ηj,k(i) =


η(i) if i 6= k, j

η(i)− 1
nd

if i = j

η(i) + 1
nd

if i = k

Thus ηj,k is the state obtained from η if one agent switches his strategy from j to

k.
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Theorem 2.5.1 Suppose the interaction is uniform, then ηn is a Markov chain

with state space ∆n and generator

LM,ng (η) =
∑
k∈S

∑
j∈S

ndηn(j)c(j, k, η)(g(ηn,j,k)− g(ηn)) . (2.32)

Proof. First, we define a reduction mapping, φ : SΛn → ∆n,

σ 7→ φ(σ), φ(σ)(i) :=
1

|Λn|
∑
y∈Λn

δσ(y)({i})

For g ∈ L∞(∆n;R) we let f := g ◦ φ ∈ L∞(SΛn ;R), where f(σ) = g(η). Then for

η = φ(σ), we have f(σx,k)− f(σ) = g(ησ(x),k)− g(η) since

φ(σx,k)(i) =
1

nd

∑
y∈Λn

δσ(y)({i}) +
1

nd
δk({i})−

1

nd
δσ(x)({i}) = ησ(x),k(i)

We check the case of imitative and comparing rates. Other cases can be treated as

a special case. By writing mn(k) :=
∑

l a(k, l)ηn(l), we find

Lnf(σ) =
∑
k∈S

∑
x∈Λn

η(k)F (mn(k)−mn(σ(x)))(g(ησ(x),k)− g(η))

=
∑
k∈S

∑
j∈S

[∑
x∈Λn

δσ(x)({j})

]
η(k)F (mn(k)−mn(j))(g(ηj,k)− g(η))

=
∑
k∈S

∑
j∈S

ndη(j)η(k)F (mn(k)−mn(j))(g(ηj,k)− g(η))

: =
∑
k∈S

∑
j∈S

ndcM(η, j, k)(g(ηj,k)− g(η))

Thus we obtain

Lng(η) =
∑
k∈S

∑
j∈S

ndcM(η, j, k)(g(ηj,k)− g(η))

and this makes {ηt} a Markov chain and the rate is given by cM(η, j, k).

The factor nd in (2.32) comes from the fact that in a time interval of size 1,

on average nd strategy switches take place, and among those, ndηn(j) are switches

from agents with type j. Theorem 2.5.1 shows that the stochastic process with
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uniform interactions coincides with multi-type birth and death process in popula-

tion dynamics (Blume, 1998; Benaim and Weibull, 2003). In addition, following

Kurtz (1970), Benaim and Weibull (2003), and Darling and Norris (2008), or as a

special case of our result (Corollary 2.5.2 below) we can obtain mean field ODEs.

Furthermore, at the meso-scopic level, the IDEs reduce to the usual ODEs of evo-

lutionary game theory as follows (See Figure 2). We note that when J ≡ 1, we can

define

ρ(i) :=

∫
f(u, i)du = J ∗ f(i)

so c(u, k, i, f) is independent of u and this again allows to define

cM(k, i, ρ) := c(u, k, i, f) (2.33)

Thus, from the IDE (2.16) we obtain

dρt(i)

dt
=
∑
k∈S

cM(k, i, ρ)ρt(k)− ρt(i)
∑
k∈S

cM(i, k, ρ). (2.34)

For example, in the case of the comparing and imitative rate we have

cM(k, i, ρ) = ρ(i)F

(∑
l∈S

a(i, l)ρ(l)−
∑
l∈S

a(k, l)ρ(l)

)
.

If F (s) = 1
κ

log (exp (κs) + 1) , then F (s) − F (−s) = s and (2.34) becomes the

(imitative) replicator dynamics. Other well-known mean field ODEs, such as logit

dynamics and Smith dynamics, are similarly derived by choosing appropriate F .

Finally, as a consequence of Theorem 2.2.4 we have the following corollary which

is the continuous-time version of Benaim and Weibull (2003)’s result. To state the

result, we write ‖ηn‖u := supi∈S |ηn(i)| .

Corollary 2.5.2 (Uniform Interaction; Benaim and Weibull, 2003) Suppose

that the interaction is uniform and that the strategy revision rate satisfies C1−C3.
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Suppose there exists ρ ∈ ∆ such that the initial condition ηn0 satisfies

lim
n→∞

ηn0 = ρ in probability

Then for every T > 0

lim
n→∞

ηnt (i) −→ ρt(i) in probability (2.35)

uniformly for t ∈ [0, T ] and ρt(i) satisfies the following differential equation: for

i ∈ S

dρt(i)

dt
=

∑
k∈S

cM(k, i, ρ)ρt(k)− ρt(i)
∑
k∈S

cM(i, k, ρ) (2.36)

ρ0(i) = ρ(i) (2.37)

where cM is given by (2.33). Moreover, there exist C and ε0 such that for all

ε ≤ ε0, there exists n0 such that for all n ≥ n0

P

{
sup
t≤T
‖ηnt − ρt‖u ≥ ε

}
≤ 2 |S| e−

ndε2

TC . (2.38)

Proof. It is enough to prove the exponential estimate. From (2.20) we recall

that

〈
Π
γ

t , g
〉

=
〈
Π
γ

0 , g
〉

+

∫ t

0

∑
k∈S

∫
Td×S

c(u, i, k,Π
γ

s) (g(u, k)− g(u, i)) dΠ
γ

s(u, i)ds+M g,γ
t

for g ∈ C(Td × S). By taking g(u, i) = 1 if i = l, g(u, i) = 0 otherwise, we find

ηnt,l = ηn0,l + nd
∫ t

0

[∑
i∈S

cM(i, l, ηns )ηns,l −
∑
k∈S

cM(l, k, ηns )ηns,l

]
ds+M l,n

t

We define βl(x) :=
∑

i∈S cM(i, l, x)xl −
∑

k∈S cM(l, k, x)xl. Thus we have

ηnt,l = ηn0,l + nd
∫ t

0

βl(η
n
s )ds+M l,n

t , ρt,l = ρ0,l +

∫ t

0

βl(ρs)ds

From Lemma 2.4.5, we have P
{

supt≤T

∣∣∣M l,n
t

∣∣∣ ≥ δ
}
≤ 2e

−nd δ2

TC0 for each l and for

δ ≤ δ0, where we note that the choices of C0 and δ0 does not depend on g since
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|g(u, i)| ≤ 1 for all u, i. Thus, P
{

supt≤T ‖Mn
t ‖u ≥ δ

}
≤ 2 |S| e−

ndδ2

TC0 . Therefore for

t ≤ T, using the Lipschitz condition of β we obtain

sup
τ≤t
‖ηnτ − ρτ‖u ≤ ‖η

n
0 − ρ0‖u + L

∫ t

0

sup
τ≤s
‖ηnτ − ρτ‖u ds+ sup

t≤T
‖Mn

t ‖u

For ε0 in Lemma 2.4.5, we let δ = 1
3
e−LT ε for ε < ε0 and define

Ω0 = {ω : ‖ηn0 − ρ0‖u ≤ δ} , Ω1 =

{
ω : sup

t≤T
‖Mn

t ‖u ≤ δ

}
Then when ω ∈ Ω0 ∩ Ω1, we have supτ≤T ‖ηnτ − ρτ‖u ≤ 2δeLT by Gronwell lemma.

Choose n0 such that ‖ηn0 − ρ0‖u ≤ δ for a.e. ω for n ≥ n0. Then for ε ≤ ε0 and

n ≥ n0,

P

{
sup
τ≤T
‖ηnτ − ρn‖ ≥ ε

}
≤ P (Ωc

0) + P (Ωc
1) ≤ P {ω : ‖ηn0 − ρ0‖u ≥ δ}

+P

{
ω : sup

t≤T
‖Mn

t ‖u ≥ δ

}
≤ 2 |S| e−

ndδ2

TC0 = 2 |S| e−
ndε2

TC

where C := 9C0e
2LT .

Estimates such as (2.38) describe the validity regimes of the approximation by

mean field models (2.36) in terms both of agent number n and the time window

[0, T ].

2.6 Equilibrium Selection and Pattern Formations

In this section we illustrate the usefulness and the versatility of the IDE’s derived

in Section 2.2.2 by using a combination of linear analysis and numerical simulations.

(a) Logit/Glauber dynamics: If the rate is given by (2.5) we obtain the IDE

∂

∂t
ft(u, i) =

exp
(
β
∑

l∈S a(i, l)J ∗ ft(u, l)
)∑

k∈S exp
(
β
∑

l∈S a(k, l)J ∗ ft(u, l)
) − ft(u, i)
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which generalizes the well-known logit ODE of game theory.

(b) Imitative replicator equation: Let us suppose that the rates are given by

equation (2.6). Then we obtain

∂

∂t
ft(u, i) =

∑
k∈S

[
f(u, k)J ∗ f(u, i)F

(∑
l∈S

(a(i, l)− a(k, l))J ∗ ft(u, l)

)
(2.39)

−f(u, i)J ∗ f(u, k)F

(∑
l∈S

(a(k, l)− a(i, l))J ∗ ft(u, l)

)]

Note that the equation depends explicitly on F . This is to be contrasted with the

replicator ODE which is independent of F whenever F satisfies the relation F (t)−

F (−t) = t. This is a purely spatial effect: indeed if we take f(u, i) independent of

u for all i then equation (2.39) reduces to the replicator ODE.

2.6.1 Linear stability analysis

As in ODE’s, the linearization around stationary solutions captures the local

behavior of solutions. For example if all eigenvalues for the linearized system have

negative real part then one can show that the stationary solution is a stable station-

ary solution for the nonlinear equations. Furthermore if the linearization around

the stationary solution is hyperbolic, i.e., no eigenvalues has 0 real part then one

can analyze the local behavior of the nonlinear equation around the stationary

solution by constructing stable and unstable mainfolds.

At a deeper level the linear stability analysis is a first step to understand the gen-

eration and propagation of spatial structures. For example traveling wave solutions

are constructed by joining two stable spatially homogeneous stationary solutions.

Linearization also allows to study bifurcations in the systems, i.e., to identify value

of the parameters when the nature of eigenvalues of the linearization changes. The

appearance of one or general eigenvalues with positive real part is the sign of an
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instability in the system. Such instability often makes the appearance of com-

plex spatial structure such as patterns. Several such examples are demonstrated

at length in Murray (1989) using mostly numerical tools. We will perform such

analysis below and indeed observe the formation of patterns for two strategy coor-

dination games. A rigorous proof of existence of patterns is a challenging problem

and will be considered elsewhere.

Let us consider the following general type of integro-differential equations:


∂f
∂t

= Φ(J ∗ f, f) in Λ× (0, T ]

f(0, x) = f 0(x) on Λ× {0}
(2.40)

where Λ = Rd or a periodic torus Td , f ∈ L∞(Λ; ∆(Rn)).J ∗f := (J ∗f1, J ∗f2, · · · ,

J ∗ f|S|)T , and Φ : R|S| ×R|S| → R|S|, Φ(r, s) is smooth in both argument, where r

and s are variables representing J ∗ p and p, respectively. First, observe that if f

is spatially homogeneous, i.e., f(u, t) = f(t), then J ∗ f = f(J ∗ 1) = f , where 1

denotes the constant function 1 on Λ. Thus the IDE (2.40) reduces to the ODE

∂f

∂t
= Φ(f, f) .

This ODE, in turn, is exactly the ODE obtained if the interactions are uniform

J ≡ const. This shows that the spatially homogenous solutions of (2.40) are exactly

the stationary solutions of the corresponding mean-field ODE. In particular every

spatially homogenous stationary solution f0, satisfies Φ(f0, f0) = 0. We record this

observation in Lemma 2.6.1.

Lemma 2.6.1 (Space Independent Stationary Solutions) f0 is a spatially in-

dependent stationary solution to (2.40) if and only if Φ(f0, f0) = 0.

Next we study perturbations of such constant states by linearizing around a

spatially homogeneous stationary solution, f0: let f = f0 + εZ where Z = Z(u, i)
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and substituting into (2.40), we obtain

ε
∂D

∂t
= Φ(f0 + εJ ∗ Z, f0 + εZ). (2.41)

For small ε we expand the right hand side of equation (2.41) around ε = 0, we find

ε
∂D

∂t
= Φ(f0, f0) + (M0J ∗D +N0D) ε+O(ε2)

where

M0 =



∂Φ1

∂r1

∂Φ1

∂r2
· · · ∂Φ1

∂rn

∂Φ2

∂r1

∂Φ2

∂r2
· · · ∂Φ2

∂rn

...
...

. . .
...

∂Φn
∂r1

∂Φn
∂r2

· · · ∂Φn
∂rn


, N0 =



∂Φ1

∂s1

∂Φ1

∂s2
· · · ∂Φ1

∂sn

∂Φ2

∂s1

∂Φ2

∂s2
· · · ∂Φ2

∂sn

...
...

. . .
...

∂Φn
∂s1

∂Φn
∂s2

· · · ∂Φn
∂sn


and each derivative is evaluated at (f0, f0). Therefore we obtain the variational

equation system:

∂D

∂t
= MJ ∗D +ND. (2.42)

We solve (2.42) explicitly using Fourier transform. We suppose that Λ = Td and

consider the following initial value problem with periodic boundary condition.
∂D
∂t

= MJ ∗D +ND in Td × [0,∞)

D = g on Td × {0}
(2.43)

for g ∈ L∞(Td; ∆(Rn)). Applying Fourier transform to (2.43) elements by element,

we obtain

∂D̂(k)

∂t
= (M Ĵ (k) +N)D̂(k)

for each k ∈ Zd and D̂(k) ∈ Cn. By solving the resulting ODE for each k, we obtain

D̂(k) = e(MĴ (k)+N)tĝ(k)

where ĝ(k) ∈ Cn. So D = (ĝe(MĴ+N)t)∨ and we find

D(x, t) =
∑
k∈Z

e(MĴ (k)+N)tĝ(k)e2πix·k
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where e(MĴ (k)+N)t is n × n matrix, ĝ(k) is n × 1 vector, and e2πix·k is a scalar.

Therefore we obtain the dispersion relation:

λ(k) = eigenvalue(M Ĵ (k) +N) (2.44)

We also expect that one of eigenvalues of M Ĵ (k) + N is 0 by the invariance of

dynamics in the simplex.

2.6.2 Example: Two-strategy symmetric games

We consider two-strategy symmetric games with payoffs (2.2). We call a game

the coordination game if a > c and d > b and a game the Hawk and Dove game if

a < c and d < b. If p(u) := f(u, 2), using that f(u, 1) + f(u, 2) = 1 we can write a

single equation for p(u) and obtain an equation of the form (2.40) with

Replicator IDE ΦR(r, s) : = (1− s)rFκ (α(r − ζ))− s(1− r)Fκ (α(ζ − r))(2.45)

Logit IDE ΦL(r, s) : = lβ(α(r − ζ))− s (2.46)

where lβ (t) := 1
1+exp(−βt) , and Fκ(t) := 1

κ
log (exp(κt) + 1) (recall equation (2.10)).

We refer to (2.45) at κ = ∞ as a replicator IDE, while we also consider the

regularized replicator IDE (2.45) for κ < ∞, and refer to (2.46) as a logit IDE.

We will consider [−π, π]d for d = 1, 2 as a domain with the periodic boundary

condition and [−1, 1]d for d = 1, 2 as a domain with the fixed boundary condition.

In addition to the conditions for J stated in Section 2.3, we assume that J is

symmetric: J (x) = J (−x) for x ∈ Λ. Frequently, in examples and simulations,

we consider localized Gaussian-like kernels J (x) ∝ exp(−b ‖x‖2) for some b > 0.

More specifically, for the case of the periodic boundary, we will use

J (x) =
exp(−b ‖x‖2)∫

[−π,π]d
exp(−b ‖z‖2)dz

for x ∈ [−π, π]d
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and for the case of the fixed boundary, we will use

J (x) =


exp(−b‖x‖2)∫

[−1,1]d
exp(−b‖z‖2)dz

for x ∈ [−1, 1]d

0 otherwise

.

Stationary solutions and their linear stability

To find spatially homogenous stationary solutions, we need to set ΦR (p, p) = 0

and ΦL (p, p) = 0. Then, for the replicator case p = 0, 1, and ζ are three stationary

solutions. In the case of the logit dynamics, using lβ(z) = 1
2

+ 1
2

tanh(β z
2
) and

changing the variable, p 7→ 2p− 1 := u, the differential equation becomes

∂u

∂t
= −u+ tanh(β

α

4
(J ∗ u+ 1− 2ζ)) (2.47)

which is the well-known Glauber meso-scopic equation (DeMasi, Orlandi, Presutti,

and Triolo, 1994; Katsoulakis and Souganidis, 1997; Presutti, 2009) with β being

the inverse temperature. All known results for (2.47), such as the existence of

traveling wave solutions in one space dimension and the geometric evolution of

interfaces between homogeneous stationary states in higher dimensions, are directly

applicable to the logit dynamics. Because of this connection, we have the following

characterization of stationary solutions to the logit dynamics; the proof is the

consequence of (2.47) and the analysis of Glauber dynamics (Presutti, 2009) or it

can easily be done directly.

Lemma 2.6.2 (1) Suppose that the game is the coordination game. Then, there

exists βC such that for β < βC there exists one spatially homogenous stationary

solution, p1, and for β > βC there exist three spatially homogenous stationary

solutions, p1, p2, and p3.

(2) Suppose that the game is the Hawk and Dove game. Then there exist a unique

spatially homogenous stationary solution.
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Next we examine the linear stability of these stationary solutions. By differen-

tiating ΦR, ΦL, we find similarly to (2.44) the dispersion relations for the replicator

IDE:

p = 0 λR(k) = Fκ (−αζ) Ĵ (k)− Fκ (αζ)
p = 1 λR(k) = Fκ (α (ζ − 1)) Ĵ (k)− Fκ (α (1− ζ))

p = ζ λR (k) =
(

log(2)
κ

+ αζ (1− ζ)
)
Ĵ (k)− log(2)

κ

Table 1. Dispersion relations for the replicator IDE

Note that by our assumptions of J , Ĵ (k) is real-valued and |Ĵ (k)| < 1 for all k.

Using this fact, we obtain the first part of Proposition 2.6.3. Since a− c+ b−d < 0

in the Hawk and Dove game, when Ĵ (k) ≥ 0, λR (k) is negative for a sufficiently

large κ.

Proposition 2.6.3 (Linear Stability for the Replicator IDE) (1) p = 0, 1 are

linearly stable for the replicator dynamics for coordination games. (2) p = ζ is lin-

early stable for the replicator dynamics for Hawk and Dove games when Ĵ (k) ≥ 0.

Figure 3 shows one example of the dispersion relations for p = ζ. Observe

that λ (k) > 0 for k = 0, ±1, ±2 and the solutions to linear equation (2.42) is

of the form, e2πik·x (see appendix). So, when k = 0, the corresponding solution is

constant along space and the eigenvalue λ(0) is the eigenvalue for the linearized

equation of the mean-field ODE (2.36). Thus λ(0) > 0 merely shows that ζ is

unstable in mean-field ODE, and when k = 0 we do not expect to observe any non-

trivial spatial morphologies. At k = ±1, the corresponding solution has a period 1,

involving cos(x), sin(x) or both and this solution may grow fast, dominating other

solutions with different frequencies. Note that the nonlinearity of the replicator

IDE implies a bound on the solutions, so that they remain in the simplex, at each

spatial location. An initially fast growing solution may be bounded due to the

58



Figure 3. Dispersion relation. The figure shows the dispersion relation
λR(k) at p = ζ. J (x) = exp

(
−bx2

)
/
∫

exp
(
−bx2

)
dx, b = 20, κ = 20, β =

3, ζ = 1
3 .

nonlinearity effects and, hence, may develop to a spatially heterogeneous solution.

This is how we obtain the pattern formation in Figure 1 (upper panels). For k =

±2, we expect a similar spatial phenomenon, but now the solution involves cos(2x)

or sin(2x). Hence, we anticipate a finer pattern and, indeed, observe this in the

numerical simulation of Figure 1 (lower panels).

In the case of the logit dynamics, we note that l′β(t) = βlβ(t) (1− lβ(t)), hence

we easily obtain the dispersion relation for any stationary solution, p:

λL(k) = βα(1− p)pĴ (k)− 1, k ∈ Zd (2.48)

Proposition 2.6.4 (Linear Stability for the logit IDEs) Suppose that 0 < Ĵ (k)

for all k.

