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The moduli space of curves has proven itself a central object in geometry. The past
decade has seen substantial progress in understanding the moduli space of curves, in-
volving ideas, for example, from geometry (algebraic, symplectic, and differential), physics,
topology, and combinatorics. Many of the new ideas are related to the tautological ring
of the moduli space, a subring of the cohomology (or Chow) ring that (i) seems highly
structured, and (ii) seems to include all the geometrically natural classes.

The goal of this article is to give the reader an introduction to the moduli space of curves
and some intuition into it and its structure. We do this by focusing on its tautological ring,
and in particular on its beautiful combinatorial structure. As motivation, we consider the
prototypical example of a moduli space, that of the Grassmannian (parameterizing

�
-

dimensional subspaces of an �-dimensional space). Its cohomology ring has a elegant
structure, and Mumford suggested studying the moduli space of curves in the same way.
We introduce the moduli space of (genus � , �-pointed) curves, with enough information
to give a feel for its basic geography. We next introduce the tautological cohomology (or
Chow) classes. Finally, we describe some of what is known about the tautological ring,
emphasizing combinatorial aspects. We will assume as little as possible, although some
notions from geometry and topology will be used.

The selection of material is, of course, a personal one, and there are necessarily omis-
sions of important work. However, we hope that enough has been given for the reader
new to the field to appreciate the deep structure of this important geometrical object. For
the expert, we hope that the view will be a refreshing one with perhaps some combinato-
rial surprises. Many important recent developments in this highly interdisciplinary field
are beyond the scope of this article. For example, the most exciting news in recent times
is Madsen and Weiss’ proof of Madsen’s generalization of Mumford’s conjecture, based
on earlier work of Madsen and Tillmann; the methods are topological and singularity-
theoretic. Other relevant fields include Teichmüller theory, geometric topology, confor-
mal field theory, and arithmetic geometry (Grothendieck’s dessins d’enfants). Even within
algebraic geometry, this discussion leaves out important recent work of Farkas, Gibney-
Keel-Morrison, and many others.

We will use the algebro-geometric language of schemes, but readers should feel free
to interpret these loosely as a certain type of (ringed, topological) space, and to think
instead in their category of choice (such as algebraic varieties, analytic spaces, manifolds,
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topological spaces, etc.). All dimensions will be complex (= algebraic), not real, unless
otherwise specified.

The perspective here on moduli spaces is that of Grothendieck, Mumford, and Deligne.
The highlights discussed are informed most heavily by the books of Arbarello, Cornalba,
Griffiths, Harris, and Morrison, and by work of Faber, Getzler, Looijenga, Pandharipande,
Pikaart, and others. In particular, the author is deeply grateful to Joe Harris for teaching
him how to think about this beautiful subject. Suggestions from D. M. Jackson and many
others have greatly improved the exposition of this article.

Prototypical example of a moduli space: The Grassmannian.

A moduli space is, informally, a parameter space for a certain type of object. This is best
understood in terms of a prototypical example, that of the Grassmannian.

Fix a dimension � vector space � � . (We work over the complex numbers. However,
the construction works over an arbitrary base field, and in much greater generality.) The
Grassmannian � �� � � � is the set of dimension

�
subspaces of � � . If � is a dimension

�

subspace, denote the corresponding point of � �� � � � by �� �. The Grassmannian clearly
has more structure than just that of a set; for example, there is an intuitive notion of
“nearby

�
-spaces”, so � �� � � � should be a topological space. There is a natural way to

give � �� � � � the structure of a manifold (and indeed the structure of a variety), as follows.

Fix
�

general subspaces of dimension � 	 � 
 �
, � 
, � � � , �� . “Most” dimension

�

subspaces � intersect each �� in a one-dimensional subspace (i.e. a point of �� �). Con-
versely, for “most” choices of points of �� 
� � �� 
, � � � , ��� � � ��� , the

�� are linearly
independent and hence span a

�
-dimensional subspace � , and � � � � � �� for all �.

Thus we have given a “large subset” of � �� � � � the structure of a complex manifold (or
a smooth variety). The choice of a different

�
-tuple �� ��
���� will give a different large

subset. One may quickly check that these subsets cover � �� � � �, and that the manifold (or
algebraic) structures are compatible. Hence � �� � � � is a complex manifold, and indeed a
smooth complex algebraic variety. (Exercise: if

� � �, � �� � � � �� ���
 as manifolds, and
the “usual” cover by � affine spaces � ��
 is of the form described above.)

There is a “universal family” over � �� � � �:� �� � �� � � � � � �� �  
� �� � � � �(1)

Here
�

is a complex algebraic variety, and � is a morphism (of varieties). Furthermore,� �
 �� � � � ! � � . In fact,
�

is a vector bundle over � �� � � �, sometimes called the tauto-
logical bundle.

There is an explicit sense in which this algebraic structure on the set � �� � � � is the
“right” one. (This is the rigorous definition of a moduli space.) A family of

�
-spaces" # � � $

parameterized by a variety
$

induces a map of sets
$ � � �� � � � (taking

a point % � $ to the class of the fiber "�
 �%�). This map of sets is in fact an algebraic
morphism. Moreover, the pullback of the universal family

� � � �� � � � to
$

by this
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morphism is our original family � � $
. Hence we have a bijection between the set of

families of
�
-planes parameterized by a variety

$
and morphisms

$ � � �� � � �. This
uniquely specifies the algebraic structure on � �� � � �. (Caveat: The notion of a “family of�

-spaces parameterized by a base” needs to be appropriately defined. The appropriate
algebraic version of continuity of the family is “flatness”.)

In short, we have defined � �� � � � in a categorical manner as follows. We have a “moduli
functor” that is a contravariant functor from the category of varieties to the category of
sets, that takes a variety

$
to the set of families ��� �$ � of

�
-planes parameterized by

$
.

A morphism of varieties
$ � � $

induces a map of sets ��� �$ � � ��� �$ � �: a family over$
pulls back to a family over

$ �
. This functor is isomorphic to another functor, sending$

to ��� �$ � � �� � � ��. However, the Grassmannian can (and should) be thought of rather
concretely. A point of the Grassmannian should be thought of as a

�
-plane; “nearby”

points of the Grassmannian should be thought of as “nearby”
�
-planes in � � .

Cohomology classes of moduli spaces.

If � is a moduli space of a certain kind of object (or structure), then facts about �
can be interpreted as universal statements about all families of such objects. In particular,
cohomology classes of the moduli space are universal cohomology classes. For example,
the classifying space of rank

�
complex vector bundles can be interpreted as a moduli

space ��� , and
	 
 ���� � � � �� 
 � � � � � � � � �(2)

where � � has degree (i.e. real codimension) 
�. Any vector bundle � over a base
$

in-
duces a map

$ � ��� , and the pullback of � � is the �th Chern class �� �� � of the bundle.
Hence (2) can be interpreted as showing that the only universal cohomology classes (in
the appropriate sense) coming from vector bundles are Chern classes, and there are no
relations among the classes. (To make this discussion precise in the algebraic category,
one needs the notion of Artin stacks.)

In analogy with Chern classes, the cohomology ring of a moduli space parameterizing
a certain kind of object is of interest for many reasons, including the following.

(i) Specific questions about the objects in question can be reduced to calculations on the
moduli space.

(ii) To prove general facts about about all families of objects, it suffices to prove a specific
fact about a single (hopefully finite-dimensional) space.

The cohomology ring of the Grassmannian has a rich structure, connected to combi-
natorics, representation theory, and the theory of symmetric functions. (See [Fu] for a
detailed description.) We observe first that � �� � � � is smooth and compact. Hence we can
associate cohomology classes with their Poincaré duals, and will do so.

It is a fundamental fact that the cohomology ring is generated (as a ring) by the Chern
classes of a naturally defined vector bundle on � �� � � �: the universal family

� � � �� � � �
of (1).
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A specific question: How many lines meet four given lines in three-space?.

An example of a specific question about
�
-planes that can be reduced to calculations in	 
 �� �� � � �� is the following. Fix four general lines � 
, �� , �� , �� in � � . How many lines

meet all four? Because this question is in some sense linear algebra, one might suspect its
answer to be �,

�
, or � . In fact it is 
. (The reader may enjoy showing this.)

This is a favorite question of many mathematicians, because they will all agree that it
is the baby case of an important idea. However, they won’t agree on what the important
idea is! (Their answer will depend on whether their primary interest is linear algebra,
geometry, topology, representation theory of �� and �� �� �, Gromov-Witten theory and
quantum cohomology, combinatorics, symmetric functions, or something else.)

This question can be reduced to intersection theory on the Grassmannian as follows.
Interpret � �
 � � � projectively, as the space of projective lines in projective three-space. It
has (complex) dimension four. Given a fixed line � � in � � , the locus of lines meeting � � is
(complex) codimension 1. Let � � 	 � �� �
 � � �� be the cohomology class corresponding to
this locus. (In fact � � � 
 �� �.) Then this question translates to: compute ��

.

The moduli space of 	-pointed genus 
 curves.

We next apply the machinery of moduli spaces to algebraic curves. (For a more detailed
but still informal introduction, see [MirSym, Part 4]. For a more complete introduction,
see [HM]. For excellent summaries of recent research, see [HL, FL].)

We take smooth curves to be Riemann surfaces (connected compact complex manifolds
of dimension 1), although the following discussion applies over an arbitrary field (and in-
deed over an arbitrary base scheme). An �-pointed smooth curve is a smooth curve with
� distinct points labeled � 
 through � � . (In real dimension 2, there is a natural identifica-
tion among Riemannian structures up to scaling, conformal structures, almost complex
structures, complex structures, and complex algebraic structures. These equivalences do
not hold for higher dimensional spaces.)

The genus of a smooth curve is its genus as a surface. For example, Figure 1 is a 3-
pointed genus 6 curve. Perhaps the best way to get a handle on a general genus � curve
is as a high-degree branched cover of the projective line � 
. This was the perspective of
Riemann, and perhaps surprisingly, many of the results proved in the last decade involve
understanding the moduli of curves in terms of branched covers.

Fix a genus � , and a non-negative integer �. Exclude the cases �� � � � � �� � ��, �� � ��, �� � 
�,
and ��� �� for technical reasons that will be described later; the cases ��� �� and �
 � �� are
also somewhat special. Let � � 
� be the set of smooth genus � �-pointed curves. (When
� � �, the notation � � is often used.) As in the case of the Grassmannian, � � 
� has
additional structure. Unfortunately, it cannot be given the structure of a complex mani-
fold, or a variety. (More precisely: the moduli functor is not representable in these cate-
gories.) However, it can be given the structure of an orbifold, or more precisely (to avoid
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FIGURE 1. A 3-pointed genus 6 curve

vagaries of definition of orbifold that cause problems with ��� �� and �
 � ��), a smooth
Deligne-Mumford stack. The general reader may think of � � 
� as a complex manifold
without going too far wrong; the main caveat is that cohomology should be taken with�

-coefficients, not �-coefficients. In order to camouflage this issue, we will call � � 
� a
“space”. Note for experts: each point of an orbifold has an associated finite group. For
� � 
� , the group corresponding to the pointed curve �� �� 
 � � � � �� � � is the automorphism
group of the pointed curve. If the group is ���, � � 
� is a manifold near that point. For
example, most genus � curves have only the trivial automorphism, but the general hyper-
elliptic curve given by the compactification of the locus in � �

� � �
��
�	 
 �

� 	 
 � � (
 � �� 
� for � �� 
 )

has a nontrivial automorphism (given by �� � � � �� �� � 	� �), and the curve

� �� 
 � �� 
 � �� � �

in the projective plane has the most automorphisms of any genus 3 curve, 168 (exercise:
find them all!).