(1) Suppose that the game is the coordination game. When β < βC , the unique

stationary solution p0 is linearly stable. When β > βC, two stationary solutions,

p1, p3 are linearly stable where p3 < p2 < p1.

(2) If the game is a hawk-dove game, then the unique p0 is linearly stable.

59



Proof. First we note that p1 > ζ, p2, p3 < ζ ,

β(a− c+ d− b)(1− lβ((a− c+ d− b)(pi − ζ)))lβ((a− c+ d− b)(pi − ζ)) < 1 for i = 1, 3,

β(a− c+ d− b)(1− lβ((a− c+ d− b)(pi − ζ)))lβ((a− c+ d− b)(pi − ζ)) > 1 for i = 2.

Suppose that β > βC and consider p1. Since lβ((a − c + d − b)(p1 − ζ)) = p1, we

have β(a− c+ d− b)(1− p1)p1 < 1. Then since Ĵ (k) ≤ 1 for all k, we have

λL(k) = β(a− c+ d− b)(1− p1)p1Ĵ (k)− 1 < β(a− c+ d− b)(1− p1)p1 − 1 < 0

Thus p1 is linearly stable. Similar argument shows that p3 is linearly stable. The

case for Hawk-dove games follows from a− c+ d− b < 0

We note that the Gaussian kernel satisfies the hypothesis, 0 < Ĵ (k) for all k.

2.6.3 Traveling front solutions and equilibrium selection: Imitation versus Per-

turbed Best Responses

Suppose that the domain is a subset of R with the fixed boundary conditions

or the whole real line R. Then, this provides a natural setting to study traveling

front solutions. A solution is called a traveling front or wave solution if it moves at

a constant speed: i.e., a traveling front solution p(x, t) can be written as P (x− ct)

for some constant c and some function P. The existence of traveling front solutions

for the logit dynamics is the direct consequences of known results for the Glauber

equations. When ζ = 1
2
, the existence of a unique standing wave (i.e. c = 0) was

proved and when there are three equilibrium states, the existence of traveling waves

was established (DalPasso and DeMottoni, 1991; DeMasi, T.Gobron, and Presutti,

1995; Orlandi and Triolo, 1997). Particularly, if ζ < 1
2

one can find a solution

that satisfies P (−∞) = 0 and P (∞) = 1, and travels at a negative speed. Thus

the value of P (∞) propagates to the whole real line and as t → ∞, the solution
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Figure 4. Comparison of standing waves. (a11 = a22, Periodic BC).
The upper left panel shows the time evolution of the population den-
sity of strategy 1 in the replicator dynamic. The upper right panel
describes the case of the logit dynamic. The bottom panel shows
the shapes of standing waves in both cases at time 4. We consider
the replicator with κ = ∞. N = 256. Λ = [−π, π]. dt = 0.001/(0.25N2),
a11 = 5, a22 = 5, a12 = a21 = 0. b = 2. The initial condition is 1[− 1

2π,
1
2π]

becomes 1 everywhere; coordination to a state with the higher payoffs becomes a

dominating behavior. However, there is no existing rigorous result, so far, on the

replicator IDE, though we have observed this solution in numerical simulations.

To compare the traveling wave solutions for each meso-scopic dynamic, we first

study the shapes of the standing waves. This is because the shapes of the standing

waves may depend on how “diffusive” the system is and the diffusiveness of the sys-

tem may, in turn, determine the speed of traveling waves. As in the usual analysis

of Allen-Cahn type PDE and Glauber IDE, we believe that the sharpness of the

standing wave varies with the diffusion effect of the equations and the more “dif-

fusive” the system is, the faster interfaces move (Carr and Pego, 1989; Katsoulakis

and Souganidis, 1997).

As Figure 4 shows, the shape of the standing wave in the replicator dynamics

with κ = ∞ is much sharper than that of the logit dynamics. In other numerical
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simulations, we have observed that the shape of the regularized replicator dynamics

depend on κ; as κ become larger, the shape is getting sharper. Since Fκ(t)→ [t]+

as κ → ∞, as κ increases marginal gains from switching to a different strategy

become higher in response to increases in the payoff of that strategy; in particular,

at κ =∞, this marginal gain becomes infinity. Thus in the replicator IDEs of high

payoffs, there is a zero probability for actions against the optimal choice, hence the

interface is very sharp. However, the players in the logit dynamics do not have zero

probabilities for doing such an action when an agent is right on the “interface”; i.e.,

there is a nonzero probability to select something not optimal. That creates the

“mushy” mixed region of a transition. From this observation we infer that the logit

dynamic is more “diffusive” than the replicator dynamic with κ = ∞; hence the

interfaces in the logit IDEs would move faster than those in the replicator IDEs.

This is numerically exhibited in Figure 5.

We note that in the coordination game used for Figure 5, the equilibrium of

coordination to strategy 1 is the one predicted by the existing equilibrium selection

theories (Harsanyi and Selton, 1988; Young, 1998; Hofbauer, Hutson, and Vick-

ers, 1997; Hofbauer, 1997). Particularly Hofbauer (1997) shows, under the best

response dynamics, the existence of a traveling wave solution which drives out the

equilibrium of strategy 2, and at the same time propagates the equilibrium of strat-

egy 1. Although we observe the existence of similar traveling wave solutions under

various dynamics, the speed of traveling varies dramatically. As Figure 9 shows the

transition is extremely slow in the replicator equation with κ = ∞. So, when the

society is characterized by imitative behaviors and marginal gains from switching

are high, our model predicts that the transition to a “better equilibrium” is very

slow and it takes a long time for equilibrium selection to occur.

Finally we present another comparison between the imitative behavior with the
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Figure 5. Comparison of traveling waves. (Fixed BC) The upper panels
show the time paths of the population densities for strategy 1 in
the replicator with κ = 1 (left) and the one with κ = ∞ (right).
The lower left panel shows the case of the logit dynamic. In the
bottom right panel we show the shapes of traveling waves at time 4.
The initial condition is 1[0,1]. N = 256. Λ = [−1, 1], dt = 0.001/(0.05N2),
a11 = 20/3, a12 = a21 = 0. b = 2 for the Gaussian kernel. ∂Λ = [−3, , 3]
∪[−1, 1] with the fixed boundary condition.

perturbed best response rule using unequal payoff coordination games (a11 > a22)

with the periodic boundary condition (Figure 6). Observe that the time evolution

of the replicator dynamic IDE in the left panel of Figure 6 corresponds to the

1-dimensional snap shot of the pattern formation in two dimensional replicator

systems in Figure 1. In Figure 6, the replicator system developed a spatial pattern;

in the logit dynamic all population coordinate to an equilibrium of strategy 1

exponentially fast. Thus, in a society where agents adopt strategies by imitating

their neighbors, the significant proportion of the population may spend a long time

in an inefficient equilibrium, whereas agents with perturbed best response rules

coordinate “better” to an efficient outcome.

Throughout numerical simulations, we frequently observed the development of

patterns in the replicator IDEs, while this is not the case for the logit IDEs, except
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Figure 6. Replicator versus Logit. (Periodic BC) The left panel shows
population density of strategy 1 for the replicator IDE with κ =
∞, and the right panel depicts the population density in the logit
dynamics. N = 512. Λ = [−π, π] with the periodic condition. dt =
0.001/(0.05N2), a11 = 20/3, a22 = 10/3, a12 = a21 = 0. b = 10. for the
Gaussian kernel. The initial datum is 1

2 + 1
10 rand cos(2x),where rand

denotes a realization of the uniform random variable at each node.

for the equal payoff coordination games. We have also observed the similar pat-

tern formations in the regularized replicator IDEs for a reasonable range of κ; the

regularized replicator IDEs with κ = 10 showed similar patterns to the replicator

IDEs.

2.6.4 PDE Approximations

If the interaction kernel J is highly concentrated at the origin, or equiva-

lently, the density f varies slowly with respect to space, we can consider Jε(x) =

ε−dJ (x/ε) as an interaction kernel for small ε. Then by a change of variables and

a Taylor expansion, we find

Jε ∗ f ≈ f +
ε2

2
J2∆f

where we ignore smaller order terms like ε3 and ∆f = (∆f1,∆f2, · · · ,∆fn)T , ∆f1 =

∂2f1

∂r2
1

+ · · ·+ ∂2f1

∂r2
d
, and J2 =

∫
Λ
|w|2 J (w)dw. Thus, by expanding F (f + ε2

2
J2∆f, f)

in equation 2.40 around ε ≈ 0 again, we find the PDE approximations of IDEs:

∂f

∂t
= F (f, f) +

1

2
ε2J2M∆f (2.49)

where (M)i,j := ∂Fi
∂rj

, and the derivatives are evaluated at (f, f). Intuitively, the

coordinating behaviors imply that agents try to choose the same strategy as their
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neighbors, and this, in turn, means that the density of a given strategy tends to

diffuse toward locations where the coordination of that strategy is more likely. This

is how our original IDEs are related to the reaction diffusion equations in (2.49).

For specific PDE expressions, we find

Replicator ∂f
∂t

= βf(1− f)(f − ζ)

+ [βf(1− f) + (1− f)Fκ (β (f − ζ)) + fFκ (β (ζ − f))] ε
2

2
J2∆f

Logit ∂f
∂t

= l(β (f − ζ))− f + βl(β(f − ζ))(1− l(β(f − ζ))) ε
2

2
J2∆f

(2.50)

Both PDEs in (2.50) are reaction diffusion equations, whose reaction terms are

of the same functional form as the mean field reactions (term βf(1− f)(f − ζ) in

the replicator and l(β (f − ζ))− f in the logit). The diffusion terms are nonlinear

as the coefficients of the terms ∆f depend on the strategy density f. In PDE that

Hutson and Vickers (1992), Vickers, Hutson, and Budd (1993), Hofbauer, Hutson,

and Vickers (1997), and Hofbauer (1997) have studied for the existence of travel-

ing wave solutions and pattern formation, the diffusion coefficients are constant,

implicitly modeling ‘fast’ diffusion of strategies between players at different lattice

sites in space at the microscopic level, in contrast to the ‘slow’ strategy updat-

ing dynamics; such derivations of reaction-diffusion PDE from interacting particle

systems with combined fast/slow mechanisms are discussed in Durrett (1999) and

references therein. However, in our long-range interaction models the diffusion

terms are concentration-dependent, induced by the nonlinearities in the logit and

replicator microscopic stochastic dynamics. In biology models, when the population

pressure tends to enhance dispersal as the population density increases, the den-

sity dependent reaction diffusion models have been used (Murray, 1989; Morishita,

1971; Shigesada, 1980).
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Overall the PDEs in (2.50) provide additional insights for the IDEs in (2.45)

and (2.46), and their corresponding microscopic stochastic dynamics. For example,

in the case of (2.45), when p is close to either 0 or 1 the diffusion term is weakest

and when p lies in the intermediate range, the effect becomes strong. This means

that the individuals playing strategy 1 diffuse fast, as p reaches 1
2
, because it is

more likely for them to play with 2-strategists, so more likely to be uncoordinated.

When it is highly likely to be coordinated, as in p = 0 or 1, the individuals with

the corresponding strategy do not diffuse at all.

Remark. Here we derive the numerical scheme that is used in simulations

for the equations with fixed boundary conditions (Figure 5). We suppose that

Λ = [−1, 1],Λc = [−3,−1] ∪ [1, 3] and would like to solve

∂p
∂t

= F1(L(p+ pΛc),L(q + qΛc), p, q) in Λ× (0, T ]

∂q
∂t

= F1(L(p+ pΛc),L(q + qΛc), p, q)

p(0, x) = p0(x) on Λ× {0}

q(0, x) = q0(x)

p(t, x) = pΛc(x), q(t, x) = qΛc(x) on Λc × (0, T ]

(2.51)

and we suppose that pΛC (x) = βR for x ∈ [1, 3], pΛC (x) = αR for x ∈ [−3,−1],

qΛC (x) = βC for x ∈ [1, 3] and qΛc(x) = αR for x ∈ [−3,−1] and

F1(r1, r2, s1, s2) = (1− s1)r1βC(1− ζC)r2 − s1(1− r1)βCζC(1− r2)

F2(r1, r2, s1, s2) = (1− s2)r2βR(1− ζR)r1 − s2(1− r2)βRζR(1− r1)

Lp(t, x) :=
∫ 1

−1
J (x− y)p(t, y)dx, Lq(t, x) :=

∫ 1

−1
J (x− y)q(t, y)dx

Let h = 1
N
. We approximate solutions for (2.51) by

ph(t, x) =
N∑
j=0

aj(t)φj(x), qh(t, x) =
N∑
j=0

bj(t)φj(x) (2.52)
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where φj(x) is jth order Chebyshev polynomial. So we would like to find aj(t), bj(t)

such that when we substitute (2.52) into (2.51), the resulting equation is satisfied

at N + 1 collocation points:

xk = cos(
πk

N
) for k = 0, 1, 2, · · · , N

First from the boundary condition we have

ph(t, 1) = βR →
N∑
j=0

aj(t)φj(1) = βR

ph(t,−1) = αR →
N∑
j=0

aj(t)φj(−1) = αR

Since φj(1) = 1 and φj(−1) = (−1)j for all j, we obtain

a0(t) + aN(t) +
N−1∑
j=1

aj(t)φj(1) = βR

a0(t)− aN(t) +
N−1∑
j=1

aj(t)φj(−1) = αR

where we assume that N is odd. Thus we find

a0(t) =
1

2
(βR + αR)− 1

2

N−1∑
j=1

(φj(1) + φj(−1))aj(t) (2.53)

aN(t) =
1

2
(βR − αR)− 1

2

N−1∑
j=1

(φj(1)− φj(−1))aj(t)
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Then we have for k = 1, · · · , N − 1

ph(xk, t) =
N∑
j=0

aj(t)φj(xk)

=

[
1

2
(βR + αR)− 1

2

N−1∑
j=1

(φj(1) + φj(−1))aj(t)

]
φ0(xk)

+

[
1

2
(βR − αR)− 1

2

N−1∑
j=1

(φj(1)− φj(−1))aj(t)

]
φN(xk)

+
N−1∑
j=1

aj(t)φj(xk)

=
1

2
[(βR + αR)φ0(xk) + (βR − αR)φN(xk)]

+
N−1∑
j=1

aj(t)

(
φj(xk)−

1

2

[
(1 + (−1)j)φ0(xk) + (1− (−1)j)φN(xk)

])
So we can write in the vector notation

~ph(t) =
1

2
~cR +M~a(t)

where (~ph)k := ph(xk, t), (~cR)k := (βR + αR)φ0(xk) + (βR − αR)φN(xk), (M)k,j =

φj(xk)− 1
2

[(1 + (−1)j)φ0(xk) + (1− (−1)j)φN(xk)] , (~a)k := ak. From this we have

d~ph
dt

(t) = M~a′(t)

Similarly we have

~qh(t) =
1

2
~cC +M~b(t),

d~qh
dt

(t) = M~b′(t)
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where (~cC)k := (βC + αC)φ0(xk) + (βC − αC)φN(xk) Also for k = 1, · · · , N − 1,

(L(ph + pΛc)) (t, xk) =

∫
Λ

J (xk − y)ph(t, y)dy +

∫
Λc
J (xk − y)pΛc(y)dy

=
N∑
j=0

aj(t)

∫
Λ

J (xk − y)φj(y)dy

=

(
1

2
(βR + αR)− 1

2

N−1∑
j=1

(φj(1) + φj(−1))aj(t)

)
ak,0

+

(
1

2
(βR − αR)− 1

2

N−1∑
j=1

(φj(1)− φj(−1))aj(t)

)
ak,N +

N−1∑
j=1

aj(t)ak,j

+

∫
Λc
J (xk − y)pΛc(y)dy

=
1

2
[(βR + αR) ak,0 + (βR − αR) ak,N ]

+
N−1∑
j=1

aj(t)

(
ak,j −

1

2

[
(1 + (−1)j)ak,0 + (1− (−1)j)ak,N

])
+

∫
Λc
J (xk − y)pΛc(y)dy

where ak,j :=
∫

Λ
J (xk − y)φj(y)dy. Therefore we can write

−−→
Lph =

1

2
~dR +N~a(t)

where
(−−→
Lph

)
k

:= (Lph) (xk), (~dR)k = (βR + αR) ak,0+(βR − αR) ak,N+2
∫

Λc
J (xk−

y)pΛc(y)dy, (N)k,j := ak,j − 1
2

[(1 + (−1)j)ak,0 + (1− (−1)j)ak,N ] . Also from the

initial condition we have ph(xk, 0) = p0 (xk) , k = 0, · · · , N. So 1
2
~cR +M~a(0) = ~p0.

Again the similar computation shows

−−→
Lqh =

1

2
~dC +N~b(t),

1

2
~cC +M~b(0) = ~q0

where (~dC)k =
[
(βC + αC) ak,0 + (βC − αC) ak,N + 2

∫
Λc
J (xk − y)qΛc(y)dy

]
. There-
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fore our numerical scheme for (2.51) yields ODE:

M~a′(t) = ~F1(1
2
~dR +N~a(t), 1

2
~dC +N~b(t), 1

2
~cR +M~a(t), 1

2
~cC +M~b(t))

M~b′(t) = ~F1(1
2
~dR +N~a(t), 1

2
~dC +N~b(t), 1

2
~cR +M~a(t), 1

2
~cC +M~b(t))

M~a(0) = ~p0 − 1
2
~cR

M~b(0) = ~q0 − 1
2
~cC

(2.54)

where
(
~Fi(~r1, ~r2, ~s1, ~s2)

)
k

:= Fi(r1,k, r2,k, s1,k, s2,k). We solve (2.54) and obtain

(a1(t), · · · , aN−1(t)) and (b1(t), · · · , bN−1(t)). Then we can find a0(t), aN(t), b0(t),

bN(t) by using (2.53). Finally from (2.52) we obtain the numerical solution of

(2.51).
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CHAPTER 3

DECOMPOSITION OF NORMAL FORM GAMES:

POTENTIAL, ZERO-SUM, AND STABLE GAMES

3.1 Decompositions of the Space of Games into Orthogonal Sub-

spaces

3.1.1 Reduction of Games Modulo Payoff Transformation.

To illustrate the idea of our first decomposition, we decompose the well-known

generalized Rock-paper-scissors game by performing a simple calculation.
γ1 −a+ γ2 b+ γ3

b+ γ1 0 + γ2 −a+ γ3

−a+ γ1 b+ γ2 γ3

 (3.1)

=


γ1 γ2 γ3

γ1 γ2 γ3

γ1 γ2 γ3


︸ ︷︷ ︸

Passive Game

+
1

2
(b− a)


0 1 1

1 0 1

1 1 0


︸ ︷︷ ︸
Potential Part

+
1

2
(b+ a)


0 −1 1

1 0 −1

−1 1 0


︸ ︷︷ ︸

Anti-potential Part

(3.2)

It is easy to see that the game (3.1) is a potential game if and only if a = −b and

is equivalent to the Rock-paper-scissors game if and only if a = b. In this section

we show that such a decomposition as in (3.2) holds for any game.
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We start with symmetric games: let us denote the space of all l× l matrices by

L. Let us endow L with the inner product, 〈A,B〉L = tr(ATB). A passive game

(in the terminology of Sandholm (2010b)) is a game in which players’ payoffs do

not depend on the choice of strategies. Let E
(j)
γ ∈ L be the matrix given by

E(j)
γ (k, l) =

 1 if k = j

0 otherwise

; i.e., E
(j)
γ is a matrix which has 1’s in its jth column and 0’s at all other entries.

Then the set of all symmetric passive games is given by I := span{E(i)
γ }j. It is

well-known that the set of Nash equilibria for a symmetric game is left invariant

under the addition of a passive game to the payoff matrix.

3.1.2 Potential games and zero-sum games decompositions

To characterize the spaces of all potential games and all zero-sum games, we

define the following special matrices:

K(ij) =

i-th j-th

i-th → -1 · · · 1

...
...

j-th → 1 · · · -1

, N (ij) =

1st i-th j-th

1st 0 · · · -1 · · · 1

...
...

...

i-th → 1 · · · 0 · · · -1

...
...

...

j-th → -1 · · · 1 · · · 0

,

where all other elements in the matrices are zeros. Similarly, N (ij) is a game whose

restriction on the strategy set {1, i, j} × {1, i, j} is the Rock-Paper-Scissors game.