We will need one fact about � � 
� . Remarkably, in some sense this was known to Rie-
mann.

Fact 1. The space � � 
� is smooth and irreducible (i.e. connected), of dimension �� 	 � 
 �.

The geometry of this space is rather subtle, and very few general statements are known.
One example which is elementary to state is the following. Any complex curve of genus
at most 10 can be arbitrarily well approximated by a rationally definable curve (i.e. one
defined over

�
, described by equations with rational coefficients). However, an appro-

priate generalization of a conjecture of Lang would imply that in genus at least 24, the
set of such curves has measure 0. (This follows from three facts: (i) rationally definable
curves correspond to

�
-points of � � ; (ii) � � 
� is “unirational” for � � ��; and (iii) � � 
�

is of “general type” for � � 
�, a celebrated result of Harris, Mumford, and Eisenbud.)
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FIGURE 2. A 3-pointed genus 6 curve with three nodes

Another fact suggesting that the topology of this space has some elegant structure is
Harer and Zagier’s result that the (orbifold) Euler characteristic of � � 
� is given by:

� �� � 
� � � �	
��� �
�



� 	 �� �$ ��


� �
� 	 
� �(3)

if � � �, where
$ �� denotes the Bernoulli number. (If � � �, � �� � 
� � � �	

���� 
 �
� 
 � 	
�� �.)
Deligne and Mumford’s compactification �� �� of �� �� .

Deligne and Mumford [DM] introduced a compactification � � 
� of the moduli space
� � 
� . The additional points of the moduli space correspond to nodal curves. The points
of a nodal curve are either smooth, or analytically isomorphic to a neighborhood of the
origin of �� � � in � � . The curve is still required to be connected and compact. An �-
pointed nodal curve is a nodal curve with � distinct smooth points labeled � 
 through
� � .

Informally, the arithmetic genus of a curve with nodes is the genus of its smoothing.
For example, a smoothing of Figure 2 is Figure 1; hence Figure 2 has arithmetic genus 6.
(Warning: the picture of the node is misleading, due to the difficulties of depicting a node
in real two- or three-dimensional space. In fact, at each node the two branches are glued
together transversely, and are not tangent.)

The geometric genus of a component of a nodal curve is found by “ungluing” the nodes,
and finding the genus of the corresponding component. For example, the components of
the curve of Figure 2 have genus 0, 2, and 3.

To each nodal curve with labeled points, we associate a dual graph. Vertices correspond
to components; they are labeled with their geometric genus. For each node, we draw
an edge joining the appropriate vertices. For each marked point, we draw a “half-edge”
incident to the appropriate vertex, with the same label as the point. For example, the
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FIGURE 3. The dual graph corresponding to Figure 2

��

�

FIGURE 4. The stratum corresponding to this graph is isomorphic to�� 
 
� �� 
 
� �� 
 
� � ���

dual graph corresponding to Figure 2 is shown in Figure 3. (Combinatorial exercise: if a
nodal curve � has

�
components of geometric genera � 
, � � � , �� , and � nodes, then the

arithmetic genus of � is � ��	 
 �� � 	 �� 
 � 
 � .)

A nodal curve is said to be stable if it has finite automorphism group. This is equivalent
to a combinatorial condition: (i) each genus 0 vertex of the dual graph has valence at least
three, and (ii) each genus 1 vertex has valence at least one. For example, the curve of
Figure 2 is stable.

Now let � � 
� be the moduli space of �-pointed genus � stable curves. (The reader may
verify that, as we have assumed �� � � � �� ��� ��, one need only check condition (i).)

Fact 2. The moduli space of stable curves � � 
� is a smooth, compact, irreducible space
(Deligne-Mumford stack), of dimension �� 	 � 
 �.

Moreover, the moduli space has a natural stratification.

Fact 3. � � 
� is stratified by topological type, or equivalently, by dual graph.

In other words, to each stable dual graph there corresponds a stratum. For example,
the stratum given by Figure 3 consists of (points corresponding to) all curves looking
like Figure 2. To give such a curve is the same as giving a 3-pointed genus 0 curve, a 3-
pointed genus 2 curve, and a 3-pointed genus 3 curve, and gluing them together as shown
in Figure 2. Thus this stratum is isomorphic to � � 
� � � � 
� � � � 
� . In the same way,
one may show that each stratum is isomorphic to a product of moduli spaces of smooth
pointed curves, modulo a finite group. (For an example with a nontrivial finite group:
the stratum corresponding to the dual graph of Figure 4 is isomorphic to the quotient of
� 
 
� �� 
 
� �� 
 
� by the symmetric group �� .) In particular, the next fact follows (after
mild combinatorics) from the first three.
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FIGURE 5. The strata of � � 
�

Fact 4. The codimension of a stratum is the number of edges of the corresponding dual
graph. � � 
� contains � � 
� as a dense open stratum. (The other strata are called boundary
strata.) The 0-dimensional strata, or 0-strata, correspond to dual graphs where all vertices
are trivalent of genus 0.

Examples: � � ��, � � ��, and � � ��.

It is a straightforward fact that any three points on � 
 may be sent to �,
�
, � by a unique

automorphism of � 
. Hence � � 
� consists of a single point. One may quickly check that
the only stable 3-pointed genus 0 graph is the obvious one (with one genus 0 vertex), so
� � 
� is a point as well.

If � 
, � �, � �, � � are distinct points on � 
, then the automorphism of � 
 of the previous
paragraph (sending the first three points to �,

�
, and � respectively) will send � � to some

number � �� � � � �� . This map is the cross-ratio map:

� � �� � 	 � 
 � �� � 	 � � �
�� � 	 � � � �� � 	 � 
� �

Hence � � 
� �� � 
 	 �� � � �� �. (In its modern guise of the map to � � 
� , the lowly cross-
ratio remains an important tool in geometry.) The compactified space � � 
� has three
boundary strata, the last three in Figure 5. In fact � � 
� �� � 
; the reader should try to
associate the three boundary strata with the three degenerate values (�,

�
, � ) of � . The

three boundary strata are trivially rationally equivalent, as they are points on � 
. This
relation goes by many names; we will refer to it as the cross-ratio relation.

The reader may check that no stable �-pointed genus 0 curve has a non-trivial auto-
morphism. Thus � � 
� is a manifold (and indeed an algebraic variety).

The space � 
 

 parameterizes genus 1 curves with a marked point, i.e. elliptic curves.
To each elliptic curve is associated a 
 -invariant (a complex number), and to each complex
number there is an associated elliptic curve with that 
 -invariant, so � 
 

 looks a lot like� . However, � 
 

 is not a manifold (as every elliptic curve has an involution, so � 
 


has non-trivial stack structure). In a concrete sense, � 
 

, not � , is the right moduli space
for elliptic curves. For example, modular forms are sections of a line bundle on the space
� 
 

.
Natural morphisms between moduli spaces of curves.
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There are natural morphisms between moduli spaces of curves. For example, given an
�-pointed genus � curve (� � �, �� � � � �� �� � �� � ��� ��), one may forget point � � to obtain
an �� 	 ��-pointed genus � curve. Hence there is a “forgetful morphism”:

Forgetful morphism: � � 
� � � � 
��
 �(4)

(Caution: when a point is forgotten, the resulting curve may not be stable. However,
there is a natural way to “stabilize” an unstable curve. Exercise: if point � � is forgotten in
Figure 2, what should be the resulting stable 2-pointed genus 6 curve?)

Also, given an �� 
 
 ��-pointed genus � 
 curve � 
 and an �� � 
 ��-pointed genus ��
curve � �, one may glue one of the marked points of � 
 to one of the marked points of � �
to obtain a new curve � of genus � 
 
 � � with � 
 
 � � marked points (two of the previously
labeled points have disappeared). Similarly, given an �


 
-pointed genus � curve � , one
may glue two of the marked points of � together, obtaining a new curve of genus �


 �
with � marked points. Hence we have:

Gluing morphisms: � � � 
� �� 
 �� �� 
� �� 
 � � � ���� 
� ��� �
� � � 
��� � � �� 
 
� �(5)

The gluing morphisms came up implicitly in our earlier discussion of boundary strata as
products of smaller moduli spaces of curves.

Call the forgetful and gluing morphisms (4), (5) the natural morphisms between moduli
spaces of curves.

The tautological ring.

In algebraic geometry, rather than considering the cohomology ring, we consider the
algebraic version of it, the Chow ring

� 
 �� � 
� �. The Chow groups are generated by al-
gebraic cycles. Relations in Chow groups are generated by the atomic relation that two
points in � 
 are “homologous” (the analogous terminology in Chow is rationally equiva-
lent; we reserve the word “homologous” for cohomology), and the condition that rela-
tions pull back and push forward under appropriate morphisms. As both the generators
and relations of the Chow ring are a subset of those generating cohomology, Chow is
neither stronger nor weaker than simplicial cohomology. For example, as the generators
of Chow groups are algebraic and hence of even real dimension, Chow groups do not
see odd-graded cohomology. On the other hand, two distinct points on a smooth curve
of positive genus are not equivalent in Chow, while they are in homology. The reader
may think instead about cohomology, although some information will be lost, as will be
explained soon. There is a natural map

� � � 	 ��
. (The index for Chow corresponds to

algebraic (= complex) codimension, hence its doubling in the map to cohomology.) Be-
cause we are considering Deligne-Mumford stacks or orbifolds, we take rational rather
than integral coefficients.

In some sense, it appears that the Chow ring
� 
 �� � 
� � is not the right object to study.

Instead, attention has focused on a certain “tautological” subring, denoted by � 
 �� � 
� � !� 
 �� � 
� �, for three admittedly vague reasons: (i) many interesting questions in geometry
boil down to the tautological subring; (ii) no natural questions seem to reduce to questions
in the non-tautological part of the Chow ring; and (iii) the tautological subring has, at least
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conjecturally, a great deal of structure. For example,
� 
 �� � 
� � is probably usually huge

except in special cases (see the discussion of � 
 


 below). � 
 �� � 
� � is much smaller.

However, in complex codimension 1, Arbarello and Cornalba showed using results of
Harer that the tautological ring is equal to the cohomology ring.

As a first informal definition, � 
 �� � 
� � consists of all the classes naturally coming from
geometry. By this “definition”, any geometric calculation that can be translated to the
Chow ring will require only knowledge of the tautological ring. (For an example of how
straightforward facts in the tautological ring can lead to solutions of longstanding classi-
cal problems, see [V].) An easy example of a class coming from geometry is the class of a
boundary stratum.

A second example of classes are Chern classes of certain natural vector bundles on the
moduli space. For example, there are � natural line bundles on � � 
� , denoted by � 
 , � � � ,
� � . The fiber of � � at the point �� �� 
 � � � � �� � � � � � 
� is the (one-complex-dimensional)
cotangent space to � at � � . Define � � � � 
 �� � �; these are called the � -classes, and will be
central players in the rest of this exposition.

Another natural vector bundle on � � 
� is the Hodge bundle: to a smooth curve � one
associates the �-dimensional vector space of differentials. This definition can be extended
over the boundary, giving a rank � vector bundle � over � � 
� . Define �� � �� �� � (

� �� � � ). These �-classes will come up again later.