Monderer and Shapley (1996)
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Recall that a symmetric game A is a potential game (Monderer and Shapley

(1996)) if there exist a symmetric matrix S and a passive game
∑

j γjE
(j)
γ ∈ I such

that

A = S +
∑
j

γjE
(j)
γ . (3.3)

We will use the word “exact ” to indicate that a game is a potential game with no

passive part, i.e., all γj = 0, so exact potential games refers to full potential games

in Sandholm (2010b). We denote by M the linear subspace of all potential games

and we have the orthogonal decomposition L =M⊕M⊥ with respect to the inner

product <,>L. We call a game in M⊥ an anti-potential game.

Note that the dimension of the subspace of L consisting of all symmetric matri-

ces is 1
2
l(l + 1) and the dimension of the subspace of passive games is l. Since the

sum of all Eγ is an exact potential game, namely the game whose payoffs are all 1’s,

the dimension of the intersection between the subspace of all symmetric matrices

and I is at least 1. Conversely if a matrix belongs to this intersection, then the

entries of this matrices should be all the same (see also the discussion in Sandholm

(2010a, p.15)) and so the dimension of the intersection is exactly 1. Hence the

dimension of M is given by

dim(M) =
l(l + 1)

2
+ l − 1 = l2 − (l − 1)(l − 2)

2
. (3.4)

Note that the extended Rock-Paper-Scissors N (ij) is an anti-symmetric matrix

whose column sums and row sums are all 0’s. Thus, we have

〈
A,N (ij)

〉
L = 0 ,

for all A ∈ M, because
〈
S,N (ij)

〉
L = 0 and

〈
P,N (ij)

〉
L = 0 for all symmetric

matrix S and all passive game P (See the appendix for the properties of 〈〉L). In

other words, N (ij) ∈ M⊥ for all i, j. The set {N (ij) : j > i, i = 2, · · · , l − 1}
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has (l−1)(l−2)
2

elements and they are linearly independent since since each N (ij) is

uniquely determined by the property of having 1 in its (i, j) th position. This set

forms a basis forM⊥. If a matrix B is antisymmetric and the sums of elements in

each column in B are all zeros, 〈S,B〉L = 0 for a symmetric matrix and 〈P,B〉L = 0

for a passive game P. Therefore B ∈ M⊥. On the other hand, if B ∈ M⊥, B

can be written as a linear combination of N (ij), and hence B is antisymmetric and

the sums of elements in each column in B are all zeros.

Proposition 3.1.1 (Anti-potential games) We have

B ∈M⊥ if and only if BT = −B and
∑
j

B(i, j) =
∑
i

B(i, j) = 0 .

Moreover the set {N (ij) : j > i, i = 2, · · · , l} forms a basis for M⊥.

Proposition 3.1.1 shows that a basis forM⊥ can be obtained from the extended

Rock-Paper-Scissors. As a corollary of Proposition 3.1.1 we obtain immediately

the criterion for potential games given by Hofbauer and Sigmund (1998).

Corollary 3.1.2 (Potential games) A is a potential game if and only if

a(l,m)−a(k,m)+a(k, l)−a(m, l)+a(m, k)−a(l, k) = 0 for all l,m, k ∈ S (3.5)

Proof. First note from Proposition 3.1.1 that we have A is a potential game if

and only if
〈
A,N (ij)

〉
L = 0 for all i, j. Then notice that

a(l,m)− a(k,m) + a(k, l)− a(m, l) + a(m, k)− a(l, k) = 〈A,E〉L

where

E =

k l m

k 0 1 -1

l -1 0 1

m 1 -1 0

and all other entries in E are 0’s.
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Then clearly (3.5) implies
〈
A,N (ij)

〉
L = 0 for all i, j. Conversely, the matrix E is

anti-symmetric and its row sums and column sums are zero, so E ∈M⊥. Therefore

E can be uniquely written as N (ij) and thus
〈
A,N (ij)

〉
L = 0 for all i, j implies (3.5).

We provide a similar decomposition starting with zero-sum games. We call an

anti-symmetric matrix A an exact zero-sum game and call a game zero-sum if it

can be written as the sum of a antisymmetric matrix and a passive game. Let us

denote by N the subspace of all zero-sum games. The dimension of the subspace

all anti-symmetric matrices is (l−1)l
2

and the dimension of the intersection between

the subspace of anti-symmetric matrices and I is 0 (the diagonal elements of anti-

symmetric matrices are all zeros and hence all off diagonal elements are again all

zeros if this game is also a passive game). Thus

dim(N ) =
(l − 1)l

2
+ l = l2 − (l − 1)l

2
. (3.6)

We decompose the space of game as L = N ⊕ N⊥ and we call a game in N⊥ an

anti-zero-sum game. Note that K(ij) is a symmetric matrix whose row sums and

column sums are zeros, so K(ij) ∈ N⊥. The set {K(ij) : j > i, i = 1, · · · , l} has

(l−1)l
2

elements which are linearly independent since early independent since each

K(ij) is uniquely determined by having 1 in its (i, j)th entry. Thus we obtain

Proposition 3.1.3 (Anti-zero-sum games) We have

B ∈ N⊥ if and only if BT = B and
∑
j

B(i, j) =
∑
i

B(i, j) = 0 .

Moreover the set {K(ij) : j > i, i = 1, · · · , l − 1} forms a basis for N⊥.

Using this orthogonal decomposition we obtain a new criterion to identify a

zero-sum game similar to the criterion in Corollary 3.1.2.
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Corollary 3.1.4 (Zero-sum games) A is a zero-sum game if and only if

a(j, i)− a(i, i) + a(i, j)− a(j, j) = 0 for all i, j ∈ S . (3.7)

Proof. If A ∈ N then
〈
A,K(ij)

〉
L = 0 which yields (3.7).

3.1.3 Decompositions using the projection mapping Γ

The subspaces of potential games and zero-sum games have a non-trivial inter-

section M∩N . In order to understand this set let P = I − 1
l
11T where I is the

identity matrix and 1 the constant vector with entries equal to 1. It is easy to see

that P is the orthogonal projection onto the subspace {x ∈ Rl ;
∑

i xi = 0}, i.e.,

onto the tangent space to the unit simplex {x ∈ Rl ;xi ≥ 0 ,
∑

i xi = 1}. Let us

define a linear transformation Γ on L by

Γ : L → L, A 7→ PAP.

To characterize the kernel and the range of the map Γ, let us say that a game

is constant game if the player’s payoff does not depend on his opponent’s strategy,

that is the payoff matrix is constant on each row. The matrices E
(i)
η := (E

(i)
γ )T

form an orthonormal basis of the subspace of constant games. Note that E
(i)
η has

a strictly dominant strategy.

Furthermore let us define for each i ∈ {2, · · · , lr}, j ∈ {2, · · · , lc}

E(ij)
κ =

j−th j + 1−th

...
...

i−th · · · -1 1 · · ·

i+ 1−th · · · 1 -1 · · ·
...

...

where all other entries are 0’s.
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It is easy to see that

span{E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ } ⊂ ker Γ. (3.8)

Conversely, one can show that the left and right actions of the projection matrices

makes only this class belongs to ker Γ. Then note that

∑
i

E(l)
γ =

∑
i

E(l)
η ,

so by throwing away one element from the spanning set (3.8), we may obtain the

independent spanning set, hence a basis for the kernel of Γ. Concerning the range

of Γ, by counting the basis elements, we have dim(ker Γ) = 2l − 1 and, thus,

dim(rangeΓ) = l2 − (2l − 1) = (l − 1)2. Since 1E
(ij)
κ = 0 and E

(ij)
κ 1 = 0,

{E(ij)
κ : i = 1, · · · , l − 1, j = 1, · · · l − 1}

provides a natural candidate for the basis of the range. These observations lead to

Proposition 3.1.5 whose formal proof is elementary but tedious.

Proposition 3.1.5 (Characterizations of ker(Γ) and range(Γ)) We have

(1) {E(i)
η }i 6=1 ∪ {E(j)

γ }j form a basis for ker Γ.

(2) {E(ij)
κ : i = 1, · · · , l − 1, j = 1, · · · l − 1} form a basis for range(Γ).

Proof. (1) We first show that

ker Γ = span{E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ }

Note that PE
(j)
γ = O for all j. Then E

(i)
η P = (P (E

(i)
η )T )T = O for all i. Thus

we have span {E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ } ⊂ ker Γ. Conversely, let A such that

Γ(A) = O. Since

PAP = A− 1

l
11TA− 1

l
A11T +

1

l2
11TA11T ,
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we have

A =
1

l
11TA+

1

l
A11T − 1

l2
11TA11T

Then note the following properties of 11T :

11TA = (
∑
k

ak11 :
∑
k

ak21 : · · · :
∑
k

akl1)

i.e., the left action of 11T on A turns A into a matrix with the same elements

in each column. Since A11T = (11TAT )T , the right action of 11T on A turns

A into a matrix with same elements in each column. Also it is easy to see that

11TA11T =
∑

k

∑
m akm11T . Thus A can be written as

A =
∑
i

(
∑
k

aki)E
(i)
γ +

∑
j

(
∑
k

ajk)E
(j)
η + (

∑
k

∑
m

akm)
∑
j

E(j)
γ

SoA ∈ span{E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ }. Thus ker Γ = span{E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ }.

Next note that

∑
i

E(i)
η =

∑
j

E(j)
γ , so E(1)

γ = −
∑
j 6=1

E(j)
γ −

∑
i

E(i)
η ,

thus

span{E(1)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ } = span{E(2)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ }.

To show linear independency among {E(2)
η , · · · , E(l)

η , E
(1)
γ , · · · , E(l)

γ }, consider the

linear combination of these matrices:

O =
∑
i 6=2

ηiE
(2)
η +

∑
j

γjE
(2)
j .

Then since E
(1)
η does not appear in the linear combination, we have γj = 0 for all

j and this implies ηi = 0 for i 6= 2.

(2) Note because of 1E
(ij)
κ = 0 and E

(ij)
κ 1 = 0,Γ(E

(ij)
κ ) = PE

(ij)
κ P = E

(ij)
κ . So,

E(ij)
κ ⊂ range(Γ) for all i, j ≥ 2
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and it is easy to see that E
(ij)
κ are linearly independent. Finally by

∣∣∣{E(ij)
κ }ij

∣∣∣ =

(l − 1)2 and since dim(range(Γ)) = (l − 1)2, {E(ij)
κ }ij is a basis for range(Γ)

Next, we study the relationship among these subspaces. First every game in

the subspace N⊥ is a symmetric matrix and thus a potential game. Similarly every

anti-potential game is a zero-sum game, so we have N⊥ ⊂ M and M⊥ ⊂ N . To

understand the relationship among these spaces further, note the following facts:
1 1 1

0 0 0

0 0 0

+


1 0 0

1 0 0

1 0 0

 =


2 1 1

1 0 0

1 0 0




1 1 1

0 0 0

0 0 0

−


1 0 0

1 0 0

1 0 0

 =


0 1 1

−1 0 0

−1 0 0

 .

From this clearly any game in ker(Γ) which is not a passive game is both a poten-

tial game and zero-sum game; i.e., every constant game can be transformed into

potential games and zero-sum games. As Proposition 3.1.6 illustrates, the direction

of implication goes the other as well: the games which are both anti-potential and

anti-zero-sum games are equivalent to a constant game.

Proposition 3.1.6 ker(Γ) =M ∩ N and range(Γ) =M⊥ ⊕N⊥.

Proof. First we show that ker(Γ) =M∩N . Observe that for i ≥ 2

(E(i)
η + E(i)

γ )T = (E(i)
η )T + (E(i)

γ )T = E(i)
γ + E(i)

η

Thus (E
(i)
η +E

(i)
γ ) is symmetric and (E

(i)
η +E

(i)
γ )11 = 0, so E

(i)
η = (E

(i)
η +E

(i)
γ )T−E(i)

γ ∈

M. Also

(E(i)
η − E(i)

γ )T = (E(i)
η )T − (E(i)

γ )T = −(E(i)
η − E(i)

γ ),
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so (E
(i)
η −E(i)

γ ) is anti-symmetric and E
(i)
η = −(E

(i)
η −E(i)

γ )T +E
(i)
γ ∈ N . Therefore

ker Γ ⊂ M∩N . Conversely let A ∈M∩N . Then

A = S + 1cT1 and A = B + 1cT2 for a symmetric S and anti-symmetric B.

Thus B + 1cT2 − 1cT1 = BT + c21
T − c11

T and using the anti-symmetry of B, we

obtain

B =
1

2
(c21

T − c11
T + 1cT2 − 1cT1 )

and so

A =
1

2
(c21

T − c11
T + 1cT2 − 1cT1 ) + 1cT2 ∈ ker Γ.

Next we show that range(Γ) = span(M⊥ ∪N⊥). Then, we have

span(M⊥ ∪N⊥) = span({N (ij)}j>i≥2 ∪ {H(ij)}j>i≥2 ∪ {K(ii)}i≥2}

= span({K(ij)}j>i≥2 ∪ {K(ij)}i>j≥2 ∪ {K(ii)}i≥2}

= span({K(ij)}i≥2,j≥2} = range(Γ)

Proposition 3.1.6 provides the essential characterization of the relationship among

spaces. Since L = ker(Γ)⊕ range(Γ), from Proposition 3.1.6, we obtain the decom-

position of a given game into three parts; L =M⊥ ⊕ N⊥ ⊕ ker(Γ). Also since

N ∩ (M⊥∪N⊥) =M⊥, we will have N∩ range(Γ) =M⊥ and this provide another

characterization of M⊥ as follows. From Proposition 3.1.1, we know that a game

is anti-potential if and only if it is an antisymmetric matrix whose row sums and

column sums are zeros. We know that all row sums and column sums of games

belonging to range(Γ) are zeros and the zero sum game is the sum of an antisym-

metric matrix and a passive game; thus we can show thatM⊥ = N∩ range(Γ). In

this way we obtain the following key result in the paper.
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Theorem 3.1.7 We have

(1) M = N⊥ ⊕ ker(Γ) and M⊥ = N∩ range(Γ)

(2) N =M⊥ ⊕ ker(Γ) and N⊥ =M∩ range(Γ)

(3) L =M⊥ ⊕N⊥ ⊕ ker(Γ)

Proof. (1) From Proposition 3.1.6, we have N⊥ + ker(Γ) = span(N⊥ ∪

ker(Γ)) = span((N⊥ ∪ M) ∩ (N⊥ ∪ N )) = M. Since N⊥ ⊥ ker(Γ), we have

M = N⊥⊕ ker(Γ). From proposition 3.1.6, we haveM⊥ ⊂ M⊥⊕N⊥ = range(Γ)

and see that M⊥ ⊂ N∩ range(Γ). Conversely again from proposition 3.1.6, we

have

N ∩ range(Γ) = N ∩ (span(M⊥ ∪N⊥)) ⊃ span(N∩(M⊥ ∪N⊥)) =M⊥.

By changing the roles of M and N , we obtain (2). (3) follows from L =M⊥ ⊕

M =M⊥ ⊕N⊥ ⊕ ker(Γ).

Sandholm (2010a) provides a method of decomposing normal form games by

using the orthogonal projection P : for a given A

A = PAP︸ ︷︷ ︸
∈ range(Γ)

+ (I − P )AP + PA(I − P ) + (I − P )A(I − P )︸ ︷︷ ︸
∈ ker(Γ)

. (3.9)

The first term in (3.9) belongs to the range of Γ and the remaining three terms

belong to the kernel of Γ. Our decompositions (Proposition 3.1.6) show that PAP

can be further decomposed into games having nice properties − potential games

and zero-sum games − and every game in ker(Γ) is a game which is both a potential

and a zero-sum game and possesses (generically) a dominant strategy.

Theorem 3.1.7 also provides a convenient way to compute an anti-zero-sum part

(an anti-potential part, resp.) of the game when an anti-potential part (anti-zero-

sum part, resp.) is known. Suppose that A is a symmetric game and its anti-

potential part is Z. Then the part of A that belongs to ker(Γ) is A− PAP. Hence
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from (3) of Theorem 3.1.7, its anti-zero-sum part is given by A−Z− (A−PAP ) =

PAP−Z; in fact Theorem 3.1.7 shows that PAP−Z is a symmetric matrix in L

and its all row sums and column sums are zeros.

3.1.4 Decompositions of bimatrix games

In this section we prove a decomposition theorem for a general bimatrix game

and elucidate the relationship between the decompositions of symmetric games and

the bimatrix games. Here most of propositions are the bimatrix extension of the

corresponding proposition in section 2.2-2.3. We denote (with a slight abuse of

notation) by L the space of all lr× lc matrices and endow L with the inner product

〈A,B〉L := tr(ATB). Without loss of generality we assume lr ≤ lc. The set of all

bimatrix games is L2 := L × L and sometimes we will view a bimatrix game (A,B)

as a (lr + lc)× (lr + lc) matrix as follows:

(A,B) :=

Or A

BT Oc


where Or and Oc are lr× lr and lc× lc zero matrices, respectively. The space L2 is a

subspace of the set of all (lr+lc)×(lr+lc) matrices of dimension 2lrlc. We endow L2

with the inner product < ·, · >L2 , where 〈(A,B), (C,D)〉L2 := tr((A,B)T (C,D)).

The elementary properties of this scalar product are summarized as follows. First

we observe that

1. (A,B)T = (B,A)

2. (A,B) is symmetric in L2 if A = B

3. (A,B) is anti-symmetric in L2 if A = −B

4. (A,B) is a symmetric game if lr = lc and A = BT
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So, a bimatrix symmetric game is not necessarily a symmetric matrix in L2. We

endow L2 with an inner product <,>L2 defined by:

〈(A,B), (C,D)〉L2 := tr((A,B)T (C,D))

We provide some properties of 〈 〉L2 and its relationship with 〈 〉L.

Lemma 3.1.8 For (lr × lc) matrices A,B,C,D , we have

(1) 〈(A,B), (C,D)〉L2 = 〈A,C〉L + 〈B,D〉L

(2) 〈SA,B〉L = 〈A, SB〉L for a symmetric (lr × lr) matrix S

(3) 〈(A,A), (B,−B)〉L2 = 0

(4) For c ∈ Rlr and A such that A1lc = 0,
〈
A, c1Tlc

〉
L = 0.

(5) For c ∈ Rlc and A such that 1TlrA = 0,
〈
A,1lrc

T
〉
L = 0.

Proof. (1) and (2) are obvious. (3) follows from

〈(A,A), (B,−B)〉L2 = 〈A,B〉L − 〈A,B〉L = 0.

(4) follows from 〈
A, c1Tlc

〉
= tr(1lcc

TA) = tr(cTA1lc) = 0

by the commutativity of trace and (5) follows from

〈
A,1lrc

T
〉
L = tr(c1TlrA) = 0

The set of all bimatrix passive games Ī is given by

Ī := span({(E(j)
γ , O)}j ∪ {(O,E(i)

γ )}i).
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We say that a game (A,B) and a game (C,D) are equivalent if (A,B)− (C,D) ∈ Ī

In this case we write (A,B) ∼ (C,D). The set of Nash equilibria for a bimatrix

game is invariant under this equivalence relation.

Notice that (E
(ij)
κ ,−E(ij)

κ ) is a game whose restriction on the strategy set {i, i+

1} × {j, j + 1} is the Matching Pennies game, and we call (E
(ij)
κ ,−E(ij)

κ ) is an

extended Matching Pennies game.

From Monderer and Shapley (1996) we recall that (A,B) is a potential game if

there exist a matrix S and {γj}j , {ηi}i such that

(A,B) = (S, S) +
∑
j

γj(E
(j)
γ , O) +

∑
i

ηi(O,E
(i)
η ) .

Letting M̄ be the subspace of all potential game, we similarly have the orthogonal

decomposition L2 = M̄ ⊕ M̄⊥. Note that the dimension of the subspace of all

exact potential games is lr × lc and the dimension of the subspace of all passive

games is lr + lc. Arguing as for symmetric games, one finds that the dimension of

M̄ is given by

dim(M̄) = lrlc + lr + lc − 1 = 2lrlc − (lr − 1)(lc − 1). (3.10)

Also note that (Eκ
(ij),−Eκ(ij)) is an anti-symmetric matrix as an element in L2

whose column sum and row sum are all 0’s, thus we have
〈
(A,B), (Eκ

(i,j),−Eκ(i,j))
〉
L2 =

0 for all (A,B) ∈ M̄. In other words, (Eκ
(ij),−Eκ(ij)) ∈ M̄⊥ for all i, j and the

number of such (Eκ
(i,j),−Eκ(i,j)) is (lr − 1)(lc − 1). Hence

Proposition 3.1.9 (Anti-potential games) {(Eκ(i,j),−Eκ(i,j))}i,j form an or-

thonormal basis for M̄⊥.