There are many other natural classes, including the Miller-Morita-Mumford �-classes,
� 
, �� , � � � (where � � is codimension �). For brevity, we omit their definition, although they
will arise again in Faber’s conjecture. Mumford’s original definition of the tautological
ring of � � was in terms of �-classes. The �-classes were also independently defined by
Morita and Miller.

The generalization of the tautological ring to � � 
� is due to Hain and Looijenga. The
following description is due to Faber and Pandharipande.

Definition. The system of tautological rings �� 
 �� � 
� � !
� 
 �� � 
� ��� 
� is the smallest sys-

tem of
�

-algebras satisfying:

(i) � 
 � � � � � �� � � 
 �� � 
� �, and
(ii) the system is closed under pushforwards by natural morphisms ((4) and (5)).

For example, the boundary strata are obtained by pushing forward the fundamental class
by gluing morphisms (5). All other “natural” geometric classes are in this ring, including
�-classes, �-classes, and pullbacks of tautological classes under natural morphisms.

Definition. Define the tautological ring on any open subset of � � 
� by its restriction from
� � 
� .

The striking (often conjectural) combinatorial structure of the tautological ring comes
in two related flavors:
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� ���� � � ��� � �
���� �

�� �
FIGURE 6. The cross-ratio equivalences of boundary strata

��� � ��� �
�� ���

FIGURE 7. An example of a cross-ratio equivalence (in � ��)� structure related to boundary strata (and hence graphs); and� structure of top intersections in the tautological ring, often called Hodge integrals;
especially top intersections of � -classes.

Before describing what is known about these two structures in arbitrary genus, we will
first recapitulate what is known in low genus. In genus 0, the structure is exceptionally
elegant and combinatorial. In higher genus, odder behavior starts to happen; examples
often involve � 
 


.
Genus zero.

The gluing morphisms (5) combined with the cross-ratio relation give equivalences
among boundary strata (in cohomology), depicted in Figure 6. In the Figure,

�
,
$

, � ,
and � are taken to be graphs with one “root”. We will also refer to these as cross-ratio
relations. The equivalence shown in Figure 7 is an example of a cross-ratio relation.

Keel has proved that in genus 0 (for any number of points), the cohomology and Chow
groups are generated by boundary strata, and that the relations are generated by the
cross-ratio relations. In particular,

	 
 � � 
	� � � 
	�
. (In fact, the cohomology ring is

generated as an algebra by complex codimension 1 strata.) Multiplication of boundary
strata in cohomology can be described combinatorially as well, so the cohomology ring
of � � 
� has a beautiful combinatorial structure.

A different aspect of the combinatorial structure of the cohomology/Chow/tautological
ring of � � 
� is visible in terms of � -classes:
� �
�

� � �
 � � �� ��� � � � 	 �

 
 � � � � � 
�� �

11



We are using ordinary multiplication to represent cup product. Define �� � (where � �	 �� �� � or
� � �� �) to be the degree of � if � � ��� �

, and to be � otherwise. As ��� � � 
� �
� 	 �, � � 
 � must be � 	 � in order to produce a �-cycle.

This result is even more beautiful in the language of generating functions. Let� � 
� � �� � 
���
�� �
� 	 
�
� � �
 � � �� ��� 
 �� �
 � � � ����(6)

where � 
, � � � , �� are formal variables. This is a homogeneous polynomial of degree��� � � 
� � �� 	 � 
 � . Then � � 
� � �� 
 
 � � � 
 �� ���� �(7)

Genus one: The strange case of � � ���.

Before we discuss how well genus 1 is understood, we begin with a pathology: � 
 


.
In genus 0, the map

� 
	� � 	 

is an isomorphism. One blunt reason for

� 
	� �� � �	 
 �� � not to be an isomorphism for a complex projective manifold
�

is if
�

has odd
cohomology: the algebraic classes are generated by algebraic (hence complex analytic)
cycles, and hence are even-dimensional. (But the Euler characteristic of the moduli space
of curves may be negative by (3), odd cohomology definitely arises.) There is a more
refined obstruction as well: Hodge theory dictates that there is a sub-vector space of the
even-dimensional cohomology where the algebraic cohomology must lie; we will call this
the cohomology of Tate type.

The 22-real-dimensional space � 
 


 has odd cohomology, in its middle dimension.
The existence of this cohomology is a consequence of the existence of a non-zero 11-form
on this 11-complex-dimensional orbifold. (This uses the existence of the famous weight 12
modular form � .) Hence the natural map from the Chow ring of � 
 
� to its cohomology
ring

	 
 �� 
 
� � cannot be a surjection for � � ��, and indeed for � � ��.
Also, the existence of this non-zero 11-form implies that

� � �� 
 
� � is huge (for � � ��)
— for example, it is uncountably generated. (A more precise statement and proof of this

folklore fact appear in [GrV1].) As � � �� 
 
� � (i.e. � 
���
�


�
�� 
 
� �) is countably generated

(indeed one-dimensional, see below), we see that � � �� 
 
� � �
� � �� 
 
� � cannot be an

isomorphism. On the other hand, for � � ��, the maps � 
	� �� 
 
� � �
� 
	� �� 
 
� � �	 
 �� 
 
� � are isomorphisms, by work of Belorousski.

Hence the cohomology ring has more information than the Chow ring (for example,
it has odd cohomology), and the Chow ring has more information than the cohomology
ring (for example, it can better distinguish 0-cycles). In genus 1, the tautological ring is
well-understood, and it is “better-behaved” in that it sees neither of these two extra types
of information, as we shall soon see.

As in genus 0, the tautological groups are generated by boundary strata. (This follows
from the definition of the tautological ring using � -classes, and the fact that on � 
 
� , � �

12



is rationally equivalent to a sum of boundary strata.) Intersections between boundary
strata are quite straightforward. There is a new relation in codimension 2 on � 
 
� due
to Getzler; the relation is complicated, and omitted here. It is perhaps surprising that
this relation was not discovered earlier, given the fact that � 
 
� is a compact complex
fourfold, parameterizing simple objects of long-standing interest (essentially, four points
on an elliptic curve). Furthermore, Getzler has announced that his relation and the cross-
ratio relation generate all relations on � 
 
� , and that the map from the tautological ring
to the cohomology ring is an injection. (More precisely, the map � 
	� � 	 


gives an
isomorphism of the tautological ring with the even cohomology. As a consequence, for
example, any even-dimensional class is homologous to a tautological class.)

There is an analog to (7), involving the logarithm of a certain generating function, di-
vided by 24.

Genus greater than one.

Starting in genus 2, the boundary strata do not generate the tautological ring: � 
 on
the threefold � � 

 is not homologous to boundary strata. (This is in some sense the only
example in genus 2; all others are derived from this via the gluing morphism.) The Chow
ring of � � 
� is known for small �, but many open questions remain. Belorousski and
Pandharipande have proved a new relation in codimension 2 on � � 
�. Polito showed in
her thesis that there are no additional codimension 2 relations for � � 
� , but surely there
are more to be found in higher codimension. An explicit algebraic cycle, not homologous
to a tautological class, defined over

�
, was found on � � 
�� by Graber and Pandharipande;

it is the first in a family of examples, and its construction uses � 
 


.
In genus greater than 2, the full Chow ring is well-understood in a few cases, including:� 
 �� � � (work of Faber; it contains only tautological elements),

� 
 �� � � �� � �� 
 �� ���
�
(Faber again), and

� 
 �� � � �� � �� 
 �� ���
� (work of Izadi combined with work of Faber).
Pikaart has shown that for large � (for given �), the cohomology of � � 
� is not all of Tate
type and hence not all algebraic (let alone tautological); his argument involves � 
 


.
There is also a higher-genus version of (7), given by a “genus-expansion” ansatz of the
physicists Itzykson and Zuber.

The tautological ring in arbitrary genus: top intersections of � -classes.

The reason for interest in top intersections of � -classes is that knowing these values
allows us to find the top intersections of any classes in the tautological ring, by appro-
priately unwinding the definition of the tautological ring. (Based on his earlier work,
Faber has written a remarkable MAPLE program that will explicitly perform intersections
of many different types of classes in the tautological ring [F2].) Furthermore, these top
intersections of � -classes have a striking structure which allows them to be computed,
using Witten’s conjecture or Hurwitz numbers.

13



Witten’s conjecture (proved by Kontsevich, and later by Okounkov and Pandharipande)
was the catalyst for much of the interest in the tautological ring in recent years. (See [L]
for a detailed exposition.) Define � � by

� � #� �
���

�
� � �� � 
���
�� �
� 	 
�

� � �
 � � �� ��� 
 �� � � � � ��� �
the generating function for all top intersections of � -classes in genus � . (Compare this to
(6).) Define a generating function for all such intersections in all genus by

� #� �
�

� � ����� �
This is Witten’s free energy or the Gromov-Witten potential of a point. For convenience, we
will set � � �.

Witten’s conjecture (Kontsevich’s Theorem) gives a recursion for top intersections of � -
classes in the form of a partial differential equation satisfied by � . Using this differential
equation along with a straightforward geometric fact known as the string equation and the
trivial fact (the “initial condition”) �� �


�
� � � (as � � 
� is a point), all top intersections are

quickly recursively determined.

Witten’s Conjecture (Kontsevich’s Theorem).

�
� 
 ��
� �

� �� � ��� � � � � �
� ���
� �� � � � � �

� ��� � � 
 
 � � �
� ���
� ��� � � � � �

� ��� � � 
 �� � �
� ���
� ��� � �

Kontsevich’s proof of Witten’s conjecture is by combinatorializing these top intersec-
tions, expressing them in terms of sums over “ribbon-graphs”. Okounkov and Pand-
haripande’s more recent proof is by way of Hurwitz numbers, which is a second way of
combinatorializing top intersections of � -classes, and is described below.

Witten’s conjecture indicates a deep connection between moduli spaces such as these,
and integrable systems. This link is still mysterious. Another link to integrable systems
is via the Virasoro Lie algebra. Dijkgraaf, Verlinde, and Verlinde showed that Witten’s
conjecture (along with the string equation) implies that �� is annihilated by a sequence of
differential operators ��
, � � , � 
, � � � , corresponding to part of the Virasoro algebra. The
first differential equation ��
�� � � is the string equation, and the second is geometrically
obvious, but the geometric meaning of the rest is obscure. One of the fundamental open
questions in Gromov-Witten theory is a generalization of this formulation of Witten’s con-
jecture, and deals with maps of curves to an arbitrary (smooth projective) target manifold:
the Virasoro conjecture (due to the physicists Eguchi, Hori, and Xiong, as well as S. Katz).
This question has recently been settled in two important open cases: that of projective
spaces (by Givental) and that of smooth curves (by Okounkov and Pandharipande).

Hurwitz numbers.

Another combinatorial description of top intersections of � -classes, which has been
alluded to above, is via Hurwitz numbers. Hurwitz numbers count, essentially, ordered
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factorizations of a permutation into transpositions, and these factorizations may be re-
garded as combinatorial objects. More precisely, fix a positive integer �, a non-negative
integer � , and a conjugacy class of �� given by a partition � (i.e. � 
 
 � � �
 �� � �). Define
� by 
 	 
� � � 
 � 	 � . Then define

�	 �� � � �� 
 � � � � � �� � 	
�� ��� � # � 
 � � � �� � � �� �� �� �(8)

where 	
�� ��� � is the set of transpositions in �� (elements of the form ��
 �), and � �� � ! ��
is the conjugacy class defined by � .