Proof. From the discussion above, it is enough to show the linear independency

among (E
(ij)
κ ,−E(ij)

κ ). To do this, we consider the following linear combination:∑
i,j

κ(ij)E(ij)
κ = 0.
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Then, it is easy to see that κ(11) = 0. This implies κ(1,j) = 0 for all j which, in

turn, implies κ(i,j) = 0 for all i.

Proposition 3.1.9 shows that a basis forM⊥ can be obtained from the Matching

Pennies games and its extensions. From this, we say that (A,B) is an bimatrix anti-

potential game whenever (A,B) ∈ M⊥. Proposition 3.1.9 provide an alternative

and simple proof for the well-known criterion for the potential game by Monderer

and Shapley (1996):

Corollary 3.1.10 (Potential games) (A,B) is a potential game if and only if

for all i, i′ ∈ Sr, j, j′ ∈ Sc,

a(i′, j)− a(i, j) + b(i′, j′)− b(i′, j) + a(i, j′)− a(i′, j′) + b(i, j)− b(i, j′) = 0

Proof. It is enough to notice that

a(i′, j)− a(i, j) + b(i′, j′)− b(i′, j) + a(i, j′)− a(i′, j′) + b(i, j)− b(i, j′)

=
〈

(A,B), (K(i,i′)(j,j′),−K(i,i′)(j,j′))
〉
L2

where (K(i,i′)(j,j′),−K(i,i′)(j,j′)) is an extended Matching Pennies game whose re-

striction on {i, i′} × {j, j′} is a Matching Pennies game.

Next we consider a decomposition using zero-sum games as in Section 2.2. We

call a game of the form (A,−A) an exact zero-sum game and say that a game is

a zero-sum game if it can be written as the sum of an exact zero-sum game and a

passive game. We denote by N̄ the subspace of all bimatrix zero-sum games and

we have dim(N̄ ) = 2lrlc − (lr − 1)(lc − 1). The similar argument as in Section 2.2

yields

Proposition 3.1.11 (Anti-zero-sum games) {(E(ij)
κ , E

(ij)
κ )}i≥2,j≥2 form an or-

thonormal basis for N̄⊥.
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Notice that in this case the extended Hawk-Dove games form a basis for anti-

zero-sum games. Again the following corollary is an immediate consequence of

orthogonality (See Exercise 11.2.9 in Hofbauer and Sigmund, 1998).

Corollary 3.1.12 (A,B) is a zero-sum game if and only if for all i, i′ ∈ Sr, j, j′ ∈

Sc,

a(i′, j)− a(i, j)− b(i′, j′) + b(i′, j) + a(i, j′)− a(i′, j′)− b(i, j) + b(i, j′) = 0.

To consider the decomposition in terms of the projection mapping onto the

tangent space as in Section 2.3, we first modify the definition of Γ :

Γ : L → L, A 7→ PrAPc, Pl = Il −
1

l
1r1

T
r , Pc = Ic −

1

l
1c1

T
c .

and define Γ : L2→ L2 by

(A,B) 7→ P(A,B)P : =

Pr O

O Pc


 O A

BT O


Pr O

O Pc

 .

Then analyzing similarly as in the symmetric games (Proposition 3.1.5), we obtain

the following characterizations for ker(Γ) and range (Γ):

Proposition 3.1.13 We have

ker(Γ) = span({(E(i)
η , O)}i 6=1 ∪ {(E(i)

γ , O)}i ∪ {(O,E(i)
η )}i ∪ {(O,E(i)

γ )}i 6=1)

range(Γ) = span({(E(ij)
κ , O)}i≥2,j≥2 ∪ {O,E(ij)

κ }i≥2,j≥2)

Clearly results similar to Proposition 3.1.6, and Theorem 3.1.7 hold for L2

and the subspaces M̄, M̄⊥, N̄ , N̄⊥, ker(Γ), and range(Γ). To understand the

relationship between the decompositions of the symmetric games and the bimatrix
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games, note that the set of two player symmetric games is a special class of bimatrix

games when l = lr = lc namely,

(A,B) is a symmetric game if A = BT .

To avoid confusion, we denote by Lsym the set of all symmetric games which is

the subspace of L2 and write [A] = (A,AT ) for a symmetric game A. Consider the

following example:

[E(12)
κ − E(21)

κ ] = (E(12)
κ ,−E(12)

κ )− (E(21)
κ ,−E(21)

κ )

=

0,0 -1,1 1,-1

0,0 1,-1 -1,1

0,0 0,0 0,0

−

0,0 0,0 0,0

-1,1 1,-1 0,0

1,-1 -1,1 0,0

=

0,0 -1,1 1,-1

1,-1 0,0 -1,1

-1,1 1,-1 0,0

.

Thus [E
(12)
κ −E(21)

κ ] is the Rock-paper-scissors game; these examples show how one

can “symmetrize” the bimatrix games to obtain the symmetric version of them.

More generally, we obtain the orthonormal bases of anti-potential games and anti-

zero-sum symmetric games in symmetric games by restricting the bases of subspaces

of bimatrix games using the following lemma.

Lemma 3.1.14 Suppose that {(A(ij), A(ij))}i,j∈I1∪{(B(ij),−B(ij))}i,j∈I2∪{(C(i), O)}i∈I3∪

{(O, (C(i))T )}i∈I3 form a basis for K, a subspace of L2 and {A(ij)}i,j ∪ {B(ij)}i,j ∪

{C(i)}i are linearly independent. Then {[A(ij)+A(ji)]}i,j∈I1∩{j≥i}∪{[B(ij)−B(ji)]}i,j∈I2∩{j>i}∪

{[C(i)]}i∈I3 form a basis for K ∩ Lsym.

Proof. First we show that span({[A(ij)+A(ji)]}i,j∈I1∩{j≥i}∪{[B(ij)−B(ji)]}i,j∈I2∩{j>i}∪

{[C(i)]}i∈I3) = K ∩ Lsym. Obviously,

[A(ij) + A(ji)] = (A(ij) + A(ji), (A(ij))T + (A(ji))T ) = (A(ij), A(ji)) + (A(ji), A(ij))

= (A(ij), A(ij)) + (A(ji), A(ji)) ∈ K ∩ Lsym

87



Similarly we have {(B(ij),−B(ij))}i,j ∈ K ∩ Lsym. Also [C(i)] = (C(i), (C(i))T ) =

(C(i), O) + (O, (C(i))T ) ∈ K ∩ Lsym. Conversely, let (E,F ) ∈ K ∩ Lsym. Then

(E,F )

=
∑
i,j∈I1

κ
(ij)
(1) (A(ij), A(ij)) +

∑
i,j∈I2

κ
(ij)
(2) (B(ij),−B(ij)) +

∑
i∈I3

κ
(i)
(3)(C

(i), O) +
∑
i∈I3

κ
(i)
(4)(O, (C

(i))T )

= (
∑
i,j∈I1

κ
(ij)
(1) A

(ij) +
∑
i,j∈I2

κ
(ij)
(2) B

(ij) +
∑
i∈I3

κ
(i)
(3)C

(i),∑
i,j∈I1

κ
(ij)
(1) A

(ij) −
∑
i,j∈I2

κ
(ij)
(2) B

(ij) +
∑
i∈I3

κ
(i)
(4)(C

(i))T )

Since E = F T , we have∑
i,j∈I1

κ
(ij)
(1) A

(ij)+
∑
i,j∈I2

κ
(ij)
(2) B

(ij)+
∑
i∈I3

κ
(i)
(3)C

(i) =
∑
i,j∈I1

κ
(ij)
(1) A

(ji)−
∑
i,j∈I2

κ
(ij)
(2) B

(ji)+
∑
i∈I3

κ
(i)
(4)C

(i)

Thus we obtain∑
i,j∈I1

(κ
(ij)
(1) − κ

(ji)
(1) )A(ij) +

∑
i,j∈I2

(κ
(ij)
(2) + κ

(ji)
(2) )B(ij) +

∑
i∈I3

(κ
(i)
(3) − κ

(i)
(4))C

(i) = O (3.11)

Then from the linear independency of {A(ij)}ij∪{B(ij)}ij∪{C(i)}i in L, we conclude

that

κ
(ij)
(1) = κ

(ji)
(1) , κ

(ij)
(2) = −κ(ji)

(2) , and κ
(i)
(3) = κ

(i)
(4) for all i, j

Note that κ
(ii)
(2) = 0 for all i. Thus we have∑

i,j∈I1

κ
(ij)
(1) (A(ij), A(ij))

=
∑

{j>i}∩I1

κ
(ij)
(1) (A(ij), A(ij)) +

∑
{j<i}∩I1

κ
(ij)
(1) (A(ij), A(ij)) +

∑
{i=j}∩I1

κ
(ij)
(1) (A(ij), A(ij))

=
∑

{j>i}∩I1

κ
(ij)
(1) (A(ij), A(ij)) +

∑
{j>i}∩I1

κ
(ji)
(1) (A(ji), A(ji)) +

∑
{(i,i)}∩I1

κ
(ii)
(1) (A(ii), A(ii))

=
∑

{j>i}∩I1

κ
(ij)
(1) ((A(ij) + A(ji), A(ij) + A(ji)) +

∑
{(i,i)}∩I1

1

2
κ

(ii)
(1) (A(ii) + A(ii), A(ii) + A(ii))

=
∑

{j>i}∩I1

κ
(ij)
(1) ((A(ij) + A(ji), A(ji) + A(ij)) +

∑
{(i,i)}∩I1

1

2
κ

(ii)
(1) (A(ii) + A(ii), A(ii) + A(ii))

=
∑

{j>i}∩I1

κ
(ij)
(1)

[
A(ij) + A(ji)

]
+

∑
{(i,i)}∩I1

1

2
κ

(ii)
(1) [A(ii) + A(ii)]
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Similar manipulation yields

∑
i,j∈I2

κ
(ij)
(2) (B(ij),−B(ij))

=
∑

{j>i}∩I2

κ
(ij)
(2) (B(ij),−B(ij)) +

∑
{j<i}∩I2

κ
(ij)
(2) (B(ij),−B(ij))

=
∑

{j>i}∩I2

κ
(ij)
(2) (B(ij),−B(ij)) +

∑
{j>i}∩I2

κ
(ji)
(2) (B(ji),−B(ji))

=
∑

{j>i}∩I2

κ
(ij)
(2) ((B(ij) −B(ji),−B(ij) +B(ji)) =

∑
{j>i}∩I2

κ
(ij)
(2) ((B(ij) −B(ji), B(ji) −B(ij))

=
∑

{j>i}∩I2

κ
(ij)
(2)

[
B(ij) −B(ji)

]
and finally

∑
i

κ
(i)
(3)(C

(i), O) +
∑
i

κ
(i)
(4)(O, (C

(i))T ) =
∑
i

κ
(i)
(3)(C

(i), (C(i))T ) =
∑
i

κ
(i)
(3)[C

(i)].

Therefore, we have span({[A(ij)+A(ji)]}i,j∪{[B(ij)−B(ji)]}i,j∪{[C(i)]}i) = K ∩ Lsym.

Next we show that {[A(ij) + A(ji)]}i,j ∪ {[B(ij) − B(ji)]}i,j ∪ {[C(i)]}i are linearly

independent in L2. Suppose that

∑
{j≥i}∩I1

αij[A
(ij) + A(ji)] +

∑
{j>i}∩I2

βij[B
(ij) −B(ji)] +

∑
I3

γi[C
(i)] = O in L2

Then we have

∑
{j≥i}∩I1

αij(A
(ij) + A(ji)) +

∑
{j>i}∩I2

βij(B
(ij) −B(ji)) +

∑
I3

γi(C
(i)) = O in L

and note that we have

∑
{j≥i}∩I1

αij(A
(ij) + A(ji)) =

∑
{j>i}∩I1

αijA
(ij) +

∑
{i>j}∩I1

αjiA
(ij) +

∑
{i=j}∩I3

αiiA
(ii)

∑
{j>i}∩I2

βij(B
(ij) −B(ji)) =

∑
{j>i}∩I2

βijB
(ij) −

∑
{i>j}∩I2

βjiB
(ij)

and since
{
A(ij)

}
i,j
∪
{
B(ij)

}
i,j
∪
{
C(i)

}
i

are linearly independent in L, we conclude

that αij = 0, βij = 0, and γi = 0 for all i, j.
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As an immediate consequence of the decomposition we obtain the alternative

proof for the following well-known characterization for potential games (Hofbauer

and Sigmund, 1998; Sandholm, 2010b). Notice that similar characterization for the

symmetric potential and zero-sum games are also readily available.

Proposition 3.1.15 The following conditions are equivalent:

(1) (A,B) is a potential game (a zero-sum game, respectively)

(2) P(A,B)P is a symmetric (lr + lc) × (lr + lc) matrix (an antisymmetric (lr +

lc)× (lr + lc) matrix, respectively)

(3) (A,B)− (A,B)T ∈ ker(Γ) ((A,B) + (A,B)T ∈ ker(Γ), respectively.)

Proof. For a given (A,B), using range(Γ) =M⊥⊕N⊥ (Proposition 3.1.6) we

have

P(A,B)P = (V, V ) + (N,−N) for some V and N ∈ L.

Since (V, V ) is a (lr+lc)×(lr+lc) symmetric matrix and (N,−N) is a (lr+lc)×(lr+lc)

anti-symmetric, so (1) ⇔ (2). For (2) ⇔ (3), we first note that (A,B)T = (B,A).

Thus (A±B,B ±A) ∈ ker(Γ), if and only if P(A±B,B ±A)P = O, if and only

if P(A,B)P = ±P(B,A)P, if and only if P(A,B)P = ±(P(A,B)P)T .

3.1.5 Decompositions of n-player normal form games.

In this section we will briefly discuss how one can generalize the decompositions

of previous sections into the case of n−player normal form games. For the simplicity

of exposition, we suppose that all n−players have the same strategy set S. We

denote by Ln the set of all n player games, by S the set of all strategy profiles and

by P the set of all players. First note that we have dim(Ln) = nln. We use a ln

dimensional tensor A to denote a player’s payoffs and thus a normal form game is
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given by (Ap1 , Ap2 , · · · , Apn) for pl ∈ P . We introduce a similar inner product 〈〉Ln
in Ln :

〈(Ap1 , · · · , Apn), (Bp1 , · · · , Bpn)〉Ln =
∑
i=1,···n

〈Api , Bpi〉L ,

where

〈A,B〉L =
∑

(ip1 ,··· ,ipn )∈S

aip1 ,··· ,ipn bip1 ,··· ,ipn .

Similarly we let Mn be the subspace of all potential games. Then we have the

following recursive formula for the dimension of Mn.

Proposition 3.1.16 We have dim(Mn+1)⊥ = (l − 1)2nln−1 + dim(Mn)⊥.

Proof. First note that dim(Mn) = ln − 1 + nln−1.Using this, we factorize as

follows:

dim(Mn+1)⊥ = (n+ 1)ln+1 − ln+1 − (n+ 1)ln + 1

= (l − 1)2(nln−1 + (n− 1)ln−2 + · · ·+ 2l + 1)

= (l − 1)2nln−1 + dim(Mn)⊥.

In particular this recursive relation in Proposition 3.1.16 shows that a basis for

(Mn+1)⊥ can be obtained from the existing basis of (Mn)⊥ by adding (l−1)2nln−1

additional elements. To illustrate this, we consider two strategy three player games.

From

M2 = span(
-1,1 1,-1

1,-1 -1,1
),

we expand this basis to obtain an element of the basis set forM3 by making player

3 as a null player (See the first cubic in Figure 7) . That is,

M1 =
-1,1,0 1,-1,0 0,0,0 0,0,0

1,-1,0 -1,1,0 0,0,0 0,0,0
.
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Figure 7. A basis set for three-player anti-potential games. Each
vertex in each cube represents the strategy profile and the
arrows show the deviation motivations based on the payoffs
from the game.

Now we imagine that one of existing players, player 1 and player 2, is matched

with player 3 to play the Matching Pennies game. Then since the null player,

either player 1or player 2, can choose one strategy from the two strategies, there

are four possible situation in which two players play the Matching Pennies game

and one player plays the null player (See Figure 7). Thus we obtain the following

basis games.

M2 =
-1,0,1 0,0,0 1,0,-1 0,0,0

1,0,-1 0,0,0 -1,0,1 0,0,0
, M3 =

0,0,0 -1,0,1 0,0,0 1,0,-1

0,0,0 1,0,-1 0,0,0 -1,0,1

M4 =
0,-1,1 0,1,-1 0,1,-1 0,-1,1

0,0,0 0,0,0 0,0,0 0,0,0
, M5 =

0,0,0 0,0,0 0,0,0 0,0,0

0,-1,1 0,1,-1 0,1,-1 0,-1,1

It is easy to see that M1, · · · ,M5 are independent and belong to M3. Thus

{M1, · · · ,M5} form a basis for M3. Here we verify Proposition 3.1.16 as follows:

dim(M3)⊥ = (2− 1)22× 22−1 + dim(M2)⊥.
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Note that

M6 =
0,0,0 0,0,0 -1,1,0 1,-1,0

0,0,0 0,0,0 1,-1,0 -1,1,0

can be obtained by taking M1 − (M2 −M3 −M4 +M5). Next we characterize the

subspace of all zero-sum games. We call a game (Ap1 , Ap2 , · · · , Apn) is an exact

zero-sum game if

(Ap1)(ip1 ,··· ,ipn ) + · · ·+ (Apn)(ip1 ,··· ,ipn ) = 0 for all (ip1 , · · · , ipn) ∈ S.

The following lemma reveals the structure of the subspace of all zero-sum games.

Lemma 3.1.17 A = (Ap1 , Ap2 , · · · , Apn) is an exact zero-sum game if and only if

A can be written as a finite sum of tensors Z’s of the form:

Z = (O, · · · , O, Zpi , O, · · · , O,−Zpi , O, · · · ).

Proof. “If part” is trivial. For “only if part”, we decompose A first into ln ten-

sors whose (ip1 , · · · , ipn)th element is the same as ((Ap1)(ip1 ,··· ,ipn ), · · · , (Apn)(ip1 ,··· ,ipn ))

and other elements are all 0’s. Then since ((Ap1)(ip1 ,··· ,ipn ), · · · , (Apn)(ip1 ,··· ,ipn )) ∈

T∆n and {(1,−1, 0, · · · , 0), (1, 0,−1, · · · , 0), · · · , (1, 0, 0, · · · ,−1)} form a basis

for T∆n, we have the desired representation.

Now we extend our treatment a bit further. We will denote by S, S−p , and

S−p∪q the set of all strategy profiles, the set of all strategy profiles except player

p,and the set of all strategy profiles except player p and q ; i.e.,

S : = {(ip1 , · · · , ipn) : ip1 , · · · , ipn ∈ S}

S−q : = {(ip1 , · · · , ı̂q, · · · , ipn) : ip1 , · · · , ipn ∈ S}

S−q∪r : = {(ip1 , · · · , ı̂q, · · · , ı̂r · · · , ipn) : ip1 , · · · , ipn ∈ S},
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where ı̂q means that we omit the qth element. Then it is easy to see that |S−p| =

ln−1. Also for ~i−q∪r ∈ S−q∪γ,

(Ap1)~i−q∪r := (Ap1)(ip1 ,··· ,̂ıq ,··· ,̂ır,··· ,ipn)

can be written as an l × l matrix and for ~i−q ∈ S−q, (Ap1)~i−q can be written as a

l × 1 vector. We also write

~i−q ⊂ ~j if (ip1 , · · · , k, · · · , ipn) = (jp1 , · · · , jq, · · · , jpn) for some k ∈ S

for ~i−q ∈ S−q and ~j ∈ S. To define passive games, we define a tensor E
~i−q
γ for

~i−q ∈ S−q as follows:

(E
~i−q
γ )~i−q = 1 and 0’s in other positions (3.12)

where 1 denotes a l × 1 vector consisting of 1’s. Then E
~i−q
γ in (3.12) is an tensor

that describes the payoffs of player q and under this payoffs, given other players’

strategy profile (i1, · · · , ı̂q, · · · , in) for any choice of q player’s strategy, q obtains

payoff 1. Then similarly we set

I = span({(E
~i−p1
γ , O, · · · , O)}~i−p1∈S−p1 , · · · , {(O, · · · , E

~i−pn
γ )}~i−pn∈S−pn )

where O denotes a ln− dimensional zero tensor. Then I is the set of all passive

games. We also define the following tensors: for ~i ∈ S,

(E
~i
β)~j = 1 if ~i = ~j .