This number can be interpreted as the answer to a problem in enumerative geometry, as
follows. Fix � 
 � distinct points �� 
 � � � � �� � �� � on the sphere, interpreted as the complex
projective line � � 
 , and count the number of degree � covers of the sphere, unbranched
away from the � 
 � points, with the simplest possible branching above each of the first �
points (i.e. two of the sheets come together, analytically the projection of the parabola � � �� to the �-axis in � � ; the remaining �	
 sheets are unbranched), and with branching above
� given by � . Then the cover also has a complex structure by the Riemann existence
theorem, and hence is a Riemann surface, although possibly with many components.

Define the Hurwitz number
	 �� as the number of such covers where the cover has one

component. In this case, the covering curve has genus � . The analog in (8) is to require that
the � � generate �� . Equivalently, if one constructs a graph with vertices labeled

�
through

�, and draws an edge between �
 � � if � � � �
 � �, then this “monodromy graph” must be
connected. The simplest way to describe the relationship between the numbers

	 �� and�	 �� is to construct generating functions
	

and
�	

for these numbers in a straightforward

way; then
�	 � �� .

Hurwitz numbers were first studied by Hurwitz. In recent times, they have been stud-
ied by combinatorialists, representation theorists, physicists, the Arnol’d school of ge-
ometers, symplectic and algebraic geometers interested in Gromov-Witten theory, and
more. For a summary of this rich history, see [ELSV, GJV] .

Hurwitz numbers are obviously easy to compute. If you play with them for a while,
you may soon come to the following conjecture:

	 �� � � �
� 
�	 �� �

��
�	 


����
� � �

� �� 
 � � � � � �� �(9)

where
�

is some mysterious symmetric polynomial of total degree between 
� 	 � 
 � and
�� 	 � 
 �. This conjecture is a baby form of a much more sophisticated polynomiality
conjecture of the combinatorialists Goulden and Jackson, which can be interpreted as a
“structure theorem” for Hurwitz numbers. The number �� 	 �
 � is extremely suggestive:
it is the dimension of � � 
� , and there is indeed a genus � curve with � marked points in
the picture: the cover has genus � , and has � pre-images over � .

Equation (9) is explained by the following truly remarkable formula:
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Theorem (The “ELSV formula”, Ekedahl, Lando, Shapiro, and Vainshtein).

� �� 
 � � � � � �� � �

� 	 
� � 	 � 
 
 � � � 
 �	�����

�� 	 � 
� 
 � � � � �� 	 ���� �
�(10)

This equation should be interpreted as follows: formally invert the denominator, expand
everything out, and keep only the terms of codimension ��� � � 
� � �� 	 � 
 �. Hence
for fixed � and �,

� �� 
 � � � � � �� � � �� �� �����
�
�� 	��������� ��

��	��� 
� 	 
�
� � �
 � ��� � � �� ��� ��
 � � �
 � ��� � � � � ��� �

immediately identifying the mysterious polynomial
�

. Note in particular that the highest-
degree portion of

�
is a generating function for top intersections of � -classes (and is, upon

replacement of � � by ��, equ. (6)). This gives a straightforward way of computing these
abstractly-defined numbers: it is not hard to recover the coefficient of a polynomial

�
of known degrees by computing enough values, and Hurwitz numbers are easy to com-
pute. Hence, remarkably, the combinatorics of the symmetric group lead inexorably to
the tautological ring of the moduli space of curves!

There are many other consequences; see [ELSV, GJV] for surveys. For example, (i)
Goulden and Jackson’s full polynomiality conjecture can be proved, (ii) conjectured re-
cursions for Hurwitz numbers can be proved, and new ones found, (iii) after a non-trivial
change of variables, the generating function

	
becomes (a mild generalization of) Wit-

ten’s free energy of a point, and (iv) this combinatorial description of intersections of
� -classes leads to Okounkov and Pandharipande’s proof of Witten’s conjecture via as-
ymptotic combinatorics.

We remark in passing that the ELSV formula is an equality not just of numbers, but in
Chow (in � � �� � 
� � #� � ������ �� � 
� �). Interpreted properly, this yields:

Theorem [GrV1]. � � �� � 
� � ��
�

.

In other words, any two tautological 0-cycles on � � 
� are commensurate. This is trivial
in cohomology, but far from obvious in the Chow ring (where

� � , as described earlier, can
be huge). Also, Witten’s conjecture can in some sense be interpreted as a recursion not
just of numbers, but in Chow.

The ELSV formula can be proved in Gromov-Witten theory; this interpretation leads to
connections with the second, related, source of combinatorial structure in the tautological
ring, the boundary strata.

The tautological ring in arbitrary genus: cycles of arbitrary dimension.

In some sense we have a handle on 0-cycles. By Faber’s algorithms, we also know how
to intersect any two tautological cycles. In cohomology, this would be enough for us to
determine the full structure of the ring, thanks to Poincaré duality. It has been conjectured
that “Poincaré duality” also holds for � � 
� :
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Poincaré duality conjecture (or speculation) for stable curves (Hain-Looijenga). � 
 �� � 
� �
satisfies Poincaré duality.

In other words, if � � ��� � � 
� � �� 	 � 
 � :

(I) � � �� � 
� � � � for � � �, which is obvious for dimensional reasons;
(II) � � �� � 
� � ��

�
;

(III) the natural pairing � � �� � 
� � � � ��� �� � 
� � � � � �� � 
� � ��
�

is perfect.

For convenience, we will call such a ring a dimension � Poincaré duality ring, and (I) and
(II) the socle conditions. (This terminology is from the theory of Gorenstein rings.)

There is no a priori reason to expect the tautological ring to satisfy Poincaré duality. (For
example, the Chow ring certainly doesn’t, as the hugeness of

� � �� 
 


� shows.) At this
point, there is a great deal of low-genus evidence for this conjecture; however, the only
genus-free evidence to date is (II), described earlier.

This conjecture was motivated by an earlier conjecture by Faber.

Faber’s conjecture (for smooth curves) [F1, Conj. 1].