Then E
~i
β is a tensor which has 1 at the position~i and 0’s at others. Then similarly

we setM := span({(E~iβ, · · · , E
~i
β)}~i∈S , I}. Then we obtain Proposition 3.1.16. Next,

using Lemma 3.1.17, we define the subspace of all zero-sum games:

N := span({(O, · · · , E~iβ︸︷︷︸
ith

, · · · ,−E~iβ︸︷︷︸
jth

, · · · , O)}(ip1 ,··· ,ipn )∈S,pi,pj∈P ∪ I).
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Then we have the following characterization for anti-zero-sum games. For the

strategy profile ~i = (ip1 , ip2 , · · · , ipn) such that ip ≥ 2 for all p,we define

(E
~i
κ)(ı̂p1 ,̂ıp2 ,1,···1) = E(i1,i2)

κ , (E
~i
κ)(ı̂p1 ,̂ıp2 ,ip3 ,···1) = −E(i1,i2)

κ , · · · ,

(E
~i
κ)(ı̂p1 ,̂ıp2 ,ip3 ,··· ,ipn ) = (−1)2n−1E(i1,i2)

κ

and all other entries are zeros. An example of such tensors for 4 player 2 strategy

is given by

E(2,2,2,2)
κ =

−1 1

1 −1


 1 −1

−1 1


 1 −1

−1 1


−1 1

1 −1


.

Then we have the following proposition.

Proposition 3.1.18 {(E~iκ, · · ·E
~i
κ)}~i∈S, ip≥2 for all p form a basis for N⊥. Thus dim(N⊥) =

(l − 1)p

Proof. First since (E
~i
κ, · · ·E

~i
κ) is a symmetric tensor,

〈
(E

~i
κ, · · ·E

~i
κ), N

〉
Ln

= 0

for every exact zero-sum game N. Also

〈
(E

~i
κ, · · ·E

~i
κ), (O, · · · , E

~i−q
γ , · · ·O)

〉
Ln

=
〈
E
~i
κ, E

~i−q
γ

〉
L

= 0.

Thus span({(E~iκ, · · ·E
~i
κ)}~i∈S, ip≥2 for all p) ⊂ N⊥. Now we show N⊥ ⊂

span ({(E~iκ, · · ·E
~i
κ)}~i∈S, ip≥2 for all p). If (Ap1 , · · · , Apn) ∈ N⊥, then since all (O, · · · , Z,

· · · ,−Z, · · · , O) ∈ N, (Ap1 , · · · , Apn) = (V, · · · , V ). We now show how to express

(V, · · · , V ) in terms of {(E~iκ, · · · , E
~i
κ)}~i∈S, ip≥2 for all p. To do this we use an induc-

tion. We suppose that {(E~iκ, · · ·E
~i
κ)}~i∈S, ip≥2 for all p form a basis for the subspace

of anti-zero-sum games for n − 1 player games. Then for each ipn ∈ S such that

ipn ≥ 2 (the strategy of n th player), {(V )(ip1 ,ip2 ,··· ,ipn )}ip1 ,··· ,ipn−1∈S can be viewed
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as ln−1 dimensional tensor and hence can be decomposed in terms of a basis of

{(E~iκ, · · ·E
~i
κ)}~i∈S, ip≥2 for all p of n− 1 player games by the induction hypothesis. In

this way we obtain (l−1)n−1 coefficients of the basis elements for each ipn ≥ 2 and,

thus, in total ( /l − 1)n coefficients. We write this linear combination as follows:

B =
∑
~i

κ
~iE

~i
κ

Then we have

(V )(ip1 ,ip2 ,··· ,ipn ) = (B)(ip1 ,ip2 ,··· ,ipn ) for ipn ≥ 2

by construction. Then it follows that (V )(ip1 ,ip2 ,··· ,1) = (B)(ip1 ,ip2 ,··· ,1) since

(V )(ip1,ip2,··· ,1) = −
∑
j≥2

(V )(ip1,ip2,··· ,j)
= −

∑
j≥2

(B)(ip1,ip2,··· ,j)
= (B)(ip1,ip2,··· ,1).

We illustrate the above proof by the following example. Suppose that p = 2 and

l = 3. Suppose that a symmetric bimatrix game (A,A) is given; A = [a1 : a2 : a3].

Then we know that the basis for N⊥ is given by
−1 1 0

1 −1 0

0 0 0

 ,


−1 1 0

0 0 0

1 −1 0

 ,


−1 0 1

1 0 −1

0 0 0

 ,


−1 0 1

0 0 0

1 0 −1

 .

If A ∈ N⊥ , A can be uniquely written as a linear combination of the above basis.

On the other hand, if A ∈ N⊥, then a2, a3 ∈ T∆, so a2, a3 can be uniquely written

as a linear combination of (1,−1, 0)T , (1, 0,−1)T . Clearly, the four coefficients that

we obtain in the second way also are the same as the coefficients of the basis

elements of N⊥.

3.1.6 Examples of Decompositions

From the previous Sections, we see that a game (A,B) ∈ L2 can be uniquely

decomposed into (i) a representative of equivalent classes of a potential game and
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Figure 8. Representation of the Rock-paper-scissors games

an anti-potential game, (ii) a representative of equivalent classes of a zero-sum game

and an anti-zero-sum game, or (iii) an anti-potential part, an anti-zero-sum part,

and an part belonging to ker(Γ). Because of the simple structure of basis games in

the anti-potential subspace, we can associate a class of anti-potential games with

a set of graphs. To explain this we focus on the set of the symmetric games. First

observe that all basis elements in M⊥, N (ij) have payoffs consisting 0, 1, and −1.

Thus we can assign a binary relation to (i, j): for given A, i � j if a(i, j) = 1 (i is

better than j), i ≺ j if a(i, j) = −1 (i is worse than j), and i ∼ j if a(i, j) = 0

(i is as good as j). Since every anti-potential game is anti-symmetric, the relation

is symmetric; i.e., i � j if and only if j ≺ i . Therefore we can represent a given

basis element of anti-potential games in a diagram as in Figure 8.

For games with cyclic symmetry (Hofbauer and Sigmund, 1998, p.173) we have

the following decomposition.
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Figure 9. Games with cyclic symmetry.



0 a1 a2 a3 a4

a4 0 a1 a2 a3

a3 a4 0 a1 a2

a2 a3 a4 0 a1

a1 a2 a3 a4 0



∼ 1

2



0 a1 + a4 a2 + a3 a2 + a3 a1 + a4

a1 + a4 0 a1 + a4 a2 + a3 a2 + a3

a2 + a3 a1 + a4 0 a1 + a4 a2 + a3

a2 + a3 a2 + a3 a1 + a4 0 a1 + a4

a1 + a4 a2 + a3 a2 + a3 a1 + a4 0


︸ ︷︷ ︸

M

+
1

2



0 a1 − a4 a2 − a3 −a2 + a3 −a1 + a4

−a1 + a4 0 a1 − a4 a2 − a3 −a2 + a3

−a2 + a3 −a1 + a4 0 a1 − a4 a2 − a3

a2 − a3 −a2 + a3 −a1 + a4 0 a1 − a4

a1 − a4 a2 − a3 −a2 + a3 −a1 + a4 0


︸ ︷︷ ︸

M⊥

If a1− a4 = a2− a3− 1, then the anti-potential part of game can be represented in

Figure 9.

In case of 2-strategy bimatrix coordination games, we have the following de-

98



composition of a 2-strategy.

a, b 0, 0

0, 0 c, d
∼ 1

2

0, 0 0,−b+ d

−a+ c, 0 −a+ c,−b+ d︸ ︷︷ ︸
ker(Γ)

+
1

8
(a+ b+ c+ d)

1, 1 −1,−1

−1,−1 1, 1︸ ︷︷ ︸
N̄⊥

+
1

8
(−a+ b− c+ d)

−1, 1 1,−1

1,−1 −1, 1︸ ︷︷ ︸
M̄⊥

Therefore, a 2 strategy coordination game is a potential game if and only if −a +

b− c+ d = 0 and a zero-sum game if and only if a+ b+ c+ d = 0. In other words,

the coefficients of the anti-potential game and the anti-zero-sum game corresponds

to the condition for payoffs in four-cycle criteria as in Corollary 3.1.10 and 3.1.12.

3.2 Applications of Decompositions

3.2.1 Decompositions and Stable Games

In this section, we provide a characterization of stable games using decomposi-

tions (For properties of stable games see Hofbauer and Sandholm, 2009). We recall

the definition of stable games in terms of matrix notations in order to facilitate

the applications of our decompositions. A symmetric game [A] is a stable game if

〈y − x,A(y − x)〉Rl ≤ 0 for all x, y ∈ ∆l. A bimatrix game (A,B) is a stable game

if 〈y − x, (A,B)(y − x)〉Rlr+lc
≤ 0 for all x, y ∈ ∆lr × ∆lc . A stable game which

satisfies the inequality by the equality is called a null-stable game.

Note that since [A] = (A,AT ), the condition for stable games can be written as

〈
y − x, (A,AT )(y − x)

〉
Rl+l
≤ 0 for all x, y ∈ {(p, q) ∈ ∆l ×∆l : p = q} (3.13)
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So by comparing this to the condition for stable bimatrix games in the case of

lr = lc, we see that the definition for a symmetric stable game requires that the

condition (3.13) holds for a smaller subset of R2l. This opens the possibility that

more stable games arise in symmetric games, even though symmetric games belong

to the special class of bimatrix games. Note that using the projection operator in

Section 2 a symmetric game A is a stable game if and only if 〈x, PAPx〉 ≤ 0 for all

x ∈ Rl and a bimatrix game (A,B) is a stable game if and only if 〈x,P(A,B)Px〉 ≤ 0

for all x ∈ Rlr+lc (Hofbauer and Sandholm, 2009, Theorem 2.1).

We first characterize stable symmetric matrix games. To do this we define a

function VA for a given symmetric game A, which will play an important role in

characterizing stable games: VA(x) := 1
2
〈x,Ax〉 . Then using the decomposition,

we obtain the following representation of VA.

Proposition 3.2.1 Suppose that A ∈ L. Then for x ∈ ∆ and z ∈ T∆, there exists

a symmetric matrix S and a column vector c such that S1 = 0 and

VA(x) =
1

2
〈x, Sx〉+ 〈x, c〉 , VA(z) =

1

2
〈z, Sz〉 .

Moreover all eigenvectors vi for S such that vi 6= 1 belongs to T∆ and S =∑n−1
i=1 λiSi where Si is an orthogonal projection of Rn onto eigenspace of vi such

that vi 6= 1.

Proof. Let A ∈ L. Then since A ∈ N⊥ ⊕ ker(Γ)⊕M⊥, we can write

A = S + c11
T + 1cT2 +N

where S is symmetric, S1 = 0, N is anti-symmetric and N1 = 0.Thus

VA =
1

2
〈x, Sx〉+

1

2

〈
x, (c11

T + 1cT2 )x
〉
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Then since
〈
x, c11

Tx
〉

=
∑

i xi 〈x, c1〉 = 〈x, c1〉 and
〈
x,1cT2 x

〉
=
∑

i xi 〈x, c2〉 =

〈x, c2〉 , we have

1

2

〈
x, (c11

T + 1cT2 )x
〉

= 〈x, c〉 where c = c1 + c2.

The second representation, we note that S = PSP and
〈
z, c11

T z
〉

=
〈
z,1cT2 z

〉
= 0.

Since S is symmetric, all eigenvectors are orthogonal and since 1 is an eigenvector

with corresponding eigenvalue λ = 0, all other eigenvectors belongs to T∆ and the

representation of S follows from the spectral theorem.

To characterize the stable games using Proposition 3.2.1, we let A ∈ L and

z ∈ T∆. Then

VA(z) =
1

2
〈z, Sz〉 =

1

2

〈∑
i

ξivi, S
∑
i

ξivi

〉
=

1

2

∑
i

ξ2
iλi

where vi is orthonormal basis for T∆ consisting of eigenvectors of S. Thus A is null-

stable if λi = 0 for all i. Then since S is a symmetric matrix, S = O if and only if

all its eigenvalues are 0. Therefore A is null-stable game if and only if A ∈ N . We

put this fact as Proposition 3.2.2 of which another direct proof is presented in the

Appendix. Similarly note that VA(z) < 0 for all z 6= 0 if and only if λi < 0 for all

i. Thus a game is a strict stable game if and only if the eigenvalues for S, except

the one corresponding to 1, are all negative.

Proposition 3.2.2 〈x, PAPx〉 = 0 for all x ∈ Rl if and only if A ∈ N .

Proof. ”If part” is obvious, so we let A ∈ L such that 〈x, PAPx〉 = 0 for all

x ∈ Rl. From the decomposition we can write A as the following:

A =
∑
j≥i≥2

κ(ij)(E(ij)
κ + E(ji)

κ ) +N + C, N ∈ (ML)⊥, C ∈ ker(Γ)

Since 〈x, PAPx〉 = 0 for all x ∈ Rl, we have∑
j≥i

κ(ij)
〈
x, (E(ij)

κ + E(ji)
κ )x

〉
= 0 for all x ∈ Rl.
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Let K(ij) := 1
2
(E

(ij)
κ +E

(ji)
κ ). Next by choosing appropriate x, we show that κ(ij) = 0

for all j ≥ i. Then it follows that A ∈ NL. To do this, observe that

〈
x,K(ij)x

〉
= −x2

1 + x1xi + x1xj − xixj,

so whenever x1 = xi or x1 = xj,
〈
x,K(ij)x

〉
= 0.We first show that κ(ii) = 0 for all

i. For a given κ(mm), we choose

x = (1, 1, · · · , 1,
mth

0 , 1, · · · , 1)T

i.e., x is a vector that has 0 in nth element and 1 otherwise. Then all i < m,

x1 = xi = 1, so
〈
x,K(ij)x

〉
= 0. Similarly for all i > m, x1 = xi = 1, so〈

x,K(ij)x
〉

= 0. When i = m, since j > i, xj = x1 = 1, thus
〈
x,K(ij)x

〉
= 0. For

i = j = m, xi = xj = 0 so
〈
x,K(mm)x

〉
= −1. Therefore we have −κ(mm) = 0,which

implies κ(mm) = 0. Next we show that κ(ij) = 0 for all i < j ≤ l using induction.

We start from the highest index, i.e., κ(l−1,l). For this case we set

x = (1, · · · , 1,
l−1 th

0 , 0)T .

where we assign an arbitrary value to xn. For all i < l−1, x1 = xi = 1,
〈
x,K(ij)x

〉
=

0 and
〈
x,K(l−1,l)x

〉
= −1, so κ(l−1,l) = 0. Next, we suppose that κ(ij) = 0 for all

i > m and j > n and show that κ(mn) = 0. In this case, we set

x = (1, · · · , 1,
m th

0 , 1 · · · , 1,
n th

0 , xn+1, · · · , xl)T .

where we assign arbitrary values to elements over nth position. Since n < l, x ∈ Rl.

For all i < m, xi = x1,
〈
x,K(ij)x

〉
= 0. When i = m and j < n, xj = 1, so again〈

x,K(ij)x
〉

= 0. When i = m, j = n, xi = xj = 0. Thus
〈
x,K(ij)x

〉
= −1 and we

conclude κ(ij) = 0.
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As is well-known, the Hawk-Dove game provides the simplest possible strictly

stable game,

(z1, z2)

−1 1

1 −1


z1

z2

 = −(z1 − z2)2 < 0, for (z1, z2) 6= (0, 0).

This observation can be generalized via the basis of the subspace of anti-zero-sum

games N⊥ .

Corollary 3.2.3 (l−strategy strictly stable games) Suppose that

A ∈ {
∑
j>i

α(ij)K(ij) : α(ij) > 0}+ ker(Γ) +M⊥.

Then A is a strict stable game.

Proof. Recall that [A] is a strict stable game if 〈z, Az〉 < 0 for all z ∈ T∆

such that z 6= 0.Let A ∈ S. Then we have 〈z, Az〉 = −
∑

j>i α
(ij)(zi− zj)2 ≤ 0.Now

suppose that −
∑

j>i α
(ij)(zi − zj)

2 = 0. Then we have zi − zj = 0 for all j > i.

Since z ∈ T∆, this implies that z = 0.

In case of 3-strategy games, we can strengthen Corollary 3.2.3 so as to charac-

terize 3 strategy strict stable games completely, since the computation in 3-strategy

case is less demanding.

Corollary 3.2.4 (3-strategy strictly stable games) A 3−strategy symmetric

game A is strictly stable if and only if

A ∈




−a− b a b

a −a− c c

b c −b− c

 : 4a+ b+ c > 0, ab+ bc+ ca > 0

+ker(Γ)+M⊥.
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Proof. From proposition 3.2.1, we see that [A] is strictly stable if and only if

S, A’s part belonging to N⊥L , is strictly stable and S has the following parameteri-

zation.

S =


−a− b a b

a −a− c c

b c −b− c


We recall that 〈x, Sx〉 satisfying

∑
i xi = 0 is negative if and only if its bordered

Hessians, given below, satisfies some sign condition as we will check below. In our

case, these conditions are

det


−a− b a 1

a −a− c 1

1 1 0

 > 0, det



−a− b a b 1

a −a− c c 1

b c −b− c 1

1 1 1 0


< 0.

Then by computing determinants we find that

4a+ b+ c > 0 and ab+ bc+ ca > 0

and obtain the desired result.

First we note that when l = 3 in Corollary 3.2.3 the condition for strictly stable

games is a special case of Corollary 3.2.4 by the choices of a, b > 0 and c = 0. As

another important special case of Corollary 3.2.4, consider game B given by

B =


0 β12 β13

β12 0 β23

β13 β23 0

 .

First note that B is a potential game, so there is no anti-potential part of B. Thus
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B can be decomposed into

B =


−a− b a b

a −a− c c

b c −b− c

+ C︸︷︷︸
∈ ker(Γ)

and

a =
1

9
(5β12 − β13 − β23), b =

1

9
(−β12 + 5β13 − 2β23), c =

1

9
(−β12 − β13 + 5β23).

Then the conditions in Corollary 3.2.4 imply

β12 > 0 and (β12 + β23 + β13)2 > 2(β2
12 + β2

23 + β2
13). (3.14)

Recall that the generalized Rock-paper-scissors game can be decomposed as follows:
0 −l w

w 0 −l

−l w 0

 ∼ 1

2
(w − l)


0 1 1

1 0 1

1 1 0

+
1

2
(w + l)


0 −1 1

1 0 −1

−1 1 0

 .

We see that the case when β12 = β23 = β13, β12 > 0 satisfies conditions in (3.14),

so using Corollary 3.2.4 we conclude that the generalized Rock-paper-scissors is

strictly stable if and only if w > l (See the discussion in (See the discussion in

Hofbauer and Sandholm, 2009)). In the next section we will provide another useful

parametrization of 3-strategy anti-zero-sum games.

Next we characterize the bimatrix stable game. First we recall that for J given

by

J :=

 O A

BT O

 ,

the characteristic polynomial p(λ) = det(J − λI) satisfies p(λ) = (−1)lr+lcp(−λ).

Hence if λ is an eigenvalue, then−λ is also an eigenvalue. For a given bimatrix game

(A,B), we can write (A,B) ∼ (V, V ) + (C,D) + (N,−N) where (C,D) ∈ ker(Γ).

Thus, P(A,B)P = P(V, V )P. So if (A,B) is a stable game, all its eigenvalues must
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have the same sign and, thus, they must be all zeros. Hence every stable bimatrix

game is always null-stable (Hofbauer and Sandholm, 2009, Theorem2.1). Then, as

the similar argument as Proposition 3.2.1 shows, every null-stable bimatrix game is

a zero-sum game. As a result, we provide the complete characterization of the set of

all stable bimatrix games; the set of all stable bimatrix games are the set of all zero-

sum games. Proposition 3.2.5 can be proved via either the straightforward extension

of Proposition 3.2.2 or the direct proof by use of the basis of decompositions. We

provide the direct proof in the Appendix.

Proposition 3.2.5 〈w,P(A,B)Pw〉 = 0 for all w ∈ Rlr+lc if and only if (A,B) ∈

N̄ .

Proof. Again ”If part” is obvious, so we let (A,B) ∈ L2 such that 〈w,P(A,B)Pw〉 =

0 for all w ∈ Rlr+lc . From corollary 3.1.7 (3), we can write (A,B) as

(A,B) =
∑

i≥2,j≥2

κ(ij)(E(ij)
κ , E(ij)

κ ) + (N,−N) + (C1, C2),

where (N,−N) ∈ M⊥, (C1, C2) ∈ ker(Γ). Since 〈w,P(A,B)Pw〉 = 0 for all w ∈

Rlr+lc , we have∑
i≥2,j≥2

κ(ij)(
〈
y, (E(ij)

κ )Tx
〉
L +

〈
x,E(ij)

κ y
〉
L) = 0 for all x ∈ Rlr , y ∈ Rlc .

Similarly to the previous section, by choosing appropriate x and y we show that

κ(ij) = 0 for all i ≥ 2, j ≥ 2. Then it follows that (A,B) ∈ N . To do this, observe

that

1

2
(
〈
y, E(ji)

κ x
〉
L +

〈
x,E(ij)

κ y
〉
L) = −x1y1 + xiy1 + x1yj − xiyj, (3.15)

so whenever x1 = xi or y1 = yj,(3.15) becomes zero. We choose the following

(x(i), y(j)):

x(i) = (1, 1, · · · , 1,
ith

0 , 1, · · · , 1)T , y(j) = (1, 1, · · · , 1,
jth

0 , 1, · · · , 1)T .
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Then for (k,m) such that k 6= i or m 6= j, we have either x
(i)
1 = x

(i)
k or y

(j)
j = y

(j)
1 .

Thus for all (k,m) such that k 6= i or m 6= j,

〈
y(j), E(mk)

κ x(i)
〉
L +

〈
x(i), E(km)

κ y(j)
〉
L = 0

and 〈
y(j), E(ji)

κ x(i)
〉
L +

〈
x(i), E(ij)

κ y(j)
〉
L = −2.

From this we conclude that κ(ij) = 0. Thus, (A,B) ∈ N .

3.2.2 Decompositions and Deterministic Dynamics

Evolutionary dynamics based on the normal form games have been extensively

examined and their important properties are closely related to the underlying

games; for example, potential games yield the gradient like replicator dynamics

(Hofbauer and Sigmund, 1998). Moreover the replicator dynamics are linear with

respect to the underlying game matrix (or matrices), so our decompositions nat-

urally induce decompositions at the level of vector fields. We will consider the

replicator dynamics given by

One population: ẋi = xi((Ax)i − xTAx) for all i (3.16)

Two population: xi = xi((Ay)i − xTAy), ẏj = yj((B
Tx)j − yTBTx)

When we have A ∼ S + G + N, where S ∈ N⊥, G ∈ ker(Γ), N ∈ M⊥, the

replicator dynamics can also be decomposed in three parts. First note that if

G =
∑

i ηiE
(i)
η , then (Gx)i = ηi and 〈x,Gx〉 =

∑
l 6=1 ηlxl, so the vector field for the

replicator dynamics induced by G is given by

xi(ηi −
∑
l 6=1

ηlxl)
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and the system monotonically moves towards the dominating strategy state. Also

when xTNx = 0 for N ∈ M⊥. Thus, the replicator ordinary differential equation

for the matrix A can be decomposed into

fi(x) ∼ xi((Sx)i − xTSx)︸ ︷︷ ︸
potential part

+ xi(ηi −
∑
l 6=1

ηlxl)︸ ︷︷ ︸
monotonic part

+ xiNx︸ ︷︷ ︸
conservative part

This decomposition of the vector field of the replicator ordinary differential equa-

tions coincides with the known Hodge decomposition which plays an important role

in understanding the underlying dynamics.

We recall that a function H: D → R is an integral of (3.16) on a region

D if H is continuous differentiable and H(x(t)) is constant along the solution of

(3.16);i.e., LH(x(t)) := 〈∇H(x(t)), f(x(t))〉 = 0 for a solution x(t). The orbits of a

conservative system must therefore lie on level curves of the integral H. A system

(3.16) is said to be conservative if it has an integral H. We again recall that a

function V : D → R is a strict Lyapunov function for C ⊂ D if V is continuous that

achieves its minimum at C, is non-increasing along the solutions and is decreasing

outside of C; i.e., LV (x) := 〈∇V (x), f(x))〉 ≤ 0 for x in D and LV (x) < 0 for

x /∈ C.

It is well-known that the replicator dynamic for the Rock-paper-scissors games is

conservative and volume-preserving, the dynamics of the Matching Pennies games

can be transformed to Hamiltonian systems by change in velocity of solutions, and

all the bimatrix games preserve volume up to change in velocity of solutions (Hof-

bauer and Sigmund, 1998). As Proposition 3.2.6 shows, the class of anti-potential

games provides the dynamics which are volume-preserving without involving the
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change of time.

Proposition 3.2.6 (1) Suppose that [A] is an anti-potential game. Then (3.16) is

conservative and volume-preserving.

(2) Suppose (A,B) ∈ range(Γ). Then (A,B) is conservative.

(3) Suppose that (A,B) is an anti-potential game and lc = lr. Then (A,B) is

volume preserving.

Proof. (1) First we note that xTAx = 0 and A1 = 0, so x0 = ( 1
n
, · · · , 1

n
) is a

rest point for (3.16). We consider H(x) :=
∑

i log(xi). Then LH =
∑

(Ax)i = 0,

thus H is an integral of (3.16). Thus (3.16) is conservative. To show the preserva-

tion of volume we first write x̂ = (1−
∑

i 6=1 xi, x2, · · · , xn) and when x ∈ ∆, Ax = Ax̂

and 〈x,Ax〉 = 〈x̂, Ax̂〉 . Also we note that for k ≥ 2,

∂

∂xk
(Ax̂)k = −ak1 + akk

∂

∂xk
〈x̂, Ax̂〉 = −(Ax)1 − (ATx)1 + (ATx)k + (Ax)k

Thus

div∆ fA =
∑
k 6=1

∂fk
∂xk

(x) =
∑
k 6=1

(Ax)k − (l − 1) 〈x,Ax〉 −
∑
k 6=1

xkak1 +
∑
k 6=1

xkakk

+(1− x1)(Ax)1 + (1− x1)(ATx)1 −
∑
k 6=1

xk(A
Tx)k −

∑
k 6=1

xk(Ax)k

=
∑
k

(Ax)k − l 〈x,Ax〉+
∑
k

xkakk −
〈
x,ATx

〉
If A is anti-potential, then

∑
k(Ax)k = 〈1, Ax〉 =

〈
AT1, x

〉
= 0 and all diagonal

elements of A are zero. Thus div∆ fA = 0

(2) Recall that (A,B) ∈ range(Γ) if and only if (1Tr A,1
T
r B) = 0 and (A1c, B1c) =

0.Thus (A,B) has an interior rest point, so from Hofbauer and Sigmund (1998)

(p.130) the result follows.
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(3) Similarly we have, for lr =: l ≥ 2

∂

∂xl
〈x̂, Ay〉 = (Ay)l − (Ay)1, and

∂

∂yl

〈
ŷ, BTx

〉
= (BTx)l − (BTx)1.

Thus

div∆ f(A,B) =
∑
i 6=1

∂fi
∂xi

(x, y) +
∑
j 6=1

∂fj
∂yj

(x, y) =
∑
i 6=1

((Ay)i − 〈x,Ay〉)−
∑
i 6=1

xi((Ay)i − (Ay)1)

+
∑
j 6=1

((BTx)i −
〈
y,BTx

〉
)−

∑
j 6=1

yj((B
Tx)j − (BTx)1)

=
∑
i

(Ay)i − lr 〈x,Ay〉+
∑
j

(BTx)j − lc
〈
y,BTx

〉
.

Then since (A,B) is anti-symmetric in L2, which implies 〈x,Ay〉+
〈
y,BTx

〉
= 0,and

(A,B) ∈ range(Γ), the result follows.

In the generalized Rock-paper-scissors game, it is easy to check that when b > a,

H(x) :=
∑

i log(xi) is a strict Lyapunov function for (1
3
, 1

3
, 1

3
). Our decompositions

show that this observation generalizes to the bigger class of games that have the

similar structure to the generalized Rock-paper scissors game.

Proposition 3.2.7 Suppose

A ∈ {
∑
j>i

α(ij)K : α(ij) > 0}+M⊥ .

Then, H(x) :=
∑

i log(xi) is a strict Lyapunov function for 1
n
1. And thus a unique

NE 1
n
1 is evolutionarily stable.

Proof. Let A = S + N, where S ∈ {
∑

j>i α
(ij)K : α(ij) > 0} and N ∈ M⊥.

Note that for x 6= 1
n
1, we have

LH =
∑
i

((Ax)i − xTAx) =
∑
i

(Sx)i − 〈x, Sx〉+
∑
i

(Nx)i

= −〈x, Sx〉 = −〈x, PSPx〉 = −〈z, Sz〉 > 0
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Next we explain how to obtain a game that has a pure strategy ESS and an

interior NE who is an attractor (called the Zeeman game) using the decomposition.

We consider a game A ∈ N⊥ ⊕ M⊥. Then since A1 = 0, 1
n
1 is NE. From the

previous discussion, the anti-zero-sum part S of A is completely determined by its

eigenvalues and (orthonormal) eigenvectors. Recall that S always has an eigenvec-

tor 1 with the corresponding eigenvalue 0 and other eigenvectors lie in the tangent

space. Thus when the number of strategies is 3, any two eigenvectors in the tangent

space can be obtain by rotating given reference orthogonal eigenvectors around the

axis (1, 1, 1). First we denote the matrix for the Rock paper scissors game by N :

N :=


0 −1 1

1 0 −1

−1 1 0


Next, to express this parameterization of S we define a rotation matrix R, which

rotates a given vector in R3 around the axis (1, 1, 1), as follows:

R = I − P + (cos θI + sin θ
1√
3
N)P. (3.17)

To explain the meaning of R, we first recall that the rotation matrix in R2 acts as

follows: cos θ − sin θ

sin θ cos θ

x = cos θIx+ sin θ

0 −1

1 0

x.

Thus the rotation matrix map x to a linear combination of x itself and a vector

orthogonal to x, and the coefficients of the combination are parameterized by an

angle. Now note that 〈Nx, x〉 = 0 for all x. Thus when z ∈ T∆,

Rz = cos θIz + sin θ
1√
3
Nz

and since Nz is orthogonal to z, R acts in the same way as the rotation in two-

dimension. Also clearly R1 = 0. When x ∈ R3, x can be uniquely written as
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x = (I − P )x + Px and R rotates the part belonging to range(P ). Thus, R have

the representation in (3.17). Using the rotation matrix R, we can write a 3-strategy

game A as follows:

A = R


α + β

3
−2β

3
−α + β

3

−2β
3

4β
3

−2β
3

−α + β
3
−2β

3
α + β

3

R−1 + η


0 1 −1

−1 0 1

1 −1 0

 ,

where


α + β

3
−2β

3
−α + β

3

−2β
3

4β
3

−2β
3

−α + β
3
−2β

3
α + β

3

 =


1 1 1

1 0 −2

1 −1 1




0 0 0

0 2α 0

0 0 2β




1 1 1

1 0 −2

1 −1 1


−1

Then the matrix A has the characteristic polynomial φ(t) = t(t2 − 2(α + β)t +

4αβ + 3η2), so it has eigenvalues 0, α + β ±
√

(α− β)2 − 3η2 and the eigenvector

corresponding to 0 is 1. Note the eigenvalues for A does not depend on the choice

of θ. We can also verify this as follows. From RN = NR, we have

A = REDE−1R−1 + ηN = REDE−1R−1 + ηRNR−1 = R(EDE−1 + ηN)R−1,

where E denotes the matrix whose columns consist of orthogonal eigenvectors and

D denotes the diagonal matrix which has 0, 2α,and 2β on the diagonal. Since

R(EDE−1 + ηN)R−1 has the same eigenvalues as EDE−1 + ηN, eigenvalues of A

do not depend on the particular choice of θ.

Since ∂
∂xi

(xTAx) = (Ax)i + (ATx)i, by differentiating (3.16), we find that

∂fi(x)

∂xj
= xi(aij−(Ax)j−(ATx)j) for j 6= i,

∂fi(x)

∂xi
= ((Ax)i−xATx)+xi(aii−(Ax)i).

(3.18)

So if we evaluate the expressions in (3.18) at x = 1
n
1, from A1 = 0, AT1 = 0,and

(Ax)i − xATx = 0, we find the following Jacobian matrix

∂fi(x)

∂xj

∣∣∣∣
x= 1

n
1

=
1

n
aij.
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Thus the eigenvalues for the linearized system around 1
n
1 are a nth of the eigenval-

ues of A with the same corresponding eigenvectors. Also we note that if (α−β)2 <

3η2, then two non-zero eigenvalues are complex and in this case real parts of eigen-

values are negative (zero, positive, resp.) if and only if α+β < 0 (α+β = 0, α+β >

0,resp.). Now we set θ = 0. Then

A =
1

3


3α + β −2β + 3η −3α + β − 3η

−2β − 3η 4β −2β + 3η

−3α + β + 3η −2β − 3η 3α + β


so it is easy to see that if −(α + β) < η < 2α, then strategy 1 is a strict Nash

equilibrium, hence an evolutionary stable strategy. Thus we obtain the following

characterization of Zeeman games.

Proposition 3.2.8 Suppose that −(α + β) < η < 2α, and (α − β)2 < 3η2. Then

strategy 1 is an ESS and the interior fixed point is a sink (center, source, resp.) if

α + β < 0 (α + β = 0, α + β > 0,resp.).

In Figure 10 we show how the vector field of the system changes when θ varies.

To find 4-strategy Zeeman game we consider the following matrix using the similar

idea:

A =



1 1 1 1

1 0 0 −3

1 0 −2 1

1 −1 1 1





0 0 0 0

0 α 0 0

0 0 β 0

0 0 0 γ





1 1 1 1

1 0 0 −3

1 0 −2 1

1 −1 1 1



−1

+η



0 1 0 −1

−1 0 1 0

0 −1 0 1

1 0 −1 0


Then, it is easy to see that if −γ < η < γ and γ > 0, strategy 2 become a strict

Nash equilibrium, so an ESS. The characteristic polynomial for A is

φ(t) = t(t3 − (α+ β + γ)t2 + (αβ + βγ + γα+ 4η2)t− αβγ − 1

3
(6α+ 2β + 4γ)η2).
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Figure 10. Rotation of eigenvectors in the Zeeman games. Figures
are drawn using Dynamo: W. H. Sandholm, E. Doku-
maci, and F. Franchetti (2010). Dynamo: Diagrams for
Evolutionary Game Dynamics, version 0.2.5.

Figure 11. Four-strategy Zeeman game. α : −2.5, β : −2.5, γ : 2, η : 1.9.

Thus from the Routh-Hurwitz criterion, we see that eigenvalues λ for A all have

negative real parts (except 0 eigenvalue) if and only if

α + β + γ < 0, αβ + βγ + γα + 4η2 > 0, 3αβγ + (6α + 2β + 4γ)η2 < 0,

αβγ +
1

3
(6α + 2β + 4γ)η2 > (α + β + γ)(αβ + βγ + γα + 4η2).

Using these conditions we exhibit a 4 strategy Zeeman game in Figure 11.
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CHAPTER 4

HIERARCHICAL MULTI-SCALE MODELS

4.1 Coarse-Grained Stochastic Processes

4.1.1 Setup

We take Λ ⊂ Zd and define a coarse cell Ck := [k1, k1 + 1)× [k2, k2 + 1)× · · · ×

[kd, kd + 1) for k ∈ (k1, k2, · · · , kd) ∈ Zd. We denote a coarse lattice by ΛC ⊂ Zd

and identify each cell Ck with a site of ΛC , so Ck ∼ k. We suppose that |Λc| = M.

There are Qk sites in each coarse cell Ck, and we set N :=
∑

k∈ΛC
Qk. We assume

that an interaction kernel in the microscopic space satisfies

W(x− y) = W̄ (k, l) for x ∈ Ck, y ∈ Cl (4.1)

We will write W̄ (0) := W̄ (k, k) for all k ∈ ΛC , and interpret W̄(k, l) for k 6= l

as a between-group interaction intensity and W̄(0) as a within-group interaction

intensity. Recall that the imitative comparing strategy revision rates: for s′ ∈ S

c(x, σ, s′) :=
∑
y∈Λ

w (x, y, σ, s′)G(u(x, σx,s
′
)− u(x, σ)).

and

w(x, y, σ, s′) =Wm(x− y)δσ(y)({s′}).
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Note that the weight which determines the probability with which agent x imitate

y is not necessarily true. Similarly, we assume that Wm(x− y) satisfies

Wm(x− y) = W̄m (k, l) for x ∈ Ck, y ∈ Cl

4.1.2 Dynamics

We recall that the state space of the microscopic stochastic process is Ξ :=

{σ : σ(x) ∈ S, x ∈ Λ} and

σx,s(y) :=

 σ(x) if y 6= x

s if y = x
.

We define the current payoff of an individual at x when the configuration is σ,

u(x, σ), and the payoff of an individual at x adopting strategy s, u(x, σx,s), as

follows:

u(x, σ) : =
∑
y∈Λ

W(x− y)a(σ(x), σ(x)). (4.2)

u(x, σx,s) : =
∑
y∈Λ

W(x− y)a(σx,s(x), σx,s(x)). (4.3)

Note that equation (4.3) can also be written as

u(x, σx,s) =
∑
y∈Λ
y 6=x

W(x− y)a(s, σ(y)) +W(0)a(s, s), for s ∈ S

and the total utility u includes the self-interaction term (the second term) that

gives a payoff a(s, s) when an individual x chooses the strategy s. Note that this

term disappears when W(0) = 0 or a(s, s) = 0 for all s ∈ S. Later, the addition of

the self-interaction term will ensure the detailed balance for the stochastic process

of the potential games.

Lg(σ) :=
∑
s′∈S

∑
x∈Λ

c(x, σ, s′)(g(σx,s
′
)− g(σ)) (4.4)
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for g ∈ L∞ (Ξ;R) . The goal of this section is to aggregate the microscopic generator

(4.4) at the coarse cell level and to obtain hierarchical stochastic processes which

can capture between group interactions and within group interactions.

4.1.3 Aggregation

First we define a new coarse variable η :

ηs (k) :=
∑
x∈Ck

δσ(x) ({s})

and write η (k) :=
(
η1 (k) , · · · , η|S| (k)

)T
and η = (η

(
k(1)
)
, · · · , η(k(M)))T. Hence

the state space is given by

Σ :=

{
η :
∑
s∈S

ηs
(
k(l)
)

= Qk, k
(l) ∈ ΛC

}

Sometimes we think elements in Σ as |S|×M matrices. Next we define a transition

coarse variable ηl,s,s
′

ηk,s,s
′

t (l) :=


ηt(l) if l 6= k or l = k, t 6= s, s′

ηt (l)− 1 if l = k, t = s

ηt (l) + 1 if l = k, t = s′

(4.5)

:i.e., ηk,s,s
′

represent a new state induced by a strategy change of an individual

belonging to the coarse cell k from s to s′. Note that we have

ηk,s,s
′

t (l) = ηt(l)− δs({t}) + δs′({t}} for l = k

ηk,s,s
′

t (l) = ηt(l) for l 6= k

Next we define a reduction mapping φ which will connect the microscopic state

space to the coarse state space:

φ : Ξ→ Σ, φ (σ) (t, l) :=
∑
x∈Cl

δσ(x) ({t}) for l ∈ Λc, t ∈ S
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Then for h ∈ L∞ (Σ : R) , if we define g := h ◦ φ, then

g ∈ L∞ (Ξ;R) and g (σ) = h (η)

In addition we have the following lemma.