(a) � 
 �� � � is a dimension � 	 
 Poincaré duality ring.
(b) The �� ��� classes � 
, � � � , � �� 	�� generate the ring, with no relations in degrees �� ���.
(c) There exist explicit formulas for the proportionalities in degree � 	 
, which may be

given as follows.

� � �� 

 � ��� 
� � � �� ��� 
� � �
� 	 � 
 � � ��
� 	 �� ��
�
� 	 �� �� �� 	 
 �
�� 
 �� ������ � �� ���

�� �

Here �

 	 �� �� is a shorthand for
� � � � � � � �

 	 ��; �� � � �� � �� �� � � � � � � �� � 	
 � � for a decom-

position � � � 
� � � � � � � 
� � of the permutation � into disjoint cycles; and �� � is the sum of
the elements in the cycle � , where �� acts on the

�
-tuples with entries � 
, � � � , �� . (Faber

conjectured furthermore that � 
 �� � � “behaves like” the algebraic cohomology ring of a
smooth projective manifold of dimension � 	 
; the additional properties required will
not be discussed here.) Faber verified the conjecture for genus up to 15 — a highly non-
trivial calculation on difficult-to-handle spaces. Part (c) in particular highlights the com-
binatorial structure of the tautological ring. Significant progress has been made on this
conjecture, in the form of three theorems.

Theorem.

(a) (Looijenga) � � �� � � � � for � � � 	 
, � ��� �� � � � �
. (The latter statement uses a

calculation of Faber [F1, Thm. 2].)
(b) (Morita, Ionel) Part (b) of Faber’s conjecture is true in cohomology. Ionel’s proof

should extend to the Chow ring without difficulty.
(c) (Getzler, Pandharipande, Givental) Part (c) of Faber’s conjecture is true.
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(A word of explanation of (c): Getzler and Pandharipande showed that the Virasoro
conjecture for � � implies this part of Faber’s conjecture. As described earlier, Givental has
since proved the Virasoro conjecture for all projective spaces. This proof for (c) is quite
round-about and complicated; it would be good to have a better proof, and this seems
within reach.)

Hence all that remains is the “perfect pairing” part of the conjecture; while there is some
prospect for proving cases of this open problem (for example, the case � � � or possibly

), there are no current hopes for approaching the general problem.

Faber and Pandharipande have proposed two other generalizations of Faber’s conjec-
ture, to curves with “rational tails” (curves whose dual graph contains a vertex of genus
� ), and curves of “compact type” (curves whose dual graph has no loops). For example,
the curve of Figure 1 is of both types, but the curve of Figure 2 is neither.

Boundary strata and vanishing of tautological classes.

These conjectures are closely related to the combinatorial structure of the tautological
ring involving boundary strata, by way of the following result.

Tautological vanishing theorem [GrV2]. Any tautological class of codimension � is trivial
away from strata satisfying

# genus 0 vertices � � 	 �

 ��

For example, the “vanishing” part of Looijenga’s theorem (a) above (that � � �� � � � �
for � � � 	 
) is a consequence as follows. If � � � , then any codimension � class vanishes
on the open set corresponding to curves with no genus 0 vertices, and in paricular on � � .
If � � � 	 �, then the theorem does not directly apply. However, from the definition of
the tautological ring, we see that any tautological class on � � is pushed forward from
� � 

; hence a codimension � 	 � class on � � is pushed forward from a codimension �
class on � � 

, which vanishes by the same argument. The reader may like to extend this
argument to address the case of “curves with rational tails” described above (part of the
“rational tail” conjecture of Faber and Pandharipande).

As another example, the reader may enjoy proving the analog of part (a) of Faber’s
conjecture for the moduli space of “compact type” curves � �� 
� ! � � 
� by showing the
following sequence of facts. If � � 
� 	 � 
 �, there is no compact type (i.e. no-loop) stable
dual graph of genus � with � points. If � � 
� 	 � 
 �, then there are: they are strata
containing only trivalent genus 0 vertices, � genus 1 “leaves”, and � “half-edges”. These
strata are of codimension precisely 
� 	 � 
 � , so � ������ �� �� 
� � is generated by these
strata. Any two of these strata are related by cross-ratio relations. It is a straightforward
geometric fact that any one of these strata is non-trivial in cohomology (and hence the

Chow ring), so we have shown that � � �� �� 
� � vanishes for � � 
� 	 � 
 �, and is one-
dimensional for � � 
� 	 � 
 � .
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The analogous theorem for stable curves, the fact � � �� � 
� � ��
�

described earlier, fol-
lows similarly; there are many extensions along these lines.

We conclude with another remarkable consequence, which indeed partially motivated
the vanishing theorem. As described earlier, in genus 1, � � is rationally equivalent to a
sum of boundary strata. In genus 2, Mumford and Getzler proved that on � � 
� , � ��� is
also supported on the boundary (i.e. is trivial on � � 
�). Based on this, Getzler conjectured
the following statement, which was recently proved by Ionel. (Ionel states the result in
cohomology, but her proof should carry through in the Chow ring.)

Ionel’s theorem (formerly Getzler’s conjecture). If � � �, all degree � monomials in � 
,� � � , �� vanish on � � 
� .
Conclusion.

Since Kontsevich’s proof of Witten’s conjecture, there has been a great deal of progress
in understanding the geometry and topology of the moduli space of curves, and in par-
ticular its tautological ring. The objects in question are quite classical, and the fundamen-
tal perspective behind the proofs of the results described above, that of understanding
curves as covers of the projective line, is very much so. However, the recent progress is
highly motivated by work in other fields (such as string theory, combinatorics, represen-
tation theory, topology, symplectic geometry, integrable systems and more), and some of
the techniques are quite modern (such as those of Gromov-Witten theory). As new ideas
continue to flow into algebraic geometry from these neighboring fields, there should be
even more exciting developments in the near future.
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