Lemma 4.1.1 For η = φ (σ) , x ∈ Ck s′ ∈ S, we have

g(σx,s
′
)− g (σ) = h(ηk,σ(x),s′)− h(η)

Proof. Let x ∈ Ck, s′ ∈ S and σx,s
′
, σ ∈ Ξ. Let s ∈ S fixed. Then for l = k,

φ(σx,s
′
) (t, l) : =

∑
y∈Cl

δσx,s′ (y) ({t}) =
∑
y∈Cl
y 6=x

δσ(y) ({t}) + δs′ ({t})

=
∑
y∈Cl

δσ(y) ({t})− δσ(x) ({t}) + δs′ ({t}) = η
k,σ(x),s′

t (l)

and l 6= k, φ(σx,s
′
)(t, l) = ηt(l).

Next we proceed to find group-level average payoffs.

Lemma 4.1.2 For x ∈ Ck, we have

u(x, σx,s
′
) =

∑
l∈ΛC
l 6=k

∑
s∈S

W̄ (k, l) a (s′, s) ηk,σ(x),s′

s (l) +
∑
s∈S

W̄ (0) a (s′, s) ηk,σ(x),s′

s (k)

Proof. For x ∈ Ck, we have

u
(
x, σx,s

′
)

: =
∑
y∈Λ
y 6=x

W(x− y)a(s′, σ(y)) +W(0)a(s′, s′)

=
∑
y∈Ck
y 6=x

W (x− y) a(s′, σ(y)) +W(0)a(s′, s′) +
∑
l∈ΛC
l 6=k

∑
y∈Cl

W (x− y) a(s′, σ(y))

= : I + II.
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We compute I as follows:

I =
∑
y∈Ck

W̄(0)a(s′, σ(y))− W̄(0)a(s′, σ(x)) + W̄(0)a(s′, s′)

= W̄ (0)
∑
s∈S

a(s′, s)ηs(k)− W̄ (0)
∑
s∈S

a(s′, s)δσ(x)({s}) + W̄(0)
∑
s∈S

a(s′, s)δs′({s})

= W̄ (0)
∑
s∈S

a(s′, s)
[
ηs(k)− δσ(x)({s}) + δs′({s})

]
= W̄ (0)

∑
s∈S

a(s′, s)ηk,σ(x),s′

s (k).

Similarly for II, we find

II =
∑
l∈ΛC
l 6=k

∑
y∈Cl

W̄ (k, l) a(s′, σ(y)) =
∑
l∈ΛC
l 6=k

∑
y∈Cl

∑
s∈S

W̄ (k, l) a(s′, s)δσ(y) ({s})

=
∑
l∈ΛC
l 6=k

∑
s∈S

W̄ (k, l) a(s′, s)
∑
y∈Cl

δσ(y) ({s}) =
∑
l∈ΛC
l 6=k

∑
s∈S

W̄ (k, l) a(s′, s)ηs (l)

From lemma 4.1.2, we define aggregate utilities at the coarse-grained level, a

payoff derived from between group interactions ŪB,a payoff derived from within

group interactions ŪW , a total payoff for a representative agent in a group ŪT :

ŪB(k, η, s′) : =
∑
l∈ΛC
l 6=k

∑
s∈S

W̄ (k, l) a(s′, s)ηs (l)

ŪW (k, η, s′) : =
∑
s∈S

W̄ (0) a (s′, s) ηs (k)

ŪT (k, η, s′) : = ŪW (k, η, s′) + ŪB(k, η, s′).

Then lemma 4.1.2 shows that

u(x, σx,s
′
) = ŪT (k, ηk,σ(x),s′ , s′) and u(x, σ) = ŪT (k, η, σ(s))

Next using lemma 4.1.1 and lemma 4.1.2, we derive a coarse grained generator for

the microscopic generator.
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Proposition 4.1.3 For h ∈ L∞ (Σ;R) , g ∈ L∞ (Ξ,R) , the coarse grained gener-

ators for the innovative and imitative case are given by

LCh (η) =
∑
kεΛC

∑
s′∈S

∑
s∈S

ηs (k) cC (k, s, s′, η) (h(ηk,s,s
′
)− h (η))

LCh(η) =
∑
kεΛC

∑
s′∈S

∑
s∈S

[
W̄(0)ηs′ (k) ηs (k) cC (k, s, s′, η)

+
∑

lεΛC :l 6=k

W̄(k, l)ηs′ (l) ηs (k) cC (k, s, s′, η)

]
× (h(ηk,s,s

′
)− h (η))

where

cC (k, s, s′, η) = G(ŪT (k, ηk,s,s
′
, s′)− ŪT (k, η, s)).

Proof. By noting
∑

s∈S f(s)δσ(x)({s}) = f(σ (x)), we compute the following.

∑
x∈Λ

∑
s′∈S

u(x, σx,s
′
) =

∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

ŪT (k, ηk,σ(x),s′ , s′)

=
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

∑
s′′∈S

ŪT (k, ηk,s
′′,s′ , s′)δσ(x)({s′′})

=
∑
k∈ΛC

∑
s′∈S

∑
s′′∈S

ŪT (k, ηk,s
′′,s′ , s′)

∑
x∈Ck

δσ(x)({s′′})

=
∑
k∈ΛC

∑
s′∈S

∑
s′′∈S

ŪT (k, ηk,s
′′,s′ , s′)ηs′′(k)

=
∑
k∈ΛC

∑
s′∈S

∑
s∈S

ŪT (k, ηk,s,s
′
, s′)ηs(k)

Similarly we find

∑
x∈Λ

∑
s′∈S

u(x, σ) =
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

ŪT (k, η, σ(x)) =
∑
k∈ΛC

∑
s′∈S

∑
s∈S

ŪT (k, η, s)ηs(k).
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Then using the generator, we can treat h
(
ηk,σ(x),s′

)
similarly and we obtain the

desired result. For the imitative case, we consider the following term:

∑
x∈Λ

∑
s′∈S

w (x, y, σ, s′)H (x, σ, s′)

=
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

∑
y∈Λ

W (x− y) δσ(y)({s′})H (x, σ, s′)

=
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

∑
y∈Ck

W̄m (0) δσ(y)({s′})H (x, σ, s′)

+
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

∑
l∈ΛC
l 6=k

∑
y∈Cl

W̄m (k, l) δσ(y)({s′})H (x, σ, s′)

=
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

W̄ (0) ηk (s′)H (x, σ, s′) +
∑
k∈ΛC

∑
x∈Ck

∑
s′∈S

∑
l∈ΛC
l 6=k

W̄ (k, l) ηl (s
′)H (x, σ, s′)

Hence we see that manipulation can be separated and obtain the desired result.

Observe that when we set Qk = 1 for all k, we have ΛC = Λ and there is only

self-interaction within group interaction. In this setting

ŪB(k, η, s′) : =
∑
l∈ΛC
l 6=k

∑
s∈S

W̄ (k, l) a(s′, s)ηs (l) =
∑
y∈Λ
y 6=x

∑
s∈S

W (x− y) a(s′, s)ηs (y)

=
∑
y∈Λ
y 6=x

W (x− y) a(s′, σ (y))

ŪW (k, η, σ(x)) : =
∑
s∈S

W̄ (0) a (σ(x), s) ηs (k) =
∑
s∈S

W(0)a(σ(x), s)δσ(x)({s})

= W̄(0)a(σ(x), σ(x))

ŪW (k, ηk,σ(x),s′ , s′) : =
∑
s∈S

W̄ (0) a (s′, s) ηk,σ(x),s′

s (k)

=
∑
s∈S

W̄ (0) a (s′, s) (ηs (k)− δσ(x)({s}) + δs′({s})

= W̄(0)a(s′, s′)

and from this we have

ŪT (k, η, σ(x)) = u(x, σ), ŪT (k, ηk,σ(x),s′ , σ(x)) = u(x, σx,s
′
)
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so we recover our original microscopic payoffs for sites. In this case also the gener-

ator for the innovative case∑
kεΛC

∑
s′∈S

∑
s∈S

ηs (k)G(ŪT (k, ηk,s,s
′
, s′)− ŪT (k, η, s))

=
∑
xεΛ

∑
s′∈S

∑
s∈S

δσ(x) ({s})G(ŪT (k, ηk,s,s
′
, s′)− ŪT (k, η, s))

=
∑
xεΛ

∑
s′∈S

G(u(x, σx,s
′
)− u(x, σ))

so again reproduce the microscopic generator. On the other hand we consider the

case Qk = N for all k. In this case there is no between group effect and group level

payoff from within group interaction ŪW (k, η, s′) =
∑

s∈S W̄ (0) a (s′, s) ηs (k)

becomes the average payoff using strategy s′. In this case it is easy to see that

the coarse-grained generator become the same as the generator for the uniform

interaction case. When 1 < Qk < N, this model contains both within group effect

(uniform interaction) and between group effect (spatial interaction) and, hence

capture both locally homogenous interaction but globally heterogenous interaction.

Remark. When we take a(k, l, s, s′) for x ∈ Ck, y ∈ Cl, s ∈ SR, s′ ∈ SC as an

underlying payoff instead of a(s, s′), the same computations still hold. In this case,

u(x, σ) :=
∑
y∈Λ
y 6=x

W(x− y)a(x, y, s, σ(y)) +W(0)a(x, x, s, s).

Then group payoffs can be written:

ŪB(k, η, s′) : =
∑
l∈ΛC
l 6=k

∑
s∈S

W̄(k, l)a(k, l, s′, s)ηs(l)

ŪW (k, η, s′) : =
∑
s∈S

W̄(k, k)a(k, k, s′, s)ηs(l)

Under this setting bimatrix asymmetric game can be regarded as the case where

Λ = {1, 2} and a(1, 1, s′, s) = a(2, 2, s′, s) for all s′ and s.In addition the matrix

model of evolutionary game with two groups is a special case of the Hierarchical

coarse-grained stochastic processes (See Cressman, 1995).
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4.1.4 Invariant Measures for the coarse-grained processes

Now we will find the expressions invariant measures for the coarse-grained pro-

cess when the detailed balance condition is satisfied. First we find an invariant

measure for the microscopic level when the detailed balance condition is satisfied.

To do we introduce an energy function H at the microscopic level:

H(σ) :=
1

2

∑
z∈Λ

∑
y∈Λ

W(y − z)a(σ(y), σ(z)) +
1

2
W(0)

∑
y∈Λ

a(σ(y), σ(y)) (4.6)

Then, we have the following lemma.

Lemma 4.1.4 Suppose that a is a symmetric matrix. Then for all x, k

H(σx,k)−H(σ) = u(x, σx,k)− u(x, σ)

First note that for z 6= x and y 6= x, a(σx,k(y), σx,k(z)) = a(σ(y), σ(z)) and

a(σx,k(y), σx,k(y)) = a(σ(y), σ(y)). Thus we have

H(σx,k)−H(σ)

=
1

2

∑
z∈Λ

∑
y∈Λ

W(y − z)a(σx,k(y), σx,k(z)) +
1

2
W(0)

∑
y∈Λ

a(σx,k(y), σx,k(y))

−1

2

∑
z∈Λ

∑
y∈Λ

W(y − z)a(σ(y), σ(z))− 1

2
W(0)

∑
y∈Λ

a(σ(y), σ(y))

=
1

2

∑
z∈Λ,z 6=x

W(x− z)a(k, σx,k(z))− 1

2

∑
z∈Λ,z 6=x

W(x− z)a(σ(x), σ(z))

+
1

2

∑
y∈Λ,y 6=x

W(y − x)a(σx,k(y), k)− 1

2

∑
y∈Λ,y 6=x

W(y − x)a(σ(y), σ(x))

+
1

2
W(0)a(k, k)− 1

2
W(0)a(σ(x), σ(x)) +

1

2
W(0)a(k, k)− 1

2
W(0)a(σ(x), σ(x))

=
∑

y∈Λ,y 6=x

W(x− y)a(k, σx,k(y))−
∑

y∈Λ,y 6=x

W(x− y)a(σ(x), σ(y)) (by the symmetry of A)

= u(x, σx,k)− u(x, σ) (From the definition of u)

Next we find the expression for the equilibrium measure. Let dρ be a uniform
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measure over a strategy set: i.e.,

ρ (σ(x) = k) =
1

|S|
for all k ∈ S, for all x ∈ Λ

Then we define a prior measure over Ξ , P0(dσ) : P0(dσ) =
⊗
x∈Λn

ρ(dσ) and define a

Gibbs measure Pβ :

Pβ(dσ) :=
1

Z
exp(βH(σ))P0(dσ) (4.7)

where Z :=
∫

Λ
exp(βH(σ))P0(dσ). We recall that the innovative and comparing

rate satisfies

c(x, σx,k, σ(x))

c(x, σ, k)
=
G(u(x, (σx,k)x,σ(x))− u(x, σx,k)

G(u(x, σx,k)− u(x, σ))

and suppose that

G(t)

G(−t)
= exp(βt).

Note we have (σx,k)x,σ(x) = σ.Thus from lemma 4.1.4 we have

Pβ(
{
σx,k

}
)

Pβ({σ})
c(x, σx,k, σ(x))

c(x, σ, k)
= exp(β(H(σx,k)− βH(σ))) exp(β(u(x, σ)− u(x, σx,k)))

= 1

The the microscopic process is reversible with respect to P (dσ).

Next we will find the expressions for the invariant measures of the coarse-grained

processes; we will derive this first by the aggregation of (4.7) and then check the

obtained measures directly at the coarse level.

First by aggregating (4.6) under (4.1), we obtain

H(σ) =
1

2

∑
l∈ΛC

∑
k∈ΛC

∑
s∈S

∑
s′∈S

W̄(k, l)ηs(k)a(s, s′)ηs′(l) +
1

2
W̄(0)

∑
k∈ΛC

∑
s∈S

a(s, s)ηs(k)

= : HC(η)

Thus Lemma 4.1.2 and 4.1.4 give

HC(ηk,s,s
′
)−HC(η) = ŪT

(
k, ηk,s,s

′
, s′
)
− ŪT (k, η, s) .
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We also aggregate the prior measure P0(dσ) and obtain

PC
0 ({η}) =

∏
l∈ΛC

Ql!

(Qlη1(l))! · · · (Qlη|S|(l))!

1

|S|Ql
.

So we can define

PC
β (dη) =

1

ZC
exp(βHC(η))PC

0 (dη). (4.8)

Then (4.8) is the invariant measure for the coarse-grained process. In fact we can

verify this directly.

Proposition 4.1.5 Suppose that the innovative and comparing strategy revision

rates is given by cC(k, s, s′, η) := ηs(k)G(ŪT (k, ηk,s,s
′
, s′)− ŪT (k, η, s)) and G sat-

isfies G(t)/G(−t) = exp(βt) Then the Markov process defined by

LCg(η) =
∑
kεΛC

∑
s′∈S

∑
s∈S

cC(k, s, s′, η)(g(ηk,s,s
′
)− g (η)), for g ∈ L∞(∆N ;R)

is reversible with respect to PC
β .

Proof. First we write α(η, ηk,s,s
′
) := cC(k, s, s′, η). Then we need to show that

PC
β ({η})α(η, η′) = PC

β ({η′})α(η′, η) for all η, η′ ∈ Σ.

Let η, η′ ∈ Σ. If α(η, η′) = 0, then from the definition of α, we have α(η′, η) = 0

and so we are done. So suppose that α(η, η′) > 0. Then again from the definition

of α, there exists s, s′ ∈ S and k ∈ ΛC such that η′ = ηk,s,s
′

and ηs(k) > 0 and

ηk,s,s
′

s′ (k) > 0. So

α(η, ηk,s,s
′
)

α(ηk,s,s′ , η)
=

α(η, ηk,s,s
′
)

α(ηk,s,s′ , (ηk,s,s′)k,s′,s)
=

ηs(k)F (ŪT
(
k, ηk,s,s

′
, s′
)
− ŪT (k, η, s))

(ηk,s,s
′

s′ )(k)F (ŪT (k, (ηk,s,s′)k,s′,s, s′)− ŪT (k, ηk,s,s′ , s))

=
ηs(k)

ηs′(k) + 1
Qk

F (ŪT
(
k, ηk,s,s

′
, s′
)
− ŪT (k, η, s))

F (ŪT (k, η, s′)− ŪT (k, ηk,s,s′ , s))

=
Qkηs(k)

Qkηs′(k) + 1
exp(β(ŪT

(
k, ηk,s,s

′
, s′
)
− ŪT (k, η, s)))

=
Qkηs(k)

Qkηs′(k) + 1
exp(β(HC(ηk,s,s

′
)−HC(η)))

125



Also

PC
β ({η})

PC
β ({ηk,s,s′})

= exp(HC(η)−HC(ηk,s,s
′
))

PC
0 ({η})

PC
0 ({ηk,s,s′})

and

PC
0 ({η})

PC
0 ({ηk,s,s′})

=
(Qkη

k,s,s′
s (k))!(Qkη

k,s,s′

s′ (k))!

(Qkηs(k))!(Qkηs′(k))!
=

(Qkηs(k)− 1)!(Qkηs′(k) + 1)!

(Qkηs(k))!(Qkηs′(k))!

=
Qkηs′(k) + 1

Qkηs(k)

Therefore we have

PC
β ({η})

PC
β ({ηk,s,s′})

α(η, ηk,s,s
′
)

α(ηk,s,s′ , η)
= 1

and obtain the desired result.

4.2 Deterministic Approximations of Hierarchical Stochastic Pro-

cesses

4.2.1 Approximations of Stochastic Processes

In this section we suppose that Qk = Ql := Q for all k, l ∈ ΛC and consider

deterministic approximations of hierarchical stochastic processes when andQ→∞,

N →∞. In this section we rescale the state space

Σ :=

{
η :
∑
s∈S

ηs
(
k(l)
)

= 1, k(l) ∈ ΛC

}
and rescale the time

LCg(η) =
∑
kεΛC

∑
s′∈S

∑
s∈S

QcC(k, s, s′, η)(g(ηk,s,s
′
)− g (η)) (4.9)

The result follows from the well-known result of ODE approximations of the stochas-

tic processes. We will use the approximation theorems by Kurtz (1982). We will

provide heuristic explanations (see Kurtz (1982); Ethier and Kurtz (1986) for the
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detailed discussion and proofs; also see Gardiner (2004); Van Kampen (1981).)

We consider here the innovative and comparing case, however the similar compu-

tation holds for the imitative comparing case. First we represent the system more

succinctly by using the following notations. First we define a set I

I := {l ∈ Zd = Z|S|+|ΛC | : l(s, k) = −1, l(s′, k) = 1 for some s and s′ ∈ S and some k ∈ ΛC}.

For example, when S = {1, 2} and ΛC = {k1, k2} ,

I =



 1

−1

 ,

0

0


 ,

−1

1

 ,

0

0


 ,

0

0

 ,

 1

−1


 ,

0

0

 ,

−1

1



 .

Then |I| = |S| × (|S| − 1) × |ΛC | . Also for l ∈ I, there exists unique k, s, s′ such

that l(s, k) = −1 and l(s′, k) = 1. Thus ηk,s,s
′

can be written as ηk,s,s
′
= η + 1

Q
l for

some l. So we can define

βl(η) := ηs(k)cC(k, s, s′, η) = ηs(k)F (ŪT (k, η +
1

Q
l, s′)− ŪT (k, η, s))

and the generator for the coarse-grained process (4.9) can be written

Lf(η) =
∑
l∈I

βl(η)Q(f(η +
1

Q
l)− f(η)).

Then from Kurtz (1981), we have

N (t) = N (0) +
∑
l∈I

1

Q
lYl(Q

∫ t

0

βl(N (s))ds

where {Yl(t)}l are independent Poisson processes. We define the compensated

Poisson process Ŷl(t) := Yl(t)− t and obtain

N (t) = N (0) +
∑
l∈I

1

Q
lŶl(Q

∫ t

0

βl(N (s))ds+
∑
l∈I

l

∫ t

0

βl(N (s))ds. (4.10)

Then since limQ→∞ supt≤T
1
Q

∣∣∣Ŷl(Qt)∣∣∣ = 0 a.s. for all T > 0. We obtain the

following ODE:

dη

dt
=
∑
l∈I

lβl(η(t)) := F (η(t)). (4.11)
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Also since 1√
Q
Ŷl(Q·)⇒ Wl(·) in distribution where Wl is an independent standard

Brownian motion. This suggests approximating N by a solution of

ND(t) = N (0) +
∑
l∈I

1√
Q
lWl(

∫ t

0

βl(ND(s)))ds+

∫ t

0

F (ND(s))ds.

Note from the time change, we have Wl(
∫ t

0
βl(ND(s))) =

∫ t
0

√
βl(η(s))dBl(s). Thus

we find the following diffusion approximation:

dND = F (ND(t))dt+
1√
Q

∑
l∈I

l
√
βl(ND(t))dBl, (4.12)

and this approximation is justified by the following theorem (Theorem 8.4 in Kurtz

(1982)).

Proposition 4.2.1 (Diffusion Approximation) Suppose that ND(t) satisfies (4.12).

Then

N (t) = ND(t) +O
(

logQ

Q

)
.

Next, by subtracting ODE (4.11) from (4.12), we obtain

ND(t)− η(t) = N (0)− η(0) +
∑
l∈I

1√
Q
lWl(

∫ t

0

βl(ND(s)))ds+

∫ t

0

F (ND(s))− F (η(s))ds

≈
∑
l∈I

1√
Q
lWl(

∫ t

0

βl(η(s)))ds+

∫ t

0

∂F (η(s))(ND(s)− η(s))ds

where ∂F is the Jacobian matrix of F. Thus we have

√
Q(ND(t)− η(t)) ≈

∫ t

0

∂F (η(s))
√
Q(ND(s)− η(s))ds+

∑
l∈I

lWl(

∫ t

0

βl(η(s)))ds.

(4.13)

Since ND approximates N (t), we define

V :=
√
Q(N − η)

and expect that the limiting distribution of VQ would satisfy (4.13) (Theorem 8.2

in Kurtz (1982)).
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Proposition 4.2.2 (Centeral Limit Theorem) Suppose that V is the solution

of 
dη
dt

= F (η)

dV = ∂F (η(t))Vdt+
∑

l∈I l
√
βl(η(t))dBl

.

Then √
Q(N − η)⇒ V .

These approximation methods provide a nice and succinct representation, how-

ever it does not show the specific forms of equations. To find the more concrete

expressions for the approximation equations, we proceed as follows. First, from a

martingale representation, we can approximate the Markov process N (t),

h (η (t))− h (η (0)) ≈

+

∫ t

0

dτ
∑
kεΛC

∑
s′∈S

∑
s∈S

W̄m(0)ηs′ (k) ηs (k) cC (k, s, s′, η)Q(h(ηk,s,s
′
)− h(η))

+

∫ t

0

dτ
∑
kεΛC

∑
s′∈S

∑
s∈S

∑
lεΛC :l 6=k

W̄m(k, l)ηs′ (l) ηs (k) cC (k, s, s′, η)Q(h(ηk,s,s
′
)− h (η))

: = I + II

Note that this approximation is essentially the same as (4.10). Then we use an

evaluation map, h : Σ→ R, η 7→ ηs′′ (m) for a given s′′ ∈ S and m ∈ ΛC . Then we

find

d(II)

dt
=

∑
kεΛC

∑
s′∈S

∑
s∈S

∑
lεΛC :l 6=k

W̄m(k, l)ηs′ (l) ηs (k) cC (k, s, s′, η)Q(ηk,s,s
′

s′′ (m)− ηs′′ (m))

=
∑

lεΛC :l 6=m

∑
s′∈S

W̄m(m, l)ηs′ (l) ηs′′ (m) cC (m, s′′, s′, η) (−1)

+
∑

lεΛC :l 6=m

∑
s∈S

W̄m(m, l)ηs′′ (l) ηs (k) cC (k, s, s′′, η) (+1)

So by changing notations m→ k, s′′ → s, and s→ s′ the second part of ODE for

ηs (k) is given by∑
lεΛC :l 6=k

∑
s′∈S

W̄m(k, l)ηs (l) ηs′ (k) cC (k, s′, s, η)−
∑

lεΛC :l 6=k

∑
s′∈S

W̄m(k, l)ηs′ (l) ηs (k) cC (k, s, s′, η)
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Similarly we find

d(I)

dt
=
∑
s′∈S

W̄m(0)ηs (k) ηs′ (k) cC (k, s′, s, η)−
∑
s′∈S

W̄m(0)ηs′ (k) ηs (k) cC (k, s, s′, η) .

Thus we obtain the following ODE equations:

• Innovative and comparing case:

dηs(k)

dt
=
∑
s′∈S

cC (k, s′, s, η) ηs′ (k)−ηs (k)
∑
s′∈S

cC (k, s, s′, η) for each k ∈ ΛC , s ∈ S

(4.14)

• Imitative and comparing case:

dηs(k)

dt
(4.15)

= W̄m (0) ηs (k)
∑
s′∈S

cC(k, s′, s, η)ηs′ (k)− W̄m (0) ηs (k)
∑
s′∈S

cC(k, s, s′, η)ηs′ (k)

+
∑
l 6=k

W̄m(k, l)ηs (l)
∑
s′∈S

cC(k, s′, s, η)ηs′ (k)−
∑
l 6=k

W̄m(k, l)ηs (k)
∑
s′∈S

cC(k, s, s′, η)ηs′ (l)

where cC (k, s, s′, η) = G(ŪT (k, η, s′)− ŪT (k, η, s)).

Also it is easy to see that (4.14) and (4.15) are the same ODEs as (4.11).

Next we will consider the diffusion approximation. Recall that the innovative

coarse-grained generator is given by

LCh (η) =
∑
kεΛC

∑
s′∈S

∑
s∈S

ηs (k) cC (k, s, s′, η)Qk(h(ηk,s,s
′
)− h (η)).

We expand h around η and obtain:

h(ηk,s,s
′
)− h(η) ≈ 1

N2

(es′ − es) · 5kh+
1

2

1

N2
2

(es′ − es) · 52
kh (es′ − es)

where (5kh)i = ∂h/∂ηi(k), (52
kh)ij = ∂2h/∂ηi(k)∂ηj(k), es is a |S| −dimensional

standard basis. So we define for f ∈ L∞(Σ;R)

Lf(ρ) =
∑
kεΛC

∑
s′∈S

∑
s∈S

η(s)cC(k, s, s′, η)((es′−es)·5kf+
1

2

1

N2

(es′−es)·52
kf (es′−es))

(4.16)
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Then the generator (4.16) defines an Ito diffusion process. To find the explicit

expression for this process, we define a coordinate map φs : R|S| → R, φ(a) = a(s).

Then for given k ∈ ΛC

φs(
∑
s′∈S

∑
s′′∈S

ηs′′(k)cC(k, s′′, s′, η)(es′−es′′)) =
∑
s′′∈S

ηs′′(k)cC(k, s′′, s, η)−
∑
s′∈S

ηs(k)cC(k, s, s′, η)

which gives us a drift term in the diffusion process (ODE part, (4.14) and (4.15)).

Our next goal is to find a |S| × |S| matrix M such that

∑
s′∈S

∑
s∈S

η(s)cC(k, s, s′, η)(es′ − es) · 52
kf (es′ − es) =

∑
s′∈S

∑
s∈S

(M)s,s′
∂2f

∂ηs(k)∂ηs′(k)
.

(4.17)

First we show the following lemma.

Lemma 4.2.3 We have

(es′ − es) · 52
kf (es′ − es) =

∑
i∈S

∑
j∈S

((es′ − es)(es′ − es)
T)i,j

∂2f

∂ηi(k)∂ηj(k)
.

Proof. We denote the dot product between a and b by 〈a,b〉 more explicitly.

We first note that for x = (es′ − es)
T, (xxT)i,j = xixj.Then we have

〈
(es′ − es),52

kf (es′ − es)
〉

=
∑
i

∑
j

〈
(es′ − es), eie

T
j (es′ − es)

〉 ∂2f

∂ηi(k)∂ηj(k)

=
∑
i

∑
j

〈(es′ − es), ei 〈es′ − es, ej〉〉
∂2f

∂ηi(k)∂ηj(k)

=
∑
i

∑
j

〈(es′ − es), ei〉 〈es′ − es, ej〉
∂2f

∂ηi(k)∂ηj(k)

=
∑
i

∑
j

((es′ − es)(es′ − es)
T)i,j

∂2f

∂ηi(k)∂ηj(k)
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Thus by applying Lemma 4.2.3, for α(s, s′) := η(s)cC(k, s, s′, η), we have

∑
s′∈S

∑
s∈S

α(s, s′)(es′ − es) · 52
kf(es′ − es)

=
∑
s′∈S

∑
s∈S

α(s, s′)
∑
i∈S

∑
j∈S

((es′ − es)(es′ − es)
T)i,j

∂2f

∂ηi(k)∂ηj(k)

=
∑
i∈S

∑
j∈S

∑
s′∈S

∑
s∈S

α(s, s′)((es′ − es)(es′ − es)
T)i,j

∂2f

∂ηi(k)∂ηj(k)

=
∑
i∈S

∑
j∈S

[∑
s′∈S

∑
s∈S

α(s, s′)(es′ − es)(es′ − es)
T

]
i,j

∂2f

∂ηi(k)∂ηj(k)

Thus the matrix M in (4.17) is given by

(M)i,j =

[∑
s′∈S

∑
s∈S

α(s, s′)(es′ − es)(es′ − es)
T

]
i,j

.

To find an explicit expression for the matrix M, we define a similar coordinate

map φi,j : R|S| × R|S| → R, φi,j(M) = Mi,j. First note the diagonal elements of

(es′ − es) · (es′ − es)
T are either 0 or 1 and the off-diagonal elements are either 0

or −1. Also

φi,i((es′ − es)(es′ − es)
T) = 1 if and only if i = s′or i = s

and φi,j((es′ − es)(es′ − es)
T) = −1 if and only if (i = s′and j = s) or (i = s and

i = s′). For example,
1

0

−1


(

1 0 −1

)
=


1 0 −1

0 0 0

−1 0 1

 .

Then for k ∈ ΛC and s = s̄,

(M)s,s = φs,s(
∑
s′∈S

∑
s′′∈S

ηs′′(k)cC(k, s′′, s′, η)(es′ − es′′) · (es′ − es′′)
T)

=
∑
s′′∈S
s′′ 6=s

ηs′′(k)cC(k, s′′, s, η) +
∑
s′∈S
s′ 6=s

ηs(k)cC(k, s, s′, η)
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For k ∈ ΛC and s 6= s̄,

(M)s,s̄ = φs,s̄(
∑
s′∈S

∑
s′′∈S

ηs′′(k)cC(k, s′′, s′, η)(es′ − es′′) · (es′ − es′′)
T)

= −ηs̄(k)cC(k, s̄, s, η)− ηs(k)cC(k, s, s̄, η)

Note that the M(k) is symmetric, thus has an orthonormal basis of eigenvectors.

Also note that since Ms,s(k) ≥ 0 and |Ms,s(k)| ≥
∑

s′ 6=s |Ms,s′(k)| for all s, from the

diagonally dominant condition (see for example Horn and Johnson (1985)), M(k)

is positive semi-definite. So we can write

M = V DV −1

and define |S|×|S| matrix, M
1
2 (k) := V D

1
2V −1. Then we find the following explicit

formula for the Ito process.

• Variance Processes

dND(k) = F (ND(k))dt+
1√
N2

M(k)
1
2dB for each k ∈ ΛC (4.18)

where B is |S|−dimensional Brownian motion, and

(M)s,s =
∑
s′′∈S
s′′ 6=s

ηs′′(k)cC(k, s′′, s, η) +
∑
s′∈S
s′ 6=s

ηs(k)cC(k, s, s′, η)

(M)s,s̄ = −ηs̄(k)cC(k, s̄, s, η)− ηs(k)cC(k, s, s̄, η).

Next we need to check whether the solution to (4.18) has the same law as the

solution to (4.12). To do this, we suppose that |ΛC | = 1. For example, when

|S| = 2, we have

∑
l∈I

l
√
βl(η(t))dBl =

 −1

1

√c12dBl12 +

 1

−1

√c21dBl21

=

−√c12
√
c21

√
c12 −√c21


 dBl12

dBl21

 ,
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where we set cl := βl(η). Then note that

C :=

−√c12
√
c21

√
c12 −√c21

 =
√
c12

 −1

1

(1 0

)
+
√
c21

 1

−1

(0 1

)
,

and from this we have

CCT = c12

 −1

1

(−1 1

)
+ c21

 1

−1

(1 −1

)
= M. (4.19)

Proposition 4.2.4 The solution to (4.12) has the same law as (4.18).

Proof. We first associate an ordered index to I and denote this index i(l).

Recall that |I| = |S| (|S| − 1).Then there exists |S| × |S| (|S| − 1) matrix C such

that

∑
l∈I

l
√
βl(η)dBl = C


dBl1

...

dBl|S|(|S|−1)

 .

So we need to show that CCT = M. Note that

C =
∑
l∈I

l
√
cle

T
i(l) where cl =

√
βl(η)

Then since eT
i(l)ei(l′) = 0 if l 6= l′ and eT

i(l)ei(l′) = 1 if l = l′, we have

(
∑
l∈I

√
clle

T
i(l))(

∑
l′∈I

√
cl′ei(l′)l

T
i(l′)) =

∑
l∈I

clll
T =

∑
s′∈S

∑
s∈S

cl(es′ − es)(es′ − es)
T = Q

From this we also obtain the explicit expression for variance processes.
dη(k)
dt

= F (η(k)) for each k ∈ ΛC

dV(k) = ∂F (η(k))Vdt+ 1√
N2
M(k)

1
2dB for each k ∈ ΛC

where B is |S|−dimensional Brownian motion, and

(M)s,s =
∑
s′′∈S
s′′ 6=s

ηs′′(k)cC(k, s′′, s, η) +
∑
s′∈S
s′ 6=s

ηs(k)cC(k, s, s′, η)

(M)s,s̄ = −ηs̄(k)cC(k, s̄, s, η)− ηs(k)cC(k, s, s̄, η).

134



4.3 Hybrid Models: examples

4.3.1 Examples of Approximations

Here we will focus on two group dynamics with two strategy set where we call

two groups E and R. We suppose that the sizes of each group are N (E) and N (R)

and first suppose that N = N (E) = N (R). We use η for the population fraction

using strategy 1 in the group α and ρ for the population fraction using strategy 2

in the group β. We consider the following games for within group interactions and

between group interactions:

Group Eta Group Rho

Group Eta

β(E)
W (1− ζ(E)

W ) 0

0 β
(E)
W ζ

(E)
W


β(E)

B (1− ζ(E)
B ) 0

0 β
(E)
B ζ

(E)
B


Group Rho

β(R)
B (1− ζ(R)

B ) 0

0 β
(R)
B ζ

(R)
B


β(R)

W (1− ζ(R)
W ) 0

0 β
(R)
W ζ

(R)
W


• ODE approximations

In this setting the logit dynamics are given by

dη

dt
= lκ(W̄(0)β

(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))− η

dρ

dt
= lκ(W̄(0)β

(R)
W (ρ− ζ(R)

W ) + W̄(2,1)β
(R)
B (η − ζ(R)

B ))− ρ

And because rκ (t)−rκ (−t) = t and when no imitation between groups is considered

(i.e., W̄m(1, 2) = W̄m(2, 1) = 0), the replicator dynamics are

dη

dt
= W̄(0)β

(E)
W η (1− η) (η − ζ(E)

W ) + W̄(1,2)β
(E)
B η (1− η) (ρ− ζ(E)

B )

dρ

dt
= W̄(0)β

(R)
W ρ (1− ρ) (ρ− ζ(R)

W ) + W̄(2,1)βBρ (1− ρ) (η − ζB)

• Diffusion approximations
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Next we find the diffusion approximation; we will derive three versions of it.

First focus on the case of innovative and group E. From 4.19 (or by directly veri-

fying) we see that the matrix M is given by

M = (η1c(1, 2, η) + η2c(2, 1, η))

 1 −1

−1 1

 .

Then by noting that 1 −1

−1 1

 =
1√
2

 1 −1

−1 1


 1√

2

 1 −1

−1 1




T

,

we finddη1

dη2

 =

F1(η, ρ)

F2(η, ρ)

 dt+
1√
N

√
1

2
(η1c(1, 2, η, ρ) + η2c(2, 1, η, ρ))

 1 −1

−1 1


dB1

dB2


(4.20)

Note equation 4.20 ensures the invariance of the simplex for the solution; η1+η2 = 1.

Thus we further reduce (4.20) and obtain the following expression for the logit

dynamics:

dη = F (η, ρ)dt+
1√
N

√
1

2
G(η, ρ)(dB1 − dB2)

where F (η, ρ) = lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))− η

and G(η, ρ) = ηlκ(W̄(0)β
(E)
W (ζ

(E)
W − η) + W̄(1,2)β

(E)
B (ζ

(E)
B − ρ))

+(1− η)lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B )).

Next we find the expressions for βl :

β(1,−1)(η1, η2) = η2lκ(W̄(0)β
(E)
W (η1 − ζ

(E)
W ) + W̄(1,2)β

(E)
B (ρ1 − ζ

(E)
B ))

β(−1,1)(η1, η2) = η1lκ(W̄(0)β
(E)
W (ζ

(E)
W − η1) + W̄(1,2)β

(E)
B (ζ

(E)
B − ρ1)).
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In this case we havedη1

dη2

 =

F1(η, ρ)

F2(η, ρ)

 dt

+
1√
N

 1

−1

√β(1,−1)(η1, η2)dB1 +
1√
N

−1

1

√β(−1,1)(η1, η2)dB2.

Therefore we find the second SDE:

dη = F (η, ρ)dt+
1√
N

√
G1(η, ρ)dB1 −

1√
N

√
G2(η, ρ)dB2

where F (η, ρ) = lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))− η

G1(η, ρ) = (1− η)lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))

G2(η, ρ) = ηlκ(W̄(0)β
(E)
W (ζ

(E)
W − η) + W̄(1,2)β

(E)
B (ζ

(E)
B − ρ)).

Finally observe that  1 −1

−1 1

 =

 1

−1

(1 −1

)
.

Therefore we havedη1

dη2

 =

F1(η, ρ)

F2(η, ρ)

 dt+
1√
N

√
η1c(1, 2, η, ρ) + η2c(2, 1, η, ρ))

 1

−1

 dB

and we obtain:

dη = F (η, ρ)dt+
1√
N

√
G(η, ρ)dB

where F (η, ρ) = lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))− η

and G(η, ρ) = ηlκ(W̄(0)β
(E)
W (ζ

(E)
W − η) + W̄(1,2)β

(E)
B (ζ

(E)
B − ρ))

+(1− η)lκ(W̄(0)β
(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B )).
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We can derive the similar expression for the replicator dynamics:

dη = F (η, ρ)dt+
1√
N

√
G(η, ρ)dB

where F (η, ρ) = W̄(0)β
(E)
W η (1− η) (η − ζ(E)

W ) + W̄(1,2)β
(E)
B η (1− η) (ρ− ζ(E)

B )

and G(η, ρ) = η(1− η)
[
rκ(W̄(0)β

(E)
W (η − ζ(E)

W ) + W̄(1,2)β
(E)
B (ρ− ζ(E)

B ))

+ rκ(W̄(0)β
(E)
W (ζ

(E)
W − η) + W̄(1,2)β

(E)
B (ζ

(E)
B − ρ))

]
.

• Variance Processes

To simplify the notation, we suppose that there is no between group interac-

tion, so W̄(1,2) = 0 and W̄(0) = 1 and we will drop the index for groups. To

find variance processes, we need to find the Jacobian matrix for the vector

field of the ODE. In the case of the logit dynamic, this is given by

∂F =

 κβ(1− ζ)lκ(1− lκ)− lκ −κβζlκ(1− lκ) + lκ

−κβ(1− ζ)lκ(1− lκ) + lκ κβζlκ(1− lκ)− lκ

 .

Thus the variance process is given bydV1

dV2

 =

 κβ(1− ζ)lκ(1− lκ)− lκ −κβζlκ(1− lκ) + lκ

−κβ(1− ζ)lκ(1− lκ) + lκ κβζlκ(1− lκ)− lκ


dV1

dV2

 dt

+

 1

−1

√β(1,−1)(η1, η2)dB1 +

−1

1

√β(−1,1)(η1, η2)dB2.

Note that we have V1 = −V2. Hence we can obtain the following scalar equa-

tions.

dV = (κβlκ(1− κκ)− 2lκ)dV +
√
ηlκ(β(ζ − η)) + (1− η)lκ(β(η − ζ))dB.

Similarly we find the following expression for the replicator equations:

dV = 2βη(1− η)lκV dt+
√
η(1− η)((rκ(β(ζ − η)) + rκ(β(η − ζ)))dB.
